
COMPARISON OF COMMUNICATION MODELS FOR MOBILE AGENTS

Xining Li

Department of Computing and Information Science

University of Guelph

Guelph, ON, Canada N1G 2W1

ABSTRACT

An agent is a self-contained process being acting on
behalf of a user. A Mobile Agent is an agent roam-
ing the internet to access data and services, and carry
out its assigned task remotely. This paper will focus
on the communication models for Mobile Agents. Gen-
erally speaking, communication models concern with
problems of how to name Mobile Agents, how to estab-
lish communication relationships, how to trace mov-
ing agents, and how to guarantee reliable communica-
tion. Some existing MA systems are purely based on
RPC-style communication, whereas some adopts asyn-
chronous message passing, or event registration/handling.
Di�erent communication concepts suitable for Mobile
Agents are well discussed in [1]. However, we will inves-
tigate these concepts and existing models from a di�er-
ent point view: how to track down agents and deliver
messages in a dynamic, changing world.

Keywords: Mobile Agents, Communication models,
Messenger, Logic Programming

1. INTRODUCTION

Mobile Agents are mainly intended to be used for net-
work computing - applications distributed over large
scale computer networks. An agent is a self-contained
process being acting on behalf of a user. A Mobile
Agent is an agent roaming the internet to access data
and services, and carry out its assigned task remotely.
Numerous Mobile Agents systems have been implemented
or are currently under development. Typical systems
are Aglets, Voyager, Odyssey, Concordia, Ajanta, ARA,
Telescript, Tocoma, Mole, D'Agent, etc. Some MA sys-
tems are based on Java [3, 4, 5, 6, 7], and some are
based on other object oriented programming languages
or scripting languages [8, 9, 10]. Another mobile agent
framework which embeds a logic programming com-
ponent is pioneered by Distributed Oz[11] - a multi-
paradigm language (functional, logic, object-oriented,
and constraint), Jinni[12] - a lightweight, multi-threaded,
Prolog-based language (supporting mobile agents through

a combination of Java and Prolog components), and
MiLog - a logic programming framework for mobile
agents (implemented on top of JVM)[13].

Fundamental questions related to Mobile Agents
paradigm are the support of agent mobility, communi-
cation and synchronization among agents, and security
issues such as agent privacy and integrity, authentica-
tion, authorization, and access control.

This paper will focus on the communication models
for Mobile Agents. Generally speaking, mobile agent
communication include how to name Mobile Agents,
how to establish communication relationships, how to
trace moving agents, and how to guarantee reliable
communication. Some existing MA systems are purely
based on RPC-style communication, whereas some adopts
asynchronous message passing, or event based commu-
nication. Di�erent communication paradigms suitable
for Mobile Agents are well discussed in [1][2]. However,
we will investigate these paradigms and existing models
from a di�erent point view: how to track down agents
and deliver messages in a dynamic, changing world.

Based on our survey, we will propose a new commu-
nication mechanism for Mobile Agents. This paradigm
has been used in our on-going project IMAGO: Intel-
ligent Mobile Agents Gliding On-line. IMAGO project
consists of two major parts: MLVM - a multithread-
ing logic virtual machine which presents a logic-based
framework in the design space of Intelligent agent server
framework and the IMAGO Prolog - an agent develop-
ment kit based on Prolog which implements agent com-
munication through messengers - special mobile agents
dedicated to deliver messages on the network.

2. MODELS OF MA COMMUNICATION

Processes in a distributed system must interact with
each other using some kinds of communication mod-
els to exchange data and coordinate their execution.
Mobile agents are distributed processes, however, once
they are invoked they will autonomously decide the
host(s) they will visit and the tasks they have to per-
form. Their behavior is either de�ned explicitly through

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 228

the agent code or alternatively de�ned by an itinerary
which is usually modi�able at runtime. Interprocess
communication is dependent on the ability to locate the
communication entities. This is the role of the name
services in distributed systems. However, the mobility
of agents makes it harder to provide such kind of ser-
vice, because there is virtually no way to return a static
location of a moving agent.

