
IMPLEMENTING CASE TOOLS IN THE INTELIGENT TELECOMMUNICATION SYSTEMS 
 

Bahador Ghahramani, Ph.D., P.E., CPE 
College of Information Science & Technology 

University of Nebraska at Omaha 
Omaha, NE 68182-0392 (USA) 

E-mail: bghahramani@mail.unomaha.edu 
Phone: 402-554-3975, Fax: (402) 5543400   

 
Azad Azadmanesh, Ph.D. 

College of Information Science & Technology 
University of Nebraska at Omaha 

Omaha, NE 68182-0392 (USA) 
E-mail: azad@unomaha.edu 

Phone: 402-554-3975, Fax: (402) 5543400 
 
 

 
ABSTRACT 

  
This paper discusses an intelligent and Internet-based 
Telecommunication System Specification Model 
(TSSM) using Computer Aided Systems Engineering 
tools (CASE tools).  TSSM implements CASE tools to 
mechanize its lifecycle development maintenance and 
integration process.  This model is developed to 
improve the system analysts (SA) efforts in their design 
and development of major software and hardware 
initiatives.  This model also improves the SA 
effectiveness by guiding them through the system’s 
Lifecycle Development Process (LDP).  The CASE 
tools are used to support, integrate, and monitor all LDP 
functions of the system.   
 
Keywords:  Telecommunication Systems Specification 
Model, Information Technology, Lifecycle    
Development Process, CASE tools, Systems Design and 
Development 
 

1.  INTRODUCTION 
  
The primary purpose of the intelligent Telecommunication 
System Specification Model (TSSM) is to assist the Systems 
Analysts (SA) through various aspects of the development 
process such as monitoring the development lifecycle process, 
maintaining, and regularly upgrading the system.  The TSSM is 
a modern model that implements Computer Aided Systems 
Engineering tools, or CASE tools for designing and developing 
systems.  TSSM helps the SA to better understand the system’s 
functions, applications, and information required to perform 
them by implementing the CASE tools.  The model utilizes the 
CASE tools throughout the system’s Lifecycle Development 
Process (LDP).  The CASE tools make the LDP more efficient 
by reducing the development time and expenses.  The CASE 
tools also provide representations of LDP functions and 
applications that reflect various scientific options and help the 
SA reengineer an existing legacy system.  Implementing the 
CASE tools also assists the SA to identify major functions and 
applications of hardware, software, and interface as the system 
is being developed [1].   The TSSM CASE tools applications 
are divided into two components: 

•  Component CASE tools:  provide an online method 
of monitoring LDP components, features, functions, 
products, and activities. 

•  Integration CASE tools:  facilitates integration of the 
LDP common purpose components, features, 
functions, products, and activities. 

 
The CASE tools provide online support for:  developing query 
files, reengineering activities, designing standards, and 
performing continuous quality improvement activities.  The 
TSSM CASE tools are divided into eight interdependent 
primary modules:  Database Access Module, Repository 
Interface Module, Graphic Design Module, Text Definition 
Module, User Interface Module, Monitoring and Evaluation 
Module, Quality Control Module, and User Interface Module 
[2].   
 
The TSSM CASE tools are far superior to other similar 
technologies because of their practical applications in industry.  
The most important characteristics of the TSSM CASE tools 
are that, through its Neural Network Technology (NNT), it 
builds within itself a design technology that is the driving force 
throughout the LDP.  The CASE tools are generally divided 
into two categories: (1) Upper CASE tools supporting the LDP 
strategic planning, analysis, and monitoring activities; and (2) 
Lower CASE tools supporting the other LDP activities [3].     
  
From the SA perspective, the TSSM improves the quality of 
LDP by implementing the CASE tools and using these tools for 
on line monitoring of development activities, identifying the 
missing components, reengineering the failed modules, and 
continuously controlling the process.  The CASE tools display 
a high-level overview of the LDP; and integration of the 
system’s hardware, software, and interface modules so that the 
SA can understand how their areas of responsibilities integrate 
with each other.  The intelligent TSSM provides two primary 
functions [4]:  

•  User intelligence:  provides a modern Internet-based 
process that allows the SA to separate and integrate 
different LDP activities effectively.   

•  CASE tools intelligence:  provides an interface 
capability for both novice and experimental modes of 
operations by supporting both hybrid methodologies 
and logic applications.   

