
A Light-weight Method for Trace Analysis to Support Fault Diagnosis in
Concurrent Systems

Andrej Pietschker and Andreas Ulrich
Siemens AG

Corporate Technology
Software & Engineering

Munich, Germany
{Andrej.Pietschker, Andreas.Ulrich}@mchp.siemens.de

Abstract

This paper discusses a light-weight approach to the analy-
sis of traces of partially ordered events collected during the ex-
ecution of a concurrent or distributed system through the use of
XML technology. Traces contain information about the creation
and termination of threads or objects and the exchange of mes-
sages and other types of communication among them. Traces are
transformed according to property patterns, visualised and anal-
ysed to support fault diagnosis of concurrent systems. We present
an approach using XML technology and report the findings of an
initial industrial project.

Keywords:

concurrent systems; dependability of concurrent systems; XML

1 Introduction

Software developers often face difficulties when trying to
identify causes of software failures. A failure may be observed
during test and then a developer has the task of reproducing the
failure, to examine the error and hypothesise about the fault.
Complementing his knowledge about the software system with
the insight information gained through a debugger he tries to hy-
pothesise about the cause of the failure. Debuggers deliver the
main information in this approach.

Concurrent or distributed systems offer a number of advan-
tages over centralised applications. However such systems be-
have highly nondeterministic and this makes testing, debugging
and analysing difficult. To support these tasks tools have been
developed that allow to monitor systems and produce log files of
execution traces. Tracing an object-oriented concurrent system
consists of collecting events from object and thread creation and
termination, method invocation and execution among concurrent
objects, plus relevant local events from variable values in objects.
Tracing must be included as an additional feature in the systems
architectural design. Traces therefore offer support during debug-
ging, analysis and verification of concurrent systems.

There are approaches like in [6] which use a re-engineering
technique to express the systems behaviour in a formal model
and apply model-checking to reason about desired or undesired
properties. It is not always necessary to go to the expense of

creating and analysing a model. In practice some properties of
interest can be expressed in terms of local properties of events.

The challenge is to present the information contained in traces
to the developer in a form which supports his task of finding the
fault which caused the failure.

However implementing tools for analysis to be used on a sin-
gle project is usually too expensive. We want a more general
modular approach which is flexible to be adapted to many situa-
tions. We propose a light-weight method for trace analysis based
on XML [1].

We present a method for automatic trace analysis which by
utilising standard XML technology supports fault diagnosis in
concurrent systems. XML technology is used to define proper-
ties of interest, process traces and create visual representations of
the result of the analysis. The advantage lies in the rapid devel-
opment of trace analysis tools which can be deployed instantly in
projects. The costs of additional tools and development are kept
low.

Next we present an overview of the trace analysis process in
Section 2 before we discuss the various components of the frame-
work in Section 3. We conclude with the findings from a project
in Section 4.

2 Overview of trace analysis process

We propose the use of XML standard technology to analyse
traces of systems. In this way we minimise the development ef-
forts for specialised tools.

trace file
analysis−−−−−→ result

transformation

y

x

interpretation

XML file −−−−−−−→
stylesheet

output

Figure 1. Using XML tools in trace analysis

The diagram presented in Figure 1 illustrates our idea. In-
stead of focusing on semantic analysis of traces we use a syn-
tactic transformation step to achieve the same result in an auto-
mated setting. However it is important to note that the analysis is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 1

limited to those properties which can be described syntactically.
Therefore the approach follows the same notion that is used when
solutions to equations are sought through syntactic manipulation
in mathematics.

The foundation of our approach are traces in XML notation.
Together with the transformation technology XSLT [3] we anal-
yse traces based on syntactic rules. From information extracted
during transformation and visual inspection of the result we aim
to draw conclusions about system properties. In our trace analysis
approach, we

• observe an execution trace of the concurrent system that
contains a list of partially ordered events for the registration
of threads and objects, communication and local events,

• convert trace files to XML-based files off-line,

• create a description of properties of interest using XML
style sheets (XSL),

• apply style sheets to XML trace files utilising an XSLT-
processor.

The trace analysis process follows the “information seek-
ing mantra” [11] of overview, zoom and filter, and details-on-
demand.

• Visualisation. Through visualisation trace information is
made accessible to the user. We chose to use the SVG
format. Scalable vector graphics (SVG) [13] are an XML-
based format for graphical representation. There are a vari-
ety of tools available for visualising SVG content, see [12]
for further references. Using an existing viewer to visualise
trace files freed us from the overhead of creating a visuali-
sation tool.

