
1

Integrating and Processing XML Documents
with JavaBeans Components

Yin-Wah Chiou
Department of Information Management
National Penghu Institute of Technology

Makung City, Penghu, Taiwan, R.O.C.

ABSTRACT

The eXtensible Markup Language (XML) and JavaBeans
component model have gained wide popularity in the Object
Web computing. This paper explores how JavaBeans
components can be used to integrate and process the XML
documents. It covers Bean Markup Language (BML), XML
BeanMaker, XML Bean Suite, and Xbeans. The most
powerful JavaBeans connection language is BML, which
represents an integration of XML and JavaBeans components
to provide a mechanism for implementing active content.
XML BeanMaker is used to generate JavaBeans from XML
DTD files. XML Bean Suite is a toolkit of JavaBeans
components to provide a comprehensive set of functionality
to manipulate XML content. The Xbean is a powerful
paradigm to process XML-based distributed applications.

Keywords: JavaBeans, XML, BML, XML BeanMaker,
XML Bean Suite, Xbean.

1. INTRODUCTION

The W3C's XML and Sun's JavaBeans component model are
playing an increasingly important role in the Object Web
technology. XML is a new and promising metalanguage to
describe the content of Web documents. JavaBeans
components allow developers to package smaller grained
pieces of reusable functionality. The key concepts of
JavaBeans include properties (attributes of the component),
events (notifications of the state changes), persistence
(saving and restoring state), methods (services provided by
the component), and introspection (discovering properties,
methods, and events). In this paper, we examine how XML
can be integrated and processed with JavaBeans component
model. In this issue, we describe IBM's Bean Markup
Language (BML), IBM's XML BeanMaker, IBM's XML
Bean Suite, and Xbeans components (from Xbeans.org).

BML is an instance of an XML-based component
configuration or wiring language customized for the
JavaBeans component model [17]. There are two

implementations of BML processor, including BML player
and BML compiler. The BML player is a very small
interpreter for processing BML documents and creating the
desired bean hierarchy. The BML compiler converts any
BML script into reflection-free Java code for capturing the
inter-component structure of the application. XML
BeanMaker is a software tool (written in Java) for
generating JavaBeans out of XML DTD files.

XML Suite of Beans provides a comprehensive set of
functionality for manipulating XML content, such as viewing,
searching, editing, or processing XML documents [3]. The
classes in the XML Bean Suite can be divided into five sets
of related JavaBeans, including XMLCoreBean,
XMLConvenience, XMLProcessing, XMLViewer, and
XMLEditor. The Xbeans are JavaBeans that manipulate XML
data; with the appropriate set of Xbeans and a JavaBean
design tool, it is possible to build useful distributed
applications with little or no programming [12]. Therefore,
Xbeans are focused on the distributed applications.

2. XML WITH JAVABEANS

The growth of the JavaBeans component model has been
fueled by the ability to integrate and process XML
documents. In this section, we first describe the basics of
XML technology and JavaBeans component model. We then
examine Bean Markup Language (BML), XML BeanMaker,
XML Bean Suite, and Xbeans.

XML Technology
The XML provides a data interoperability format for
information exchange. It plays a critical role in the evolution
of the Web's data representation. The Web's data
representation is shifting from structural HTML markup
(i.e., representing a presentation structure of a document) to
semantic XML markup (i.e., representing logic data). As with
HTML, XML identifies data using tags (i.e., element types).
But unlike HTML, XML allows the users to define their own
tags. The XML data elements have well defined content-
oriented tags to describe their content.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 196

2

The XML document is self-descriptive, and the document
description is provided in the Document Type Definition
(DTD). The well-formedness (i.e., dealing with physical
structure) and validity (focusing on the logical structure of
elements) are two important concepts of XML document. A
valid document is always well-formed but a well-formed
document is not necessary valid [14]. Therefore, DTD is an
optional part of an XML document. That is, an XML
document can be written without DTD. Sometimes the
validation is not important in some applications. In this case,
the specification of DTD is not needed to make processing
as efficient as possible.

The Application Programming Interface (API) is used to
process an XML document by accessing internal structure.
There are two widely used APIs for XML processor (parser),
including Simple API for XML (SAX) and Document Object
Model (DOM). The SAX (defined by XML-DEV group) is an
event-driven API to the process of parsing an XML
document. The events include the start of an element, the end
of an element, characters, and so on. In contrast, DOM
(defined by W3C) is a tree structured-based API. DOM
defines an object-oriented API to provide a powerful tool for
managing XML document such as accessing every element in
a document and updating the content and structure of
documents.