 
2.  RATIONALE 

  
The primary rationale for implementing the CASE tools is that 
they encompass a cutting-edge-technology that is capable of 
increasing SA productivity during the LDP.  Through 
applications of the Internet and the NNT technologies, the 
TSSM monitors information flow (e.g., voice and data) and 
interactions between information and various system modules 
[5].   
 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 1 87



The LDP starts with the users’ requirements, or wish list, and 
evolves into the SA detailed specifications that explain the 
logic of hardware, software, and interface.  The model uses an 
online and mechanized matrix cross referencing technique to 
illustrate the current LDP progress.  The detailed specifications 
are then fed into the reference module for analysis and 
reengineering [6]. 
 
Another rationale for TSSM CASE tools is integration, linkage, 
and monitoring LDP activities at different levels.  The TSSM is 
a conceptual and logical model that monitors information flow 
within the modules and how the CASE tools are implemented, 
and whether the logical levels of specifications are met.  The 
CASE tools assist the SA in providing a reengineering 
technology that enhances the LDP progress and application 
quality.  In TSSM, each CASE tool supports a designated LDP 
activity or a set of activities.  Upper CASE tools are assigned to 
the initial LDP designing activities such as analysis, planning, 
and other related efforts.  Lower CASE tools are assigned to 
later LDP activities such as prototyping, alpha and beta testing, 
reengineering, and other related efforts.  The CASE tools also 
detail specific database design processes, screen and report 
prototyping, query file development, and a host of other LDP 
functions. In general, the Upper CASE tools support the logical 
design and the Lower CASE tools support the programming 
aspects of the LDP [7].    
 
The TSSM integrates various LDP applications by 
implementing the CASE tools through the model’s intelligent 
Knowledge Ware tool interface software.  The Knowledge 
Ware software includes such software as Planning Workstation 
(PWS), Rapid Application Development (RAD), Design 
Workstation (DWS), Analysis Workstation (AWS), 
Documentation Tool (DOC), and Construction Workstation 
(CWS).  The TSSM also uses other Knowledge Ware software 
for more specific projects and applications.   The TSSM 
software CASE tools use the following definitions [8]: 

•  Information:  voice and data files, databases, servers, 
and routers 

•  Process:  functions, programs, practices, policies, and 
standards  

•  Technology:  hardware, software, and interface 
 
The TSSM CASE tools improve LDP quality by helping the SA 
minimize: (1) software, hardware, and interface quality 
inconsistencies, (2) integration and linkage problems, (3) user 
requirements and SA specifications incompatibilities, (4) 
project costs and expenses inconsistencies, (5) project delivery 
deadlines and deliverable inconsistencies, (6) alpha and beta 
testing standards inconsistencies, (7) lack of proper 
documentations, and (8) unachievable expectations, 
requirements, and specifications [9].   
   

3.  TECHNOLOGIES 
 
The CASE tools environment provides a complete intelligent 
support system for the TSSM process beginning with the 
concept level analysis and working through to the maintenance 
and reengineering phases.  The CASE tools are the primary 
foundation for the entire LDP supporting the LDP information 
logic flow throughout the model’s architecture.  The CASE 
tools also benefit various TSSM project management activities 
such as project planning and monitoring, applications 
development and definition, data analysis and normalization, 
database schema development, development of user 
requirements and SA specifications, development of bug-free 
code in the system’s selected language, comparative analysis of 

the generated code with the SA specifications, and application 
logic.  Figure 1 is a presentation of the TSSM technologies and 
structure [10].  
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Telecommunication System Specifications Model 
Technologies and Structure. 

  
The online CASE tools allow: (1) Internet-based customized 
documentation and reporting mechanism; and (2) intelligence 
on information quality control such as checking and cross-
checking of the information flow through the TSSM for both 
accuracy and completeness.  To improve efficiency of the LDP, 
the following modern technologies are incorporated into the 
TSSM CASE tools [11]: 

•  Integration Analyzer:  provides an easy access to 
online Internet graphics, texts, and other formats.  
This technology integrates all LDP phases and 
applications.  The integration activity is seamless 
because it is user-friendly, Internet accessible, and 
transparent to the users.  It includes an intelligent 
online conversion of diagrams and design texts into 
other forms such as program codes, or encryptions.  
The integration covers all phases of the LDP 
activities, and helps the system to become multi-user 
and available through the Internet [12]. 