Several communication models have been widely
used in distributed systems as well as most MA sys-
tems. Typical models are message passing, remote pro-
cedure call (RPC), and distributed event handling.

Message passing is used to support peer-to-peer com-
munication pattern and is the mostly adopted model
in MA systems, such as Aglet, Mole, D'Agent, Voy-
ager and etc. Aglet supports an object-based mes-
saging framework that is location independent, exten-
sible, rich, and both synchronous and asynchronous.
However, Aglet API does not support agent tracking,
instead, it leaves this problem to applications. Mole
supports the (global) exchange of messages through a
session-orientedmechanism. Agents that wants to com-
municate with each other, must establish a session be-
fore the actual communication can started. To avoid
tracking agents during communication, Mole does not
allow agents to move if they are involved in a session.
D'Agent support text-based message passing. The lo-
cation and identity (symbolic name or system assigned
number) of the receiver should be known by the sender.
Therefore, communication is lost as soon as one peer
jumps to another location. Voyager implements mes-
sage passing through the concept of virtual objects.
Agents are special type of objects in a Voyager applica-
tion. Communication with a remote object is handled
by its virtual object which hides the remote location
and acts as a reference of the remote object. When
messages are being sent to the remote agent, virtual
object forwards the message to the remote object and
returns messages back if necessary. A virtual object
keeps track of the remote object by its last known ad-
dress. If the remote object moves from its last location,
it will leave a secretary object behind to forward mes-
sages to its new location. The secretary object will be
removed only if a returned message has been received
by the corresponding virtual object. The advantage of
Voyager is that it could automatically track down mov-
ing agents, however, it could cause a lot of overhead and
delay if remote objects involve frequent movements.

RPC or RMI are commonly used paradigm in to-
day's distributed programming. Since there is no dis-
tinction in syntax between an RPC and a local proce-
dure call, the RPC provides access transparency to re-
mote operations. Several MA systems support RPC/RMI
paradigm, such as Mole and Voyager. It can be al-

ways argued whether agent communication should be
remote or restricted to local, considering that the most
attractive motivation of mobile agents is to move com-
putation to the data rather than the data to the com-
putation, and therefore avoid remote communication.
A similar argument is that under the new paradigm of
mobile agents, why we need RPC/RMI at all. Agents
for Remote Action (ARA) [18] attempts to minimize
the remote communication through meeting oriented
paradigm. Ara provides client/server style interaction
between agents. The core provides the concept of a
service point which is the meeting point with a well
known name where agents located at a speci�c place
can interact as clients and servers through an RPC-like
invocation on a local host.

Some MA systems have much in common with those
event frameworks employed in GUI toolkits supported
by Java and Tcl/Tk. The concept of event based com-
munication and synchronization can be viewed as a
sophisticated paradigm of meeting oriented agent co-
ordination. Mobile agent systems such as Concordia,
D'Agent, Mole, etc., extends the event-driven program-
ming technique to coordinate groups of mobile agents
and achieve agents synchronization. In this paradigm,
agent synchronization is achieved by the objects that
are de�ned as active entities responsible for the coor-
dination of an entire application or parts of it. These
synchronization objects could be user de�ned objects or
system implemented event manager. They are respon-
sible to accept event registration, listens and receives
events, and noti�es interested parties of each event it
receives. In this paradigm, agents participating in such
groups is responsible to register a list of event types it
is interested as well as the location it wishes events to
be sent.

Another problem related with agent communication
is that an agent developed in one system generally can
not talk with an agent in another system. A solution is
to provide a universal agent communication language
and standards for the mobile agent community. Typical
researches in this area are MASIF [16] and FIPA [17].
MASIF speci�es a set of standards for agent naming,
agent management, agent tracking, etc, mainly for ho-
mogeneous agents. Some existing MA systems, such as
Aglets, will adopt MASIF in their future implementa-
tions. FIPA is a forum of 70+ international telecommu-
nication companies and research institutes which speci-
�es open standards focusing on languages and protocols
for communication, coordination, and management of
heterogeneous agents. In other words, FIPA is more
like an abstract architecture which makes all FIPA-
compliant systems to communicate and interact with
each other through a common language: Agent Com-
munication Language (ACL). Several (open source) im-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 29

plementations have emerged from both industries and
academic research groups.