• Filtering. Traces of systems tend to be large and therefore
become unmanageable. A possibility is to reduce the size
and information contained in a trace. These operations have
to be accurate and consistent.

• Details-on-demand.Not all information should be present
in a trace representation at all times. This would clutter
the display and make finding relevant information difficult.
However when inspecting events closer local information
needs to be relayed to the user.

3 Implementation of trace analysis

Typically trace analysis involves checking for race condi-
tions, safety, and liveness properties. These analyses can include
proof [10] or model-checking [8]. Whereas the former one re-
quires heavy user support the latter is restricted by the state space
generated from the model.

On the other hand tools for XML are ready available on a
variety of platforms. Their performance is improving with each
version.

• XML format. We defined a common trace format in XML.
This provides a standard interface to our trace analysis
tools.

• XML technology.We propose to use standard XML tech-
nology to process traces. With already existing XSLT pro-
cessors we can focus on analysis rather than on its imple-
mentation issues.

3.1 Trace format

Events are collected during the execution of a concurrent sys-
tem. We distinguish the following event types:

• Registration events.Devices, processes, threads, and ob-
jects register and unregister during system runtime. These
events define the lifetime of their source and allow us to
match other events to hardware or software processes.

• Communication events.Send and reception of messages are
communication events. Remote method invocation belongs
to this group of events too.

• Local events.This group contains events which happen lo-
cally to a thread or object. It includes events like variable
assignments and assertion checks.

Since a trace is input to our analysis approach, facilities in
the system under observation must exist to create trace events at
appropriate places in the source code of the system. Different
methods to insert such probes exist. The most promising of them
are, of course, those which work automatically. At Siemens, we
explore different techniques for different platforms, such as Mi-
crosoft COM, Java RMI, CORBA and others, to do this job [5].

To be of use for trace analysis, each trace event that is a com-
munication or local event must obey the following structure in
order to assist model reengineering in the next step.

• Name and type of the event: Send, Receive, or Local.

• ID of the issuing thread or object.

• ID of the source thread and object (for Receive).

• ID of the destination thread and object (for Send).

• Message parameters of the event: a list of typed parameters
that includes a message name and other message attributes
(for Send and Receive events).

• Local parameters of the issuing thread or object: a list of
typed parameters that reflect its current state (for Local
events).

Furthermore, Registration events occur that introduce newly
created threads, processes or objects in a trace. We assume that
the local order of all events is preserved by their order of ap-
pearance in the trace. The problem of matching receive and send
events is crucial to determine the partial order of events and even-
tually base the analysis on the recorded trace. Much depends on
how the distributed system is instrumented and what exactly is
monitored. We assume that in a pair of source and destination
processes, each Receive event matches with a single Send event.
Lamport defines a partial order over events in a distributed sys-
tem using the binary happened-before relation (→) [9] which is
the theoretical basis in our approach. It is defined as follows.

• If evente in threadt preceeds evente′ in the same threadt
thene → e′.

• If event e is a send event in threadt and evente′ is the
corresponding receive event in threadt′ thene → e′.

• The happend-before relation is transitive.

Figure 2 illustrates the XML format of an event. An event is
described by itstypeandoperation, e.g. a send event hascom-
municationas its type andsendas its operation. Each event then
contains an elementparameterswhich holds information about
the origin of the event as explained above. Additionally each

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 22

event

parameters

local parameter

∞1..

message parameter

∞1..

Figure 2. Structure of trace events in XML

event can have an elementlocalwhich contains information about
the state of local variables. Communication events contain an el-
ementmessagewith the particular content of the message.

The format is specified as a document type description (DTD)
which enables us to use a validating XML parser to check a trace
file for syntactic correctness.

3.2 Visualisation component

Traces are converted into their graphical representation by
style sheets using a style sheet processor or XSLT-processor for
short [3]. Figure 3 illustrates this approach. Numerous processors

XSLT processor

trace

style sheet

output

Figure 3. Conversion of traces files using
XSLT-processor

are available for free already, see [14].
Using the Adobe SVG Viewer plug-in for web-browsers [7]

we can zoom in and out of the graphical representation. In this
way a user can gain an overview or zoom into the graphic to find
detailed information. Because it is a vector based format the qual-
ity of the graphic is good at any zoom level. Two views of a trace
are provided:

• Thread view. The view is similar to a message sequence
chart, where the vertical lines represent the active time of
a task. Communication events between tasks are repre-
sented by lines connecting the corresponding send and re-
ceive events (see Figure 4).