•  Artificial Intelligence Analyzer:  provides an effective 
method of self evaluation throughout the LDP.  The 
technology provides a continuous quality control of 
the LDP by identifying and evaluating the 
information flow and comparing the results against a 
set of standards and specification.  It also compares 
logical and physical designs of the LDP to determine 
variations and compatibilities.  It measures 
completeness and consistency of LDP phases and 
activities at random intervals to reduce its complexity 
[13].   

•  Static Code Analyzer:  analyzes the syntax and 
excitability of codes and specifications without 
executing the codes themselves by cross referencing 
the code references in software or a line of codes.  
The module identifies codes that are not executed or 
are part of infinite loops.  It also determines the 
number of times data was executed and the frequency 
of the errors; and it performs fault analysis and other 
problem identification and resolution methods [14].   

•  Dynamic Code Analyzer:  processes information as 
the LDP is being developed by tracking, evaluating, 
calibrating, checking, and identifying codes.   

Client 
Requirement

SA 
Specifications

TSSM 

 
CASE Tools

 
LDP 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 188



Tracking 
Development 

Implementing 
Remedies 

Identifying 
Resources 

Evaluation 
Thoroughness 

Detecting 
Problems 

Defining 
Requirement 

Testing  
Consistency 

TSSM Documenting 
Results 

•  Coverage Analyzer:  analyzes and determines the 
level and degree that the LDP is processed using the 
test data. 

•  Tracking Analyzer: analyzes, monitors, and identifies 
key LDP variables, tracers, and statement codes 
through their execution paths. 

•  Tuning Analyzer: determines frequency of the LDP 
programs executed, identifies problem areas, tracks 
the problems, and activates the reengineering process.  

•  Timing Analyzer:  determines the execution 
characteristics of the LDP such as time, frequency, 
date, duration, etc. 

•  Resource Analyzer:  determines number of times a 
database transaction occurs; reports input and output 
execution times; and records hardware, software, and 
interface activation times.     

 
4.  BENEFITS 

  
The primary benefit of implementing TSSM is monitoring test 
case application results (e.g., passed, failed, deferred, or not 
executed).  This enables the SA to quantitatively and 
objectively monitor progress of a feature and compare its 
progress with users’ requirements.  This monitoring process is 
conducted throughout the software development cycle from the 
concept phase to the (final) product phase.  The TSSM process 
also helps the SA review test case implementation results 
throughout the LDP cycles.  The process highlights potential 
bottlenecks and identifies potential problem areas.   After 
determination of potential problems, the SA devise proper 
courses of action to improve the system process [15].   
 
CASE tools are used to minimize or eliminate potential LDP 
problems by initiating the following activities: (1) tracking 
feature development; (2) defining feature specifications and 
design requirements; (3) detecting potential problem areas; (4) 
evaluating feature thoroughness; (5) testing feature consistency; 
(6) identifying resources; (7) satisfying customer needs; (8) 
documenting results; and (9) implementing decisions and 
remedies [16].  The practicable benefit cycle of the CASE tools 
implementation is presented in Figure 2.   
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Telecommunication System Specification Model 
Cycle of Benefits. 

 
The CASE tools most significant benefits occur during the 
maintenance phase of the LDP where monitoring the system 
operations become the most critical factor.   The CASE tools 
have five online toolsets that significantly improve the SA 
activities: (1) designing toolsets that supports development of 
the deliverables and depends on the users requirements and SA 
specifications; (2) planning toolsets that prioritizes the 
deliverables based on their importance, functions, applications, 
and availabilities; (3) implementing toolsets that supports SA 
efforts in identifying and adapting new hardware, software, 
interface, and technologies; (4) maintaining toolsets that 
supports operations of the system after it is developed; and (5) 
storing toolsets in the Database Access Module that supports 
collection and organization of the development information 
[17].   
 
The CASE tools effectively help SA by: (1) analyzing the 
hardware, software, and interface before their implementation; 
(2) evaluating the development process from top-down and 
bottom-up; (3) performing sensitivity analysis by activating  
run-test cases to answer “what if questions”; (4) developing 
scheduling techniques to coordinate the activities; (5) 
documenting and storing the relevant information in the 
Database Access Module; and (6) reengineering using 
compilers and assemblers to improve the activities [18]. 
 