JavaBeans Component Model
The software components are self-contained, reusable
building blocks that encapsulate semantically meaningful
application or technical services. In Java, a component is a
set of related Java classes. JavaBeans Component model
extends "Write Once, Run Anywhere" capability to provide
support for reusability, portability, and interoperability. The
JavaBeans components (or Java classes) are called Beans
(reusable software components).

To develop Beans, it is necessary to have Beans
Development Kit (BDK) and the Java Development Kit
(JDK). A visual application Java builder tool (e.g., IBM's
VisualAge for Java) can be used to build JavaBeans. The
Beans can be visually manipulated by using the Java builder
tool. The following is a list of salient features of JavaBeans
component model [1, 11, 15, 16]:

• Properties: The properties expose a component's public
attribute data via accessor methods wrapped around them.
The Bean's appearance and behavior attributes can be
changed at design time. By using property editors or
Bean customizers, Bean's properties can be customized
at design time.

• Events: The events specify a component's response to

external stimuli or internal conditions, such as a
property value changing. Beans use events to
communicate with other Beans. The event notification
scheme involves three Java interfaces: Event,
EventSource, and EventListener. The source Bean
notifies all registered listener Beans, passing each an
Event object when the event of interested occurs.

• BeanInfo: The BeanInfo provides builder tools with
enough information to guide users in using the Bean. A
Bean Information class implements the BeanInfo
interface.

• Persistence: Beans must support persistence, by
implementing either Serializable or Externalizble.
Persistence enables Beans to save their state, and
restore that state later.

• Methods: Bean's public methods (or operations) describe
Bean's behavior. The methods can be invoked by others
(Beans or a scripting environment). The builder tools or
the users can employ methods to construct connections
between Beans.

• Introspection: The builder tools discover a Bean's
properties, methods, and events by introspection. Bean
introspection relies on the core reflection API to
discover Bean features via design patterns (specific
naming conventions). The reflection provides a runtime
representation of the definitions a programmer has
written.

Bean Markup Language
The Bean Markup Language (BML) from IBM alphaWorks
is an XML-based JavaBean component configuration or
wiring language to describe the creation, configuration, and
interconnection structure of a set of JavaBeans. The XML
Document Type Definition (DTD) consists of a set of
markup tags (element types) and their interpretation (i.e.,
defining the meaning of tags in DTD). In BML, the language
element types define operators to configure a set of
JavaBeans. Therefore, the BML DTD's functions are to
describe the relationship and configuration of components.

The BML processors, including BML player and BML
compiler, are components to process documents conforming
the BML DTD. Figure 1 illustrates an overview of these two
implementations. The XML parser converts an XML file into
DOM tree, which is further processed by using either BML
player or BML compiler. That is, BML employs BML player
or BML compiler to create and run groups of interconnected
JavaBeans. The following describes the significant
functionality of BML player and BML compiler [2, 6, 17]:

• BML Player: This processor is an interpreter to play a
BML script for creating the desired bean hierarchy,
which is then a running application. This is implemented

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 97

3

using reflection. The BML player is a very small run-
time kernel to read the BML document using an XML
parser. The player then traverses the DOM tree, creating
and interconnecting JavaBeans as specified by the tree.
Using the Java plug-in from JavaSoft, the BML player
can be easily embedded in applications or Web pages.
Since the BML player uses reflection to identify
methods at runtime, the performance issue is a major
concern. The BML compiler will solve this problem.

• BML Compiler: This processor also uses an XML parser
to read the BML document. But unlike BML player
(interpreting the DOM tree), the BML compiler
converts any BML script into reflection-free Java
source code, which is compiled with a Java compiler to
generate a class file containing Java bytecodes (i.e.,
platform-independent codes interpreted by the Java
runtime system). The Java Virtual Machine (JVM)
loads the class file. The JVM provides a well-defined
runtime framework to allow a Java application running
on any operating system. The advantage of this
implementation is that it allows one to capture the inter-
component structure of the application.

Figure 2 illustrates a BML example, which covers the tags
(element types): bean, string, property, args, cast, add, field,
call-method, event-binding, and script. We summarize each
of BML language element types [2, 6, 7] as follows:

• bean: A bean element is used to create new beans, as
specified by its class attribute, or to look up beans by
name. The JavaBean may optionally be registered into
BML's object registry via the bean's id attribute, which
gives a name to the newly created JavaBean instance.