• Object view. The presentation is similar to message se-
quence charts, the vertical lines represent an object’s life
time.

Events in the graphic are colour coded. The use of colours
makes identifying events easier. Types of events can be distin-
guished at a glance. The yellow boxes in Figure 4 mark local
events for example. Colours are defined in a cascading style sheet
that is stored in separate file and can be adjusted to personal pref-
erence.

Figure 4 shows a simple trace in thread view where all events
are placed at a fixed distance. This is used when we are interested

Device

Thread1

Thread2

n2: 2

n1: 3

n2: 4

n1: 4

n1: 5

n2: 2

Figure 4. Thread view of a simple trace

in the sequence of events only. However we can also use the time
stamps in the trace to create a graphic reflecting the time span
between events as distance. Such a graphic can be useful when
timing related properties are investigated.

The details-on-demand paradigm has been implemented in
two ways. One is to use a separate HTML file and to link the
entries from the graphic to the textual representation. In this way
the graphic contains the information regarding the interaction of
objects or threads and the HTML file provides the detailed view
of event entries. Combining these views can be achieved by using
an HTML frame.

A second implementation was considered which used the ca-
pabilities of SVG to animate text. Moving over a particular event
with the mouse pointer would display information like event pa-
rameters, or messages. Moving away the pointer would hide the
information again. This approach has the benefit that it uses only
one file to display all the information. However with large files,
the speed of opening a file and animation proved to be a perfor-
mance bottleneck.

3.3 Filtering

The size of the graphic and the amount of information it rep-
resents can still present a problem. Removing irrelevant informa-
tion from traces through filters could reduce the size considerably
and make the relevant information stand out during visual inspec-
tion.

Following the approach for visualisation we implemented
filters using style sheets and left the processing to an XSLT-
processor again.

Using language constructs from XPath [4] we can express pat-
terns of events we are looking for or want to ignore for the time
being. Examples of such filters are:

• removal of local events

• selection of inter-thread communication events

• selection of inter-object communication events

Local events may not be of particular interest when looking
at the communication between system components. Removing
local events can be easily achieved using a style sheet as in Ex-
ample 1.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 3

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<!-- Description: Stylesheet removes all events of type ’Local’ -->

<!-- Import standard behavoiur -->
<!-- standard: copy all events -->
<xsl:import href="filter_template.xsl"/>

<!-- Add DOCTYPE -->
<!-- create trace.dtd file -->
<xsl:output method="xml" indent="yes" doctype-system="trace.dtd"/>
<xsl:strip-space elements="*"/>

<!-- Match local events -->
<!-- do not copy (delete) them -->
<xsl:template match="event[@operation=’Application’ and @type=’Local’]">
</xsl:template>
<!-- end Match local events -->

</xsl:stylesheet>

Example 1: Style sheet to remove local events

3.4 Operations over filters

The result of a filter operation is a valid trace file that can
be processed further for visualisation or analysis. Therefore it is
possible to use a combination of filters as indicated in Figure 5.

Filter A Visualization

Original File Filter B

Transformations

Figure 5. Sequencing of filters

The operation is called concatenation. However it may be im-
portant to note that concatenation of filters is not commutative.

filter1 ◦ filter2 6= filter2 ◦ filter1

We can reuse style sheets like we did in Example 2 where we
import a general style sheet in Line 8 which by default creates
copies of the events in the resulting file.

We then override the rules from the general style sheet to ac-
commodate our special needs in the particular case. Here we
make use of precedence rules as defined in [3]. Rather than im-
porting we can include style sheets like in Example 3 where in
Lines 6 – 7 two style sheets are included. Rules from included
style sheets have the same precedence as rules in the current style
sheet. We can use these precedence orders to overload rules from
imported style sheets. In this way we can reuse general patterns
and thereby improve development time of our analysis tools.

3.5 Property Analysis

We can extend the ideas of using style sheets for filters to anal-
yse properties in a trace.

• Race analysis.A race in a distributed system can occur
if one object is accessed in more than one thread. It is a
standard analysis for distributed systems.