5.  CATEGORIES 
 
The TSSM categorizes its CASE tools by their functions, 
applications, and plans.  The function category includes: (1) 
user interface management; (2) configuration management; (3) 
modeling and simulation; (4) monitoring, estimation, and 
measurement; (5) prototyping; (6) test data generation, and (7) 
code generation.  In addition, the above six characteristics are 
used to [19]:  

•  Access information from the Database Access 
Module;  

•  Provide an array of different query files; and  
•   Integrate and monitor the SA activities.   

  
CASE tools integration serves three purposes: (1) integration of 
the individual CASE tools that are designed for different 
functions, (2) integration of each CASE tool with other LDP 
activities; and (3) integration of the CASE tools with the LDP 
strategic planning activities.  The CASE tools application 
category greatly increases through [5]:  

•  Productivity:  efficient allocation of resources; 
identification of hardware, software, and interface 
thresholds and staying within them; and monitoring 
and integrating lifecycle phases;  

•  Quality:  continuously updating hardware, software, 
and interface; 

•  Integration:  modernization of the hardware, 
software, and interface; and  

•  Standardization:  adaptation of the industry standards 
and practices.    

    
Successful LDP is possible when the CASE tools are supported 
by interdependent plans: (1) developing a structured lifecycle 
plan; (2) developing a formal information flow plan; (3) 
developing a continuous quality control plan for the hardware, 
software, and interface; (4) developing a high quality training 
plan for the SA and users; and (5) developing a plan to 
implement the Upper CASE tools and the Lower CASE tools 
[7]. 
 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 1 89



 
6.  TSSM MODULES 

  
The modules discussed here are categorized as the primary 
TSSM modules and the CASE tools modules.  The primary 
TSSM modules are the Management Module, the Linkage 
Module, and the Data Flow Diagram Module.   
 
The Management Module ensures that the LDP activities 
conform to the SA specifications and industry standards.  The 
Management Module tracks LDP activities into two levels:  (1) 
monitoring progress of LDP activities and comparing the 
results with the development plans; and (2) monitoring the 
interdependencies of the activities.  The updated SA 
development efforts are fed into the Management Module for 
further reviews and recommendations by the SA and users.  The 
CASE tools facilitate the Management Module’s monitoring 
and tracking activities by their functions, applications, and 
priorities.  In addition, the Management Module provides 
online status reports of all LDP activities [15]. 
 
The Linkage Module integrates the TSSM modules and 
components with the CASE tools.  The module’s bridging 
process cross-references various activities with the SA detailed 
specifications files to: (1) identify common functions and 
applications; (2) verify the integration activities; and (3) 
document and update the results using the mechanized matrix 
approach.  The online matrix also identifies, monitors, and 
documents relationships among various LDP activities and 
activates the Linkage Module through the following initiatives 
[13]: 

•  Position the development process to be used for 
competitive advantage 

•  Across the board consistency of the efforts 
•  Quality of the process 
•  Quality responsiveness to the users 
•  Reduce the development cost 
•  Ensure the effectiveness of the SA and the users 
•  Monitor the life- cycle phases 
•  Improve predictability of the process 
•  Optimize the maintainability and adaptability of the 

software, hardware, and interface 
•  Meet user requirements and SA specifications 
•  Satisfy the process goals and objectives 

 
TSSM uses the Data Flow Diagram Module for viewing 
functional characteristics of the LDP activities.  This module 
illustrates the system’s architecture, design structure, and 
specifications to facilitate the LDP.  It defines information 
(voice and data) flowing through the LDP, its impacts on 
various units, and the results.  The TSSM Data Flow Diagram 
Module architecture is hierarchical and divided into the top 
level and the lower level that includes a context chart.  The top 
level of the architecture is referred to as the context chart or the 
level zero design.  The context chart is to define the external 
factors impacting the development process in detail and 
identifying the factors boundaries.  The module also addresses 
two issues: (1) it identifies all possible scenarios and finite 
states an activity may follow, and (2) it identifies all activities 
that are taking place during the LDP phases [11]. 
 

7.  CASE TOOLS MODULES 
 
The primary CASE tools modules include the following online 
and Internet-based modules: 

•  Database Access Module: provides a variety of 
functions including object oriented lifecycle 
development, object oriented design with and without 
code support, object oriented coding with and 
without design support, and advanced object oriented 
application support.  This module is used to develop 
the system’s database architecture, physical definition 
from logical specifications, testing and maintenance 
requirements, and reengineering activities.  In 
addition, it monitors relationships, interfaces, and 
related information [2].   Since the Database Access 
Module is one of the most important CASE tools 
modules, more detailed information is provided in the 
next section.  