• string: It is used to create a string bean or look one up.
The string's contents can be specified either as a Text item
inside of the <string> tag or using the value attribute to
create an empty string. Also, a string may be given an id

for registering it into the object registry.
• property: This element is used to set or get the values of

bean's properties. A property's value with primitive type
may be set directly via the value attribute. The property
may also be of some other type. A type converter is used
to convert objects from one type to another. The
property's value can be obtained simply by specifying the
property's name in the name attribute.

• field: Since BML was designed to be usable with all Java
objects (not just JavaBeans), it provides the field element
for setting or getting the values of an object's fields
directly.

• args and cast: The args element is used to specify
constructor requirements. It allows creation of objects
using constructors with an arbitrary number of arguments.
The cast element is used to convert the type of a bean or
value.

• add: This element creates a hierarchy of beans by adding
one to another. The add element treats the object as a
container to add the enclosed objects to it.

• event-binding: This element provides the binding of
events, specified by the name attribute, that are emitted by
a bean. It also allows events to be bound, via a script
element, to an arbitrary set of actions. The event-binding
element establishes an event listener relationship between
a target bean (event source) and some action performed
when the event occurs.

• call-method: It enables inline method invocations. The
invoked method is specified in the call-method element's
name attribute. The invoked object is specified in the
target attribute.

• script: This element defines an executable sequence of
scripting statements to be used somewhere. BML v2.2
provides support for the use of BML, JavaScript, and
NetRexx as scripting languages.

 Run

 Run

 XML DOM

 Bytecodes

 Java Source

Figure 1. Two Implementations of BML Processor

BML
Document

XML Parser
(Converting
XML into
DOM tree)

BML Player
(Interpreting
DOM tree;
Creating and
Interconnecting
JavaBeans)

BML Compiler

(Gererating Java
source code)

Target
Application

JVM

Java Compiler
(Generating Java
class file)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 198

4

XML BeanMaker
The XML BeanMaker (from IBM alphaWorks) is a software
tool written in Java to be used for generating JavaBeans out
of XML DTD files. It reads a DTD file and generate Java
class interfaces corresponding to the elements and attributes
in the DTD file; the root element of the DTD is converted to
a bean class, and every element inside of it is converted into
an inner bean class [4]. That is, for a given DTD file, the
XML BeanMaker can generate a JavaBean and all of its
necessary Java classes.

XML Bean Suite
XML Bean Suite (from IBM alphaWorks) is a toolkit of
JavaBeans components to process XML. It contains a large
number of classes, which can be divided into five sets of
related JavaBeans. The following describes the five
categories of XML Beans [3, 8, 9, 10]:

• XMLCoreBean: This Bean set contains nonvisual beans
(e.g., DOMGenerator, XMLFileGenerator,
XMLStringGenerator, and NodeArray) for converting
XML between text and DOM representations and
managing DOM nodes. DOMGenerator is a JavaBean
encapsulation of an XML parser for parsing XML data
and producing a DOM tree. XMLFileGenerator encodes
a DOM tree into an XML file. The
XMLStringGenerator encodes a DOM tree as a String.
Nodearray is a container to store a set of DOM nodes
and provide various operations on the node set.

• XMLViewer: This set consists of visual beans (e.g.,
XMLTreeView, XMLSourceView, XMLNodeListView,
DTDSourceView, and XMLAttributeView) to display
XML documents or DTDs in various ways. The viewer
beans are essentially Swing components and thus provide
support for the multiple look and feel.

• XMLEditor: The editor beans can be used with AWT,
Swing or any GUI components. The nonvisual operator
beans allow for constructing DTD-directed editors. The
XML editors can be formed by wiring the editor beans
with GUI component. The XMLEditor beans can pick the
DOM tree apart and use its pieces.

• XMLProcessing: This bean set contains nonvisual beans
(e.g., XMLSearch, XMLFilter, XMLTokenizer,
ElementSelector, and AttributeSelector) to provide
searching/filtering XML documents, tokenizing DOM
nodes to strings, and selecting specific
elements/attributes. Once an XML document has been
parsed into a DOM tree, the XMLProcessing beans
handle the processing of XML.

• XMLConvenience: This bean set simplifies the creation
of XML GUI editors. By combining XMLEditor beans
and java.awt GUI objects, the beans can implement
common XML editing subfunctions. Therefore, the
XMLConvenience beans encapsulate the functionality of
the XMLEditor beans and corresponding AWT
components. These beans reduce the complexity of
wiring in Integrated Development Environments
(IDEs).