1 <?xml version="1.0" encoding="utf-8"?>
2 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
3 version="1.0">
4 <!-- Description: Stylesheet removes all threads with no events -->
5
6 <!-- Import standard behaviour -->
7 <!-- standard: copy all events -->
8 <xsl:import href="filter_template.xsl"/>
9

10 <!-- Add DOCTYPE -->
11 <!-- output trace.dtd -->
12 <xsl:output method="xml" indent="yes" doctype-system="trace.dtd"/>
13 <xsl:strip-space elements="*"/>
14
15 <!-- Remove threads with no events -->
16 <xsl:template match="event[@type=’Thread-Registration’
17 and (@operation=’Create’)]">
18 <xsl:variable name="found-events"
19 select="following-sibling::event[(@type=’Communication’ or @type=’Local’)
20 and parameters/@thread-id=current()/parameters/@identifier]"/>
21 <xsl:if test="count($found-events) > 0">
22 <xsl:copy-of select="."/>
23 </xsl:if>
24 </xsl:template>
25 <xsl:template match="event[@type=’Thread-Registration’
26 and (@operation=’Destroy’)]">
27 <xsl:variable name="found-events"
28 select="preceding-sibling::event[(@type=’Communication’ or @type=’Local’)
29 and parameters/@thread-id=current()/parameters/@identifier]"/>
30 <xsl:if test="count($found-events) > 0">
31 <xsl:copy-of select="."/>
32 </xsl:if>
33 </xsl:template>
34 </xsl:stylesheet>

Example 2: Style sheet to remove “empty” threads

1 <?xml version="1.0" encoding="utf-8"?>
2 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
3 version="1.0">
4
5 <!-- Description: Stylesheet removes all empty threads and objects -->
6 <xsl:include href="filter_emptythread.xsl"/>
7 <xsl:include href="filter_emptyobject.xsl"/>
8
9 <!-- Add DOCTYPE -->

10 <!-- output trace.dtd -->
11 <xsl:output method="xml" indent="yes" doctype-system="trace.dtd"/>
12 <xsl:strip-space elements="*"/>
13
14 </xsl:stylesheet>

Example 3: Combining style sheets through include

• Deadlock analysis.A deadlock can occur in a system when
a component is actively waiting for an event that never oc-
curs.

Usually these properties are examined using models of the
system and require formal proofs [2]. This can be very expen-
sive and may not yield the desired results.

Our analysis is based on execution traces alone, therefore we
cannot give definite answers. The results can only identify po-
tential problems. These need to be inspected further manually.
Nevertheless it should be easier after potential trouble spots have
been identified. Additionally we can analyse performance bot-
tlenecks based on the time span between trace events. Such an
analysis would be difficult to perform during design phase since
the necessary information may not be available.

The properties are formulated in terms of conditions over trace
events.

• Potential race condition.

∀e ∈ Event

wheree/@type ∈ {Local, Communication}
T@object-id ={c/parameters/@thread-id | c ∈ Event

wherec/@type ∈ {Local, Communication}
andc/parameters/@object-id

6= e/parameters/@object-id}

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 24

then we can identify a potential race as:

race-condition = |T@object-id| > 1

The condition evaluates to true if more that one thread uses
the object identified by@object-id.

• Highly potential race condition.When a possible race con-
dition is identified we can then pursue the analysis to iden-
tify a highly potential race condition. We need to establish
if the identified threads are truly concurrent, i.e. the events
of these threads are concurrent.

∀e, e′ ∈ Event

wheree/@thread-id 6= e′/@thread-id

ande/@object-id = e′/@object-id

then eventse ande′ are concurrent according to [9] if

e 6→ e′ ande′ 6→ e

• Potential deadlock.

∀e ∈ Event

wheree/@type = Communication,

e/@operation = Send and

e/parameters/@thread-id = t

we identify a potentially locked thread by:

deadlock-condition = e is last event int

These general patterns can be used in any concurrent and dis-
tributed system. However there are many application specific
properties which can be described by patterns, too. Such pat-
terns can be derived from system requirements to check for cor-
rect behaviour of the system under test. Moreover patterns can
also describe failures which were encountered in previous tests.
In subsequent regression tests these patterns are used to check if
the failure has occurred again. These application specific proper-
ties usually build the major part of trace analysis in practice. Our
approach eases the description of these properties as patterns and
therefore boosts productivity in the testing phase.

