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Abstract

In this paper, an experiment is conducted which
proves that multi layer feed forward neural networks
are capable of compressing 3D polygon meshes. Our
compression method not only preserves the initial ac-
curacy of the represented object but also enhances it.
The neural network employed includes the vertex co-
ordinates, the connectivity and normal information in
one compact form, converting the discrete and surface
polygon representation into an analytic, solid collo-
quial. Furthermore, the 3D object in its compressed
neural form can be directly - without decompression
- used for rendering. The neural compression - rep-
resentation is viable to 3D transformations without
the need of any anti-aliasing techniques - transforma-
tions do not disrupt the accuracy of the geometry.
Our method does not suffer any scaling problem and
was tested with objects of 300 to 107 polygons - such
as the David of Michelangelo - achieving in all cases
an order of O(b3) less bits for the representation than
any other commonly known compression method. The
simplicity of our algorithm and the established mathe-
matical background of neural networks combined with
their aptness for hardware implementation can estab-
lish this method as a good solution for polygon com-
pression and if further investigated, a novel approach
for 3D collision, animation and morphing.
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tion, Neural Network, 3D Modeling, Implicitization

1. INTRODUCTION

3D geometry compression is a demanding Computer
Graphics problem, which has been thoroughly inves-
tigated by many researchers. As the accuracy of rep-

resentation increases due to the unceasing advance of
the available scanning hardware, the size of the 3D
models becomes prohibiting for internet based graph-
ics applications, medical databases, virtual 3D world
modelling, fast rendering and other applications. In
this paper, we present a compression method that uti-
lizes Neural Networks for both compressing and rep-
resenting 3D objects. In the first part, we mention the
most recent literature on representation methods and
geometry compression techniques and we discuss the
merits of our approach. In the second part we make
a brief introduction of the mathematical background
and the neural network architecture employed. In the
third section our method is presented in detail and
compared to the most popular, previously discussed,
schemes of representation and compression. Finally,
we discuss about the advantages and applications of
our method followed by possible enhancements and
our future goals.

Related work

Discussion and even enumeration of the current rep-
resentation methods is a tedious task, therefore we
restrain in pointing out some new methods. Some of
the latest ones are the mesh based descriptions like
the polygon, the bezier surfaces, the quadric and su-
perquadric, the signal processing meshes, the hierar-
chical B-Splines, the wavelet schemes, the subdivision
surface schemes and many more. The most dominant
in CAD/CAM applications is the Constructive Solid
Geometry (CSG) followed by some newer variations
like the R-functions, B-rep, skeletal methods, accu-
mulation modelling and volume based metamorphosis.
Finally, implicit methods like blobby molecules, meta-
balls, soft objects, implicit deformations and patches,
iterative, fractal and iso-surfaces are becoming promi-
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nent in specific kinds of applications. A detailed re-
cent survey of most of these methods is available by
[6]. For the basics on 3D Graphics the reader should
study [3],[15].

The compression of 3D objects is generally achieved
by compressing the triangle/vertex incidence graphs of
their polygon based representation. Those algorithms
are categorized by the types of objects they can be ap-
plied to: a) Height fields and parametric surfaces are
usually compressed by triangulation, regular grid, hi-
erarchical subdivision, feature refinement, decimation
or optimal methods. b) Manifold Surfaces, are only
compressed by refinement and decimation methods.
c) Non-manifold surfaces. The latest methods that
achieve the highest compression ratio are the Edge-
breaker [13], the Face Fixer [7] and others [8], [5] and
[14]. Finally there are some methods for compression
of volumetric objects by [1] and lately introduced by
[11] and [2].

Merits

Combining all the above information and extending
the idea of using neural networks for 2D image rep-
resentation [9], [10], we created a new representa-
tion that is an implicit function for both continuous
and discrete volumetric representation. Our represen-
tation is an exact and lossless compression method.
Only few elements are needed to represent an object
achieving accuracy better than many other methods.
In this paper we prove that this function - one function
per 3D object - exists, and can represent any kind of
real world or manually created object. We introduce
neural network training techniques as an implicitiza-
tion from real data. The advantages of our method
are in detail presented in section 3.1.

2. EXPERIMENT

Algorithm

The network employed by our method is a multi
layer feed forward network. All nodes are fully con-
nected and the threshold values are set to 1. As
an activation function for each node we use the sig-
moid f(x, σ) = 1/[1 + exp(−σx)]. Also, f ′(x, σ) =
−σf(x, σ)(1 − f(x, σ)) computes the first derivative
of the sigmoid. The network takes as input the x, y, z
coordinates and also x2,y2 and z2 - normalized in [0, 1]
and produces one output with values in [0,1]. For the
forward pass we use ai =

∑
j(wijyj) and yi = f(ai, σ)

where yi is the weighted summation ai passed through
the sigmoid, for each node. The output is compared to
the expected value and the error δi is computed with
δi = −(dpi−ypi)f ′

i . Afterwards the error is backwards

propagated and computed for each hidden node using
δi = f ′

i

∑
k(wkiδk) and the weights are updated with

wnew = wold − ηδi until the mean average squared
error EMSE = 1

PN (
∑

p

∑
i(dpi − ypi)2) is minimized.

For more details about the multi layer feed forward
networks and the back propagation training procedure
refer to Haykin [4].

Training a network to represent the geometry of a
3D object is done in 3 steps: a) the vertices and their
corresponding normal values of a 3D surface model
are used to create a training set, b) the structure and
parameters of the network are chosen, c) the network
is trained multiple times with the training set, until
the EMSE is adequately small. Finally we produce
the visual results and calculate the error values.