3. OVERVIEW OF IMAGO PROLOG

IMAGO project consists of two major parts: MLVM -
a multithreading logic virtual machine which presents
a logic-based framework in the design of mobile agent
server, and the IMAGO Prolog - an agent development
kit based on Prolog which implements agent communi-
cation through messengers - special mobile agents ded-
icated to deliver messages on the network.

The goal of MLVM is to present an eÆcient logic vir-
tual machine architecture in the design space of Intelli-
gent Mobile Agents server. To achieve this, our design
has to cope with new issues, such as explicit concur-
rency, code autonomy, communication/synchronization
and computation mobility. At current stage, some prac-
tical issues, such as multithreading, garbage collection,
code migration, communication mechanism, etc, have
been speci�ed, whereas some other issues, such as se-
curity, services, etc, will be investigated further.

IMAGO Prolog is a simpli�ed Prolog with an ex-
tended Application Programming Interface (API) for
Intelligent Mobile Agents. Briey, imagoes are pro-
grams written in a variant of Prolog that can y from
one host on the Internet to another. That is, an imago
is characterized as an entity which is mature (autonomous
and self-contained), has wings (mobility), and bears the
mental image of the programmer (intelligent agent).

An IMAGO Prolog program consists of a set of
imago de�nitions and module de�nitions. Imago de�-
nitions serve to specify autonomous entities. An imago
de�nition provides an implementation framework from
which intelligent (mobile) agents can be created. A
procedure de�ned in an imago must be a complete pro-
cedure and private to its name space. This means that
such procedures are not accessable anywhere outside of
the imago. Modules serve to partition the name space
and support encapsulation for the purpose of construct-
ing large applications from a library of smaller compo-
nents. A module de�nition in IMAGO Prolog follows
the speci�cation of standard Prolog.

The IMAGO Prolog introduces imago directives to
specify the body of an imago. Since all procedures de-
�ned in an imago belong to the imago privately, there
is no interface required. There are three kinds of ima-
goes: stationary imago, worker imago, and messenger
imago. An imago de�nition provides the framework
(like a Java class) for creating instances of the imago
(like Java objects of the class). For example, the worker
directive worker(buyer), where buyer is an atom giv-
ing the name of an imago de�nition, speci�es that the
Prolog text bracketed between this directive and the

matching closing directive end worker(buyer) belongs
to the imago de�nition buyer.

:- worker(buyer).
buyer(Arg) :-

buyer body, ...
:- end worker(buyer).

Imago instances, i.e., (mobile) agents, are created
from imago de�nitions. From now on, we simply use
imago to be synonymous with imago instance. Gener-
ally speaking, an imago is composed of three parts: its
identi�er which is unique to distinguish with others, its
code which corresponds to a certain algorithm, its exe-
cution thread which is maintained by a single memory
block (a merged stack/heap with automatic garbage
collection)[14].

An agent application starts from a stationary imago.
It looks like that the wings of a stationary imago have
degenerated, so that it has lost its mobility. In other
words, a stationary imago always executes on the host
where it begins execution. However, a stationary imago
has the privileges to access resources of its host ma-
chine, such as I/O, �les, GUI manager, etc. A station-
ary imago can create worker or messenger imagoes, but
it can not clone itself. We can �nd the similarity that
there is only one queen in a colony of bees. An imago
Prolog application must contain one and only one sta-
tionary imago in its context. The following gives a
minimum Imago application.

:- stationary(foo).
foo().

:- end stationary(foo).

Worker imagoes are created by the stationary imago
of an application. A worker imago is able to move
such that it looks like a worker bee ying from place
to place. A worker imago can clone itself. A cloned
worker imago is an identical copy of the original imago
but with a di�erent identi�er. A worker imago can not
create other worker imagoes, however, it may launch
messenger imagoes (system built-in imagoes) to deliver
messages. When a worker imago moves from one host
to another, it continues its execution on the destination
host at the instruction which immediately follows the
invocation of the move predicate. As mobile agents are
a potential threat to harm the remote hosts that they
are visiting, the IMAGO system enforces a tight access
control on worker imagoes: they have no right to access
any kind of system resources except the legal services
provided by the server. A messenger queue is associ-
ated with each worker imago which holds all attached
messenger imagoes waiting to deliver messages. Names
(identi�ers) of worker imagoes must be presented at the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 230

time they are created, and are immutable throughout
execution.