•  Repository Interface Module:  supports the definition 
of different types of hardware, software, interfaces, 
modules, and activities that are used throughout the 
LDP.  It is a data repository and an active data 
dictionary.   

•  Graphic Design Module:   supports the LDP 
engineering designs, drawings, layouts, and other 
related activities.  It also evaluates quality of the LDP 
activities based on their predefined standards and 
specifications.   

•  Text Definition Module:  supports the Database 
Access Module and the Repository Interface Module 
through definition of names, contents, and details of 
items in the two modules.   

•  User Interface Module:  is the interpreter that 
determines the form and the format of both text and 
graphic information.   

•  Monitoring and Evaluation Module:  is the 
intelligence behind the LDP.  It analyzes all aspects 
of the LDP phases and determines whether they 
conform to the SA specifications and definitions, and 
if they are compatible with each other.   

•  Quality Control Module:  supports and checks quality 
of all LDP activities.  It continuously keeps track of 
the quality by comparing and mapping relevant 
activities with their pre-approved standards and 
specifications.   

•  User Interface Module:  supports users and SA 
efforts from the system concept to its completion 
phases through online Internet processing and 
reporting software.   

 
8.  DATABASE ACCESS MODULE 

 
The CASE Tools’ Data Access Module software is used to 
provide LDP information to SA to develop new systems.  The 
module is a comprehensive repository of all the data elements 
in the TSSM.  Its main function is to evolve into the primary 
repository for project-unique definitions, acronyms, 
terminologies, and identifications.  It categorizes the LDP 
activities into functions and applications. The module is also 
used as a repository of system specifications, source 
documents, query files, activities, data structure and 
architecture, algorithms, output processing, functions, and 
applications [8].  In most cases, the module is used to evaluate 
the users design requirements, SA specifications, process 
inputs, description of protocols, scaling, encryptions, rates, 
calibrations, and other input related information. It is designed 
to input characteristics of data dynamic and static elements.  
The data entries are online, are Internet-based, are supported by 
pre-designed templates, and are easily accessed through 
browsers.  The module’s data elements are embedded in the 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 190



Evaluate 
current 
practice 

Analyze 
benefits 

Select and 
implement 

process 

Determine 
effectiveness 

Identify 
system 

Apply to 
additional 

process END

START 

Are results 
acceptable? 

Reject problem

YES 

NO

YES 

NO 

Completed 

Is it 
acceptable? 

program code, design software, and interface specifications 
[17].     
 
The CASE Tools Database Access Module stores the 
information to support the following design features: 

•  Diagram feature: facilitates design, development, and 
reengineering parts of the system.  This feature 
includes diagramming logic, and diagram clean-up 
logic that helps the SA to focus on the system 
specifications and requirements.  This feature is also 
capable of identifying, monitoring, storing, and 
screening a diagram within the Database Access 
Module.  

•  Data integrity feature: ensures data integrity 
throughout the LDP.  This feature also maps, 
evaluates, and compares SA specifications with their 
standards; and provides online recommendations. 

•  Monitoring feature:  tracks reengineering activities of 
the LDP.  This feature tracks each version of the 
process through user identifiers and provides an 
online file of the changes, updates and backups, 
revisions, and recommendations. 

 
9.  PROCESS 

 
The LDP implements CASE tools to help SA develop an 
online, Internet-based, and intelligent program code from the 
specifications.  CASE tools support the SA reengineering 
efforts through the SA detailed specifications document by: (1) 
identifying common functions among the LDP activities; (2) 
integrating similar activities, functions and applications; (3) 
integrating various hardware, software, and interfaces; (4) 
simplifying the activities; (5) developing and updating the 
working source codes; and (6) analyzing, screening, storing, 
and updating related information into the Database Access 
Module [14]. 
 
The LDP is an inclusive process that applies to system 
specification analysis, architecture, and software design 
specifications as well as reengineering the legacy systems.  The 
process must also adhere to the following specifications: 

•  Prescribe specific guidelines for each notation within 
the process; 

•  Specify consistent relationships among notations; 
•  Provide the SA guidelines to reduce notation 

deviations from their norms; 
•  Verify the process through a structured reference 

practice; and 
•  Improve the system after implementation of an 

effective and tested computer-aided systems design 
and development CASE tools.  