It was proven that training a network with only the
surface vertices was not adequate. Therefore we use a
simple heuristic to create extra training examples; for
each vertex we use its normal value to create points
lying inside and outside, in the vicinity of the surface
point. Then we assign expected values for each point;
for the surface points we assign the value 0.5, for the
inner the value 1.0 and for the external ones the value
0.0. This simple heuristic proves sufficient although it
sometimes fails - in the cases of sharp edges and spikes.
The symmetry of the geometry and the fault tolerance
of the neural network minimize the error caused by the
heuristic.

The network we use has 6 input nodes and 1 output.
We proved that only one hidden layer is adequate for
representing complicated objects. The only unknown
variable is the number of hidden neurons. There is
no known efficient, fail proof way of determining this
number for the specific problem. Depending on the
complexity of the object 6 to 50 hidden nodes are
needed for compression. Initial values between 15 to
20 usually provide an accurate result. For higher accu-
racy either the number of hidden nodes or the number
of bits used for representing the weights of the network
should be increased.

During the training procedure we observe EMSE

and based on its value we determine if the training
is succeeding or not and whether we need to increase
of decrease the number of hidden neurons. Finally,
when EMSE has decreased at least on order of O(n),
we test the result of the network in a unit cube by
evaluating the network for each point in the cube with
a predefined specified density of samples. When the
output is greater than 0.5 then we draw a point in the
unit cube, meaning we are inside the object.

Examples

Our set of trained 3D Objects was specifically cho-
sen to prove that different classes of surfaces can be
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Figure 1: Results of Compression: Column 1; Objects
in CG, Column 2; Surface Points, Column 3; Gener-
ated result of trained object.

represented - compressed. Objects with holes, sharp
edges, products of boolean functions, slim surfaces and
real world, complicated objects were successfully com-
pressed. With minor modifications, our method can
represent particle systems and flat or hollow objects.
In our attempt to prove that our method does not suf-
fer a scaling problem we used 3D models consisting of
300 to 4106 and more points. The training time for
the later models is considerable for Computer Graph-
ics standards (approximatively 3 days to 1 week), but
given the fact that training is analogous to the scan-
ning of the 3D object and has to occur only once, the
price to pay for such a high compression ratio is small.
On figure 1 we display some of the successfully com-
pressed objects and on figure 2 the low accuracy com-
pressed object - training has not yet been completed
due to time limitations.

Results and Comments

Our experiment was conducted with 2 custom made
tools coded using java on a PC Pentium III 600MHz.
The first program was used for the training of neural
networks to represent/compress 3D objects and the
second program performed rendering using the previ-
ously created networks.

From figure 1 it is clear that the networks rep-
resent solid 3D objects and not surfaces. This is a
result of the generalization property of the network.
The normal values can be easily and analytically com-
puted from the network without any extra mathemat-
ical overheat [4], and therefore there is no need to
store them. A comparison between our method and
the most popular compression colloquial is displayed
in figure 4 from which it is obvious that our method
achieves at least an order of 3, O(b3), better compres-
sion with regards to number of bits used for storage
of the objects geometry. From figure 3 it is clear that
the accuracy is small enough to be acceptable for most
kinds of applications. We measure the error as the dis-
tance of the actual edge point used for training, to the
point in the normal direction, where the network eval-
uates as edge - equal to 0.5. The maximum error was
0.02% of the objects’ size.

3. CONCLUSIONS

Advantages

Based on the results of the experiments, we can as-
sume that the compression of 3D objects with the
use of neural networks is not only possible, but also
offers certain advantages in solving some of the ma-
jor problems of computer graphics representation. It
combines the implicit and volumetric representation
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Figure 2: Generated Results only after the 2% of the
training procedure. Left Column: Model to train,
Right Column: Result.

methods and inherits the advantages of the polygon
and bi-cubic methods by being accurate and simple,
without inheriting their drawbacks.

The representation of our method is continuous and
partial derivatives can be computed at any point in-
side the object space. Normal values for the object
are not stored, instead they are calculated at any
given point of the object. Therefore no interpolation
method is needed to compute the normal values. The
generalization of the network enhances the represen-
tation of curves even further than the original training
example, a result proving extremely useful in recon-
struction of 3D objects based on real world objects.
Using the parameter of the sigmoid function σ, trans-
formations like blur, rough surface, and soft shadows
can be implemented instantly.

Affine and non-affine transformations like rotations,
scaling, moving, projections, twisting and others can
be performed by using a neural network, connected
to the object network, to transform the object space
of the 3D object [12]. Object collision, based on vol-
umetric or analytical function techniques is possible,
in a fast and easy way. Anti-aliasing is not necessary,
and resizing can be achieved by normalizing the object
space in a domain other than [0, 1], without affecting
the quality or the size of the representation. Encap-
sulation of the representation is also achieved because
of the input/output mapping property of neural net-
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Figure 3: Error and corresponding Network Output.
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Figure 4: Compression chart in bits per vertex.

works. Morphing of 3D objects could easily be imple-
mented by modifying the weights of one network to
match the weights of another with a linear interpola-
tion.

Applications - Future work

The obvious application of our method is compres-
sion of 3D models. Other future applications include:
Computer Vision and Error Detection based on neu-
ral network matching, Generation of 3D data for com-
puter aided design, Databases of 3D Objects for fast
querying and finally 3D Reconstruction from 2D Sil-
houettes. Our goal however is 3D Modelling and Ren-
dering therefore the other applications have not been
investigated. They still remain an open area for future
research.
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