The IMAGO Prolog API consists of a set of prim-
itives that allows programmer to create mobile agent
applications [15]. Like other mobile agent systems, we
provides primitives for agent management (creation,
dispatching, migration), agent communication and syn-
chronization, agent monitoring (query, recall, termi-
nation), etc. In addition, IMAGO system explores a
novel communication model: instead of passing mes-
sages among agents through simple send/receive prim-
itives, the IMAGO implements agent communication
through "messengers" - special mobile agents dedicated
to deliver messages on the network.

Like other logic programming systems, IMAGOPro-
log Application Programming Interface is presented as
a set of builtin predicates. This set consists of builtin
predicates common to most Prolog-based systems and
new builtin predicates extended for mobile agent ap-
plications. IMAGO Prolog API predicates are context
sensitive, i.e., the eligibility and e�ect of such predi-
cates depend on the calling context in which they are
activated. In general, the usage of agent management
predicates depends on the type of imagoes. Table 1
shows a brief list of predicates legal to each imago type.
.

Imago Type Builtin Predicates

stationary imago create, accept, wait accept,
dispatch, terminate, workers

worker imago move, clone, accept, dispatch,
wait accept, dispose

messenger imago move, clone, attach, dispose

Table 1: Builtin Predicates for Imagoes

In principle, all these predicates are not re-executable.
Furthermore, they can be used in imago de�nitions
only, that is, invocation of agent predicates is not al-
lowed in any modules.

4. MESSENGERS

Messenger imagoes are agents dedicated to deliver mes-
sages. The reason of introducing such special purpose
imagoes is that the peer to peer communication mech-
anism in traditional concurrent (distributed) program-
ming languages does not �t the paradigm of mobile
agents. This is because mobile agents are autonomous
- they may decide where to go based on their own will
or the information they have gathered. Most mobile
agents systems either do not provide the ability of au-
tomatically tracing moving agents, or try to avoid dis-
cussing this issue. On the other hand, the IMAGO

system allows messenger imagoes to trace worker ima-
goes and therefore achieves reliable message delivery.
The system provides several builtin messenger imagoes.
Programmer designed messenger imagoes are possible
but this kind of imagoes can only be created by the
stationary imago. A messenger imago is anonymous
so that there is no way to trace a messenger imago.
However, it can move or even clone itself if necessary.

The IMAGO system provides a set of builtin mes-
senger imagoes as a part of the IMAGO API. These
messengers should be robust and suÆcient for most
imago applications. They may be dispatched by either
a stationary imago or a worker imago. For the sake of
exibility, a stationary imago may also dispatch user
designed messengers. In this case, the system will load
the user designed messenger code from the local host,
create a thread and add the messenger thread into the
ready queue for execution.

In this section, we will discuss the design pattern of
system builtin messengers. Each system builtin mes-
senger has a given code name. The following example
shows an asynchronous messenger: oneway messenger.
It is worth to note that this name is the imago def-
inition name, rather than the imago instance name,
because messenger imagoes are anonymous.

:- messenger(oneway messenger).
oneway messenger([Receiver, Msg]):-

deliver(Receiver, Msg).
deliver(Receiver, Msg):-

attach(Receiver, Msg, Result),
check(Receiver, Msg, Result).

check(, , received):- !,
dispose.

check(, , deceased):-!,
dispose.

check(Receiver, Msg, cloned(Clone)):- !,
clone(, R),
R == clone !

deliver(Clone, Msg);
deliver(Receiver, Msg).

check(Receiver, Msg, moved(Server)):-!,
move(Server), !,
deliver(Receiver, Msg).

check(Receiver, Msg,):-
deliver(Receiver, Msg).