Because we are using syntactic patterns we are somehow lim-
ited in the description of properties. The order of events in the
trace file has to reflect the happened-before relation. For exam-
ple a send event has to be placed textually before the matching
receive event. In our approach we have no provision to circum-
vent violations of this requirement. We are able to analyse only
the recorded interleaving of events. The consideration of other
interleavings would require the construction of a state-lattice of
the trace which is expensive to obtain. We avoid it in favour of
rapid analysis. It turns out that our approach suffices for many
properties of interest in practice.

3.6 Deployment of trace analysis tools

Making style sheets and processor available to engineers on
the project would have included the necessity of training in XSLT
technology. A technology called compiled style sheet was cho-
sen for deploying the analysis tools instead of delivering style

sheets to the user (see [16, 15]). A compiler creates in this case
a java archive from a given style sheet. Performing a transforma-
tion therefore meant to run a java program on the command line.
This gave us the possibility to continue to use XSLT to express
the properties we were looking for and being able to simply in-
stall java archives for the developers containing the implemented
filters, preprocessors and converters.

Java virtual machine

Preprocessor Filter Converter
 graphic/
 text

trace

Figure 6. Deployment of trace analysis tools

4 Example

The project where the technology has been put to the test was
an embedded software software system running on Windows CE.
The traces were created in a proprietary format and converted
off-line into the XML-based trace format.

Of particular interest became the analysis of the cause which
slowed down the application considerably. The traces itself were
rather large, containing millions of events. The challenge was to
find calls which could have caused the slowdown.

First the performance of calls was analysed. We used a style
sheet which would find a pair of call and return events and cal-
culate the time difference. The result was presented as a HTML
file.

Figure 7. Performance analysis

After identifying the performance bottlenecks we sought to
find the cause of these delays. An inclination drove us to have a
closer look at error events. Error events were in this case either
local events containing the word “ERROR” in the message or

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 5

communication events which contained a specific return result.
Again we implemented a style sheet to filter out and visualise
only those events.

The colour coding scheme, the reduced amount of informa-
tion, and the ability to get a quick overview over the trace all led
us to suspect an implementation flaw as the cause of the slow-
down quickly.

HeadUnit

?

default

?

IDataMoniker

IServiceManager

?

IService

? IEventManager

?

ISAXFeature

?

IService

?

IHMIStyler

?

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IUserManagerEx

?

IService

?

IDataMoniker

IDataMoniker

IHMIBrowser

?

IService

? IService

?

IDataMoniker

IService

?

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

IDataMoniker

IDataMoniker

IResResourceManager

?

tmtNumber: 2781

IService

IDataMoniker

IDataMoniker

tmtNumber: 2844

IService

IDataMoniker

IDataMoniker

tmtNumber: 2907

IService

?

IDataMoniker

IDataMoniker

IResAutonomousResourceCB

?

tmtNumber: 3008

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IStatusBarService

?

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

ISAXFeature

IDataMoniker

IService

?

IDataMoniker

IDataMoniker

tmtNumber: 4866

tmtNumber: 4898

IService

?

IDataMoniker

IService

?

IDataMoniker

tmtNumber: 5034

IService

?

IDataMoniker

IDataMoniker

tmtNumber: 5193

tmtNumber: 5194

tmtNumber: 5195

tmtNumber: 5196

IService

?

IDataMoniker

IDataMoniker

ISAXFeature

IDataMoniker

ISAXFeature

IDataMoniker

ISAXFeature

IDataMoniker

ISAXFeature

IDataMoniker

ISAXFeature

IDataMoniker

ISAXFeature

?