 <? xml version = "1.0" ?>
 <bean class = "FirstExampleBean" id = "Example-1">
 <!-- create a new bean of type FirstExampleBean;

 id attribute gives a name to the newly created JavaBean instance -->
 <property name = "title" value = "A BML Example" />
 <!-- set a property in a bean; its value may be a string or some other type -->
 <add>
 <!-- treat the object as a container; add the enclosed objects to it -->
 <bean class = "SecondExampleBean" id = "Example-2" >
 <!-- add the SecondExampleBean to the FirstExampleBean (a container) -->
 <args> <cast class = "int" > <string> 100 </string> </cast> </args>
 <!-- define an argument to the SecondExampleBean's constructor;
 the string is to be cast to an int -->
 <property name = "ContainedExampleBean" value = "Inside Example Bean" />
 <event-binding target = "EventSourceObject" name = "action" >
 <script>
 <field name = "starting" id = "STARTING" />
 <call-method target = "InvokedObject" name = "StartMethod" />
 </script>
 </event-binding>
 </bean>
 <string value = "inside" />
 </add>
 </bean>

Figure 2. A BML Example

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 99

5

Xbeans
The Xbeans (from Xbeans.org) are JavaBeans components
for processing XML documents. An Xbean is a software
component that takes XML as input, processes it in some
fashion and then passes XML on to the next Xbean [18]. The
IBM's XML Productivity Kit for Java (XPK4J) inspires the
Xbeans. The XPK4J contains two components [5]: XPK4J
JavaBeans (connecting XML processing beans in a visual
builder such as VisualAge for Java), and XBeans (allowing
Java developer to create JavaBeans from DTDs). However,
the Xbeans are different from XPK4J. The Xbeans are
focused on the distributed applications, whereas XPK4J is
mostly used for non-distributed GUI applications.

Now let's look at creating a distributed application (i.e.,
communicating and processing XML between distributed
computers) using Xbeans. Figure 3 presents Xbeans'
functionality for data exchange between enterprises. Xbeans
include accessor, translator, sender, and receiver. The
following lists the salient features of Xbeans [12, 13]:

• Accessor: It is important to know that the Xbeans
consume and produce XML as DOM documents (i.e.,
DOM representation of XML document). An already
parsed document object is accessed via the DOM API. In
sending side, the accessor Xbean performs a particular
SQL query (for accessing native data) and represents the
result as a native DOM document. In receiving side, the
accessor Xbean is configured with an SQL query to

store the incoming native data.
• Translator: The XML DTD represents the semantics and

format of the data to be exchanged. Since no two
enterprises represent the same data in the same way, it is
necessary to have a translator for converting native data
according to a standard DTD. In sending side, the
translator Xbean translates the incoming native DOM
document into a DOM document conforming to the
standard DTD (agreed upon DTD) for exchanging data. In
receiving side, the translator converts this DTD-agreed
DOM document back to native DOM document.

• Sender and Receiver: These Xbeans are configured for
cooperatively transporting the XML data over a
network. There are three different implementations of
the sender-receiver: using a standard Web server (i.e.,
sending XML text via HTTP), communicating a
serialized DOM representation via Java RMI, and
using CORBA-IIOP as a transport (i.e., transmitting
XML via CORBA-IIOP). In using a standard Web server,
the sender converts DOM to textual XML, and the
receiver converts textual XML back to DOM.

Sun's Java Remote Method Invocation (RMI) is used for
Java-to-Java communications across Virtual Machines.
Internet Inter-ORB Protocol (IIOP) is a messaging protocol
for communication between network-based client/server
software programs and enterprise applications based on
OMG's Common Object Request Broker Architecture
(CORBA) standard. IIOP provides interoperability for the
Object Request Brokers (ORBs) from different vendors to

 Possible Implementations:

 (1) Textual XML via HTTP
 (2) Serialized DOM via Java RMI
 (3) XML via CORBA-IIOP
 DTD-agreed DTD-agreed
 DOM document DOM document

 native DOM document native DOM document

 Database Database

Figure 3. Xbeans for Data Exchange between Enterprises

Sender
(sending DOM; or converting DOM
to textual XML and sending text)

Receiver
(receiving DOM; or converting
textual XML to DOM and passing)

Translator

Accessor
(accessing native data)

Translator

Accessor
(storing native data)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1100

6

interoperate over the Internet.