:- end messenger(oneway messenger).

When the oneway messenger is started, it tries to
attach itself to the given receiver. Only two possible
cases make the attach succeeds immediately: either the
receiver has moved or the receiver has deceased (here
we consider the receiver dead if it could not be found
through the IMAGO name resolution). For the former
case, this messenger will follow the receiver by calling

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 31

move and then try to deliver its message at the new
host; for the later case, the messenger simply disposes
itself. Otherwise, the receiver must be alive at the cur-
rent host, thus the messenger attaches to this receiver
and makes the receiver ready if the receiver was blocked
by a wait accept.

After having attached to its receiver, the messen-
ger is suspended. There is no guarantee that the re-
ceiver will release this attached messenger by calling an
accept-type predicate, because the receiver is free to do
anything, such as move, back or clone before issuing an
accept, or even dispose without accepting messengers.
For this reason, a resumed messenger must be able to
cope with di�erent cases and try to re-deliver the mes-
sage if the message has not been received yet and the
receiver is still alive.

An interesting case is when the receiver imago clones
itself while it has pending messengers. In order to fol-
low the principle that a cloned imago must be an iden-
tical copy of its original, all attached messengers must
also clone themselves and then attach to the cloned
imago. From the oneway messenger program, we can
�nd that after knowing that the receiver has been cloned,
the resumed messenger invokes clone and then an if-
then-else goal is executed: the original messenger re-
attaches to the original receiver and the cloned messen-
ger attaches to the cloned imago. The word identical
copy refers to the \as is" semantics, that is, at the time
an imago issues a clone predicate, it takes a snapshot
(stack, messenger queue, etc.) to create the identical
copy. Therefore, a cloned imago will have the same
messenger queue as its original, but messengers pend-
ing in the queue are new threads representing cloned
messengers.

The oneway messenger is the most basic system
builtin messenger imago. It is simple and easy to under-
stand. The overhead of its migration from host to host
is only slight higher than the cost of peer to peer mes-
sage communication, because the amount of its byte-
code and execution stack is very small. It implements
asynchronous communication between a sending imago
and a receiving imago. It has the ability to automati-
cally trace a moving receiver.

Clearly, the concept of messengers o�ers exibility
to simulate di�erent patterns of agent communication.
For example, we can de�ne a postman messenger to
deliver mails to a list of addressed users (agents), we
can design a paperboy messenger to dispatch a copy of
message (like a copy of newspaper) to di�erent sub-
scribers, we can design a round trip messenger which
delivers a message to the receiver and carries a reply
back to the sender, we can also de�ne a multicasting
messenger which will generate multiple clones to dis-
patch a message to a group of workers, as show in the

following example.

:- messenger(multicasting messenger).
multicasting messenger([Receiver, Msg]):-

back, // go back to stationary server
multicast(Receiver, Msg).

multicast(Receiver, Msg) :-
workers(Receiver, alive, L),
spawn(L, Msg).

spawn([],) :-
dispose.

spawn([Receiver], Msg) :- !,
deliver(Receiver, Msg).

spawn([Receiver j L], Msg) :-
clone(, R),
R == clone !

deliver(Receiver, Msg);
spawn(L, Msg).

deliver(Receiver, Msg):-
attach(Receiver, Msg, Result),
check(Receiver, Msg, Result).

check(, , received):- !,
dispose.

check(Receiver, Msg, cloned(Clone)):- !,
clone(, R),
R == clone !

deliver(Clone, Msg);
deliver(Receiver, Msg).

check(, , deceased):-!,
dispose.

check(Receiver, Msg, moved(Server)):-
move(Server), !,
deliver(Receiver, Msg).

check(Receiver, Msg,):-
deliver(Receiver, Msg).

:- end messenger(multicasting messenger).

Those messengers follow the basic pattern of the
oneway messenger in design with minor di�erences. Most
importantly, each of these messengers has the intelli-
gence to deliver a message to its receiver in a changing,
dynamic mobile world.