tmtNumber: 8251

tmtNumber: 8434

tmtNumber: 8475

tmtNumber: 8516

tmtNumber: 8557

tmtNumber: 8577

tmtNumber: 8578

tmtNumber: 8584

tmtNumber: 8585

tmtNumber: 8590

tmtNumber: 8591

tmtNumber: 8597

tmtNumber: 8598

tmtNumber: 8603

tmtNumber: 8604

tmtNumber: 8609

tmtNumber: 8610

tmtNumber: 8616

tmtNumber: 8617

tmtNumber: 8622

tmtNumber: 8623

tmtNumber: 8628

tmtNumber: 8629

tmtNumber: 8634

tmtNumber: 8635

tmtNumber: 8641

tmtNumber: 8642

tmtNumber: 8647

tmtNumber: 8648

tmtNumber: 8653

tmtNumber: 8654

tmtNumber: 8659

tmtNumber: 8660

tmtNumber: 8665

tmtNumber: 8666

tmtNumber: 8672

tmtNumber: 8673

tmtNumber: 8678

tmtNumber: 8679

tmtNumber: 8684

tmtNumber: 8685

tmtNumber: 8690

tmtNumber: 8691

tmtNumber: 8696

tmtNumber: 8697

tmtNumber: 8703

tmtNumber: 8704

tmtNumber: 8709

tmtNumber: 8710

tmtNumber: 8715

tmtNumber: 8716

tmtNumber: 8721

tmtNumber: 8722

tmtNumber: 8727

tmtNumber: 8728

tmtNumber: 8734

tmtNumber: 8735

tmtNumber: 8740

tmtNumber: 8741

tmtNumber: 8746

tmtNumber: 8747

tmtNumber: 8752

tmtNumber: 8753

tmtNumber: 8758

tmtNumber: 8759

tmtNumber: 8765

tmtNumber: 8766

tmtNumber: 8771

tmtNumber: 8772

tmtNumber: 8777

tmtNumber: 8778

tmtNumber: 8783

tmtNumber: 8784

tmtNumber: 8789

tmtNumber: 8790

tmtNumber: 8796

tmtNumber: 8797

tmtNumber: 8802

tmtNumber: 8803

tmtNumber: 8808

tmtNumber: 8809

tmtNumber: 8814

tmtNumber: 8815

tmtNumber: 8820

tmtNumber: 8821

tmtNumber: 8827

tmtNumber: 8828

tmtNumber: 8833

tmtNumber: 8834

tmtNumber: 8839

tmtNumber: 8840

tmtNumber: 8845

tmtNumber: 8846

tmtNumber: 8851

tmtNumber: 8852

tmtNumber: 8858

tmtNumber: 8859

tmtNumber: 8864

tmtNumber: 8865

tmtNumber: 8870

tmtNumber: 8871

tmtNumber: 8876

tmtNumber: 8877

tmtNumber: 8882

tmtNumber: 8883

tmtNumber: 8889

tmtNumber: 8890

tmtNumber: 8895

tmtNumber: 8896

tmtNumber: 8901

tmtNumber: 8902

tmtNumber: 8907

tmtNumber: 8908

tmtNumber: 8913

tmtNumber: 8914

tmtNumber: 8920

tmtNumber: 8921

tmtNumber: 8926

tmtNumber: 8927

tmtNumber: 8932

tmtNumber: 8933

tmtNumber: 8938

tmtNumber: 8939

tmtNumber: 8944

tmtNumber: 8945

tmtNumber: 8951

tmtNumber: 8952

tmtNumber: 8957

tmtNumber: 8958

tmtNumber: 8963

tmtNumber: 8964

tmtNumber: 8969

tmtNumber: 8970

tmtNumber: 8975

tmtNumber: 8976

IHMLDocument

?

IHMIControlEx

?

IHMIControlEx

?

IAxHMIScrollBarDC

?

IAxHMIScrollBarDC

?

IHMIControlEx

? IHMIStatusBar

?

IHMIControlEx

? IHMIDocumentControl

?

IHMIControlEx

?

IHMIControlEx

?

tmtNumber: 15150

tmtNumber: 15151

tmtNumber: 15152

tmtNumber: 15153

tmtNumber: 15154

tmtNumber: 15155

tmtNumber: 15156

tmtNumber: 15157

tmtNumber: 15158

tmtNumber: 15159

tmtNumber: 15160

tmtNumber: 15161

tmtNumber: 15162

tmtNumber: 15163

tmtNumber: 15164

tmtNumber: 15165

tmtNumber: 15166

tmtNumber: 15167

tmtNumber: 15180

tmtNumber: 15181

tmtNumber: 15182

tmtNumber: 15183

tmtNumber: 15184

tmtNumber: 15185

tmtNumber: 15186

tmtNumber: 15187

tmtNumber: 15188

IHMIControlEx

? IHMLDocument

?

IAxHMIScrollBarDC

?

IAxHMIScrollBarDC

?

IHMIControlEx

? IHMIControlEx

? IHMIControlEx

?

IAxHMIScrollBarDC

?

IHMIControlEx

?tmtNumber: 25435

tmtNumber: 25436

tmtNumber: 25441

tmtNumber: 25442

tmtNumber: 25447

tmtNumber: 25448

tmtNumber: 25453

tmtNumber: 25454

tmtNumber: 25459

tmtNumber: 25460

tmtNumber: 25465

tmtNumber: 25466

IHMIControlEx

?