3. CONCLUSIONS

We have seen the XML technology and JavaBeans
components are complementary. XML provides many
potential advantages such as inline reusability, portability of
data, customized presentation of data, powerful hypertext
linking capabilities, integration of data and metadata, human
readability, and more. JavaBeans component model provides
a way of developing and using Java components on the client
side. JavaBeans are reusable components to support the
packaging, reuse, connection, and customization of Java
code.

The BML is an XML-based JavaBean component
configuration or wiring language for describing the creation,
configuration, and interconnection structure of a set of
JavaBeans. There are two BML processor components,
including BML player and BML compiler, to process
documents conforming to the BML DTD. The XML
BeanMaker is used to generate JavaBeans out of XML DTD
files. The XML Bean Suite is a toolkit of JavaBeans to
process XML. It provides a comprehensive set of
functionality to manipulate XML content. The Xbeans are
JavaBeans to process XML documents on distributed
applications. They provide a powerful paradigm for data
exchange between enterprises.

REFERENCES

[1] D. D'Souza, "JavaBeans: Coding and Design," Journal of
Object-Oriented Programming, January 1998, pp.14-
16.

[2] C. F. Goldfarb and P. Prescod, "The XML Handbook," 2nd

ed., Prentice-Hall, Upper Saddler River, New Jersey,
2000.

[3] IBM, Inc., "XML Beans,"
http://www.alphaworks.ibm.com/alphaBeans, 2000.

[4] IBM, Inc., "XML BeanMaker,"
http://www.alphaworks.ibm.com/aw.nsf/techmain/xmlbeanmaker, 1999.

[5] IBM, Inc., "XML Productivity Kit for Java,"
http://www.alphaworks.ibm.com/aw.nsf/techmain/xmlpr
oductivity, 1999.

[6] M. Johnson, "Cover Story: Bean Markup Language, Part 1,
Learn the ABCs of IBM's Powerful JavaBeans
Connection Language," JavaWorld,
http://www.javaworld.com/javaworld/jw-08-1999/jw-08-
beans_p.html, August 1999.

[7] M. Johnson, "Bean Markup Language, Part 2: Create
Event-Driven Applications with BML," JavaWorld,
http://www.javaworld.com/javaworld/jw-10-1999/jw-10-
beans_p.html, October 1999.

[8] M. Johnson, "Process XML with JavaBeans, Part 1:
Interconnect JavaBeans to Process XML," JavaWorld,
http://www.javaworld.com/javaworld/jw-11-1999/jw-11-
beans_p.html, November 1999.

[9] M. Johnson, "Process XML with JavaBeans, Part 2: How
IDEs Internnect Components," JavaWorld,
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-
beans_p.html, December 1999.

[10] M. Johnson, "Process XML with JavaBeans, Part 3:
Simplify XML Processing with XMLConvenience
Beans," http://www.javaworld.com/javaworld/jw-01-
2000/jw-01-beans_p.html, JavaWorld, January 2000.

[11] D. Krieger and R. M. Adler, "The Emergence of
Distributed Component Platforms," IEEE Computer,
March 1998, pp.43-53.

[12] B. Martin, "Creating Distributed Applications Using
Xbeans," http://www.xbeans.org/whitepapertxt.html, 2000.

[13] B. Martin, "Build Distributed Applications with Java and
XML: Use Xbeans to Process Your XML as DOM
Documents," JavaWorld,
http://www.javaworld.com/javaworld/jw-02-2000/f_jw-02-ssj-
xml.html, February 2000.

[14] H. Maruyama, K. Tamura, and N. Uramoto, "XML and
Java: Developing Web Applications," Addison-Wesley,
Reading, Massachusetts, 1999.

[15] E. Pelegri-Llopart and L. P. G. Cable, "How to be a
Good Bean, " Sun Microsystems, Inc.,
http://java.sun.com/products/javabeans/docs/goodbean.pdf,
September 1997.

[16] Sun Microsystems, Inc., "JavaBeans,"
http://java.sun.com/beans, 2000.

[17] S. Weerawarana and M. J. Duftler, "Bean Markup
Language," IBM, Inc.,
http://www.alphaworks.ibm.com/aw.nsf/techmain/bml, 1999.

[18] Xbeans.Org, "Xbeans: Frequently Asked Questions,"
http://www.xbeans.org/faq.html, 2000.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 101