5. CONCLUSION

In this paper, we discussed di�erent communication
concepts suitable for Mobile Agents systems, and in-
vestigated these concepts with respect to existing MA
systems. The major concern of our survey is how to
track down agents and deliver messages in a dynamic,
changing world. Based on our survey, we have proposed
a new communication mechanism for Mobile Agents.
This paradigm has been used in our on-going project
IMAGO.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 232

Research on this subject involves two ongoing projects:
a compiler of IMAGO-Prolog and the implementation
of MLVM. Although this study concentrates on the de-
sign of intelligent mobile agents based on logic pro-
gramming, results will be also useful in related disci-
plines of network/mobile computing and functional/logic
programming community.

We would like to express our appreciation to the
Natural Science and Engineering Council of Canada for
supporting this research.

6. REFERENCES

[1] J. Baumann et al., \Communication Concepts
for Mobile Agent Systems", First Int. Workshop
on Mobile Agents (MA'97), LNCS1219, Springer-
Verlag, 1997, pp. 123-135.

[2] N. M. Karnik and A. R. Tripathi, \Design Issues in
Mobile-Agent Programming Systems", IEEE Con-
currency, July-Sept., 1998, pp. 53-61.

[3] D. B. Lange and M. Oshima, \Programming
and Deploying Java Mobile Agents with Aglets",
Addison-Wesley, August, 1998.

[4] \ObjectSpace: ObjectSpace Voyager Core Pack-
age Technical Overview", Technical Report, Ob-
jectSpace Inc., 1997,
http://www.objectspace.com/.

[5] \Odyssey", Technical Report, General Magic Inc.,
http://www.genmagic.com/agents.

[6] \Concordia", Mitsubishi Electric,
http://www.meitca.com/HSL/Projects/Concordia.

[7] N. Karnik and A. Tripathi, \Agent Server Archi-
tecture for the Ajanta Mobile-Agent System", In
Proc. of PDPTA'98, CSREA Press, 1998, pp. 62-
73.

[8] J. E. White, \Mobile Agents", Technical Report,
General Magic Inc. , 1995.

[9] D. Johansen, R. van Renesse, and F. B. Schnelder,
\Operating System for Mobile Agents", In Proc. of
HotOS-V'95, IEEE Computer Society Press, 1995,
pp. 42-45.

[10] R. S.. Gray, \Agent Tcl: A Flexible and Se-
cure Mobile-Agent System", In Proc. Fouth Ann.
Tcl/Tk Workshop, 1996, pp. 9-23.

[11] P. van Roy et al., \Mobile Objects in Distributed
Oz", ACM Trans. on Programming Languages and
Systems, (19)5, 1997, pp. 805-852.

[12] P. Tarau, \Jinni: Intelligent Mobile Agent Pro-
gramming at the Intersection of Java and Prolog",
In Proc. of PAAM'99, 1999, pp. 109-123.

[13] N. Fukuta, T. Ito and T. Shintani, \MiLog:
A Mobile Agent Framework for Implementing
Intelligent Information Agents with Logic Pro-
gramming", In Proc. of the First Paci�c Rim
Intl. Workshop on Intelligent Information Agents
(PRIIA'2000), 2000, pp. 113-123.

[14] X. Li, \EÆcient Memory Management in a Merged
Heap/Stack Prolog Machine" ACM-SIGPLAN
2nd International Conference on Principles and
Practice of Declarative Programming (PPDP'00),
2000, pp. 245-256.

[15] X. Li, \IMAGO: A Prolog-based System for
Intelligent Mobile Agents", Proceedings of Mo-
bile Agents for Telecommunication Applications
(MATA'01), LNCS 2164, Springer-Verlag, 2001,
pp. 21-30.

[16] D. Milojicic et al., \MASIF: The OMG Mobile
Agent System Interoperability Facility", LNCS
1477, Springer-Verlag, 1998, pp. 50-67.

[17] \Foundation for Intelligent Physical Agents -
FIPA'99 Version 0.2",

FIPA, http://www.�pa.org/.

[18] H. Peine, \Ara - Agents for Remote Action", in
Mobile Agents: Explanations and Examples (eds.
W. Cockayne and M. Zyda), Manning/Prentice
Hall, 1997

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 33