Figure 8. Finding the cause of a bottleneck

Figure 8 shows the overview the analysis presented us with.
The graphic contains 26656 events and is shown at an extreme
zoom level to provide an overview. A gap in the lower middle
part of the trace is clearly visible which is caused by a number of
clusters of error events marked yellow. We envisaged that the ap-
plication is slowed down to process these unnecessary requests.
A closer look revealed that a component tried to access a miss-
ing device in synchronous mode. Processing within this object
paused until a timeout enabled the system to continue. Holding
the state of available devices in a central component brought the
desired improvement.

Starting with a trace file and not knowing for sure what we
were looking for we found that this kind of support proved valu-
able to the project.

5 Conclusions

Using XML as the basis of a trace format for concurrent sys-
tems we gain interoperability and access to ready-made tools for
trace visualisation and analysis. We created a number of style
sheets which are used as a library. Combining style sheets and
concatenating filters enables us to implement customised anal-
ysis tools with high speed. This enables interactive analysis of
complex problems where the a designer or test engineer can re-
quest new features, receives them within a very short time and
can therefore drive the analysis process.

Manual trace analysis is tedious and error prone. We provide
a way to use XML tools to implement the “information seek-
ing mantra” of overview, zoom and filter, and details-on-demand.
This way trace analysis is not fully automated because the results
still require an interpretation by the user. The ability to create

customised filters at high speed not only provides for interactive
analysis but also keeps costs of development low.

Performance could be an issue with certain filters. However
this will improve by using a faster computer, anticipation of a
faster XSLT-processor or use a dedicated database with an XML-
interface to store trace events. We are interested to continue the
research into properties which are of interest for trace analysis, to
improve our library by adding more filters, and converters to be
used on future projects.

References

[1] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensi-
ble Markup Language (XML) 1.0 — W3C recommendation
10 February 1998. Technical Report REC-xml-19980210,
World Wide Web Consortium, Feb. 1998.

[2] K. M. Chandy and J. Misra. Deadlock absence proofs for
networks of communicating processes.Information Pro-
cessing Letters, 9(4):185–189, Nov. 1979.

[3] J. Clark. XSL Transformations (XSLT) 1.0 — W3C recom-
mendation 16 November 1999. Technical Report REC-xslt-
19991116, World Wide Web Consortium, nov 1999.

[4] J. Clark and S. DeRose. XML Path Language (XPath) 1.0
— W3C recommendation 16 November 1999. Technical
Report REC-xpath-19991116, World Wide Web Consor-
tium, Nov. 1999.

[5] K. Grabenweger, E. Reyzl, and H. Sauer. Trace-based test-
ing of middleware. In5th Conference on Quality Engineer-
ing in Software Technology, Nürnberg, Germany, 2002.

[6] H. Hallal, A. Petrenko, A. Ulrich, and S. Boroday. Using
SDL Tools to Test Properties of Distributed Systems. In
E. Brinksma and J. Tretmans, editors,Formal Approaches
to Testing of Software — FATES ‘01, pages 125–140, Aal-
borg, Denmark, August 2001.

[7] A. S. Incorporated. SVG developer tutorial.http://
www.adobe.com/svg/basics/intro.html , July
2001.

[8] O. Kupferman and M. Y. Vardi. Model checking of safety
properties. InComputer Aided Verification, pages 172–183,
1999.

[9] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. InCommunications of the ACM, pages
558–565, July 1978.

[10] S. Owicki and L. Lamport. Proving liveness properties of
concurrent programs.ACM Transactions on Programming
Languages and Systems, 4(3):455–495, 1982.

[11] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. InProceedings of
the IEEE Symposium on Visual Languages, pages 336–343,
Washington, Sept. 3–6 1996. IEEE Computer Society Press.

[12] http://www.w3.org/Graphics/SVG/
SVG-Implementations.htm8 .

[13] W3C. Scalable Vector Graphics (SVG) 1.0 specification —
W3C proposed recommendation 19 July, 2001. Technical
Report PR-SVG-20010719, World Wide Web Consortium,
July 2001.

[14] http://www.xmlsoftware.com/xslt/ .
[15] http://xml.apache.org/xalan-j/ .
[16] http://www.sun.com/software/xml/

developers/xsltc/ .

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 26