  
The TSSM process that satisfies the above specifications is 
referred to as the Structured Specification Process (SSP).   This 
method is a step-by-step implementation technique that begins 
with the concept phase and ends with the completion phase 
[15].  Figure 3 is an implementation flowchart overview of the 
SSP method and steps.  As this figure indicates, the SSP 
process initiates a series of steps from the Start phase to the 
End phase of the LDP.   These TSSM steps must be performed 
for successful completion of the LDP.  There are three primary 
TSSM methods currently being used: Structure Analysis and 
Design (SAD); Specification and Description Process (SDP); 
and state charts and related methods.  Due to their technical 
implications, the SA mostly use the SAD and SDP methods, 
which are discussed here [19].   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3:  Flowchart Overview of the SSP Method. 
 
 

10.  STRUCTURED ANALYSIS AND 
DESIGN 

  
The SAD method implements and evaluates a series of target 
system models instead of a single one during the LDP. 

•  Requirement Models:  are used to depict the target 
system as a network of processing centers and are 
capable of transforming input information into 
expected data; 

•  Architecture Models:  are similar to the requirement 
models except that data transformation and storing 
are interfaced to the processors, programs, and 
storage media upon which they will be considered; 
and 

•  Design Models:  are created for each program in the 
target system.  They view a target system’s program 
as a set of functions and procedures that are 
interrelated.  

  
The TSSM incorporates the above modules to develop data 
flow diagrams as master notations for its requirements.  Figure 
4 is a presentation of the TSSM and its features.  Figure 4 also 
shows how information is processed and flow through TSSM 
and its features.  The SAD method consists of the following 
modules [16]: 

•  External Modules:  operate outside the target system.  
They have to interact among themselves on a regular 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 1 91



Continue 
in current 

phase 

Output_2 to 
sell 

Phase_1 

Decision 1 

Proc_1 

Input_1 Input_2 

Phase 2 

Phase 2 

Input_1 

Output_1 to 
process 2 

basis.  These entities have dual functions; they can be 
used as sources as well as operating as sinks for 
information. 

•  Data Processor Modules:  perform dual functions; 
they can be either primitive or higher level 
transformers.  

 -  Primitive transformers use pseudo codes to 
  define their own behaviors. 
 -   Higher-level transformers permit 

development of a structured approach that 
represents system elements at various levels 
of detail and complexity.   

•  Data Flow Modules:  direct information flow from 
one criterion to another and are typically shown by 
arrowheads.  Each data flow is identified by a name 
that is entered in the data dictionary. 

•  Data Store Modules:  store product data, and their 
characteristics and status. 

•  Control Bar Modules:  permit modeling of control 
matters and their state transitions. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
Figure 5:  Flowchart Overview of the SDP/G Method. 
 
 
 
 

 
 
 
 
 

11.  SPECIFICATION AND DESCRIPTION 
PROCESS (SDP) 

  
SDP methods apply two primary notations for realizing a 
system’s requirements, architecture, and LDP phases.  The first 
notation defines an individual entity in the system, and the 
second describes the methods used so that these entities can 
communicate.  SDP methods differ from the SAD in that they 
are essentially independently implemented and are not impacted 
or influenced by architectural decisions.  These methods 
recognize systems as sets of extended finite entities, 
communicating for a continuous period of time.  An extended 
finite entity is defined as a system that processes data, defines 
the present state in any situation, and decides on an effective 
alternate course of action [17].  SDP flow charts are discussed 
and presented in two parts, which are independent and 
supplement each other.  The first part is a graphic (SDP/G) 
presentation, and the second has a descriptive (SDP/D) format.  
Figure 5 is a flowchart description of SDP/G for the credit card 
example transaction in various phases of transaction.  The 
corresponding SDP/D format, which is not shown here, is a 
descriptive presentation of the SDP/G.  Following is a list of 
SDP definitions [16]: 

•  Phase:  identifies the beginning and completion of a 
specific process; 

•  Input:  specifies a particular phase—if a signal is 
input while the process is waiting in this phase, other 
actions are originated; 

•  Output:  transmits signals to a specific recipient 
process; 

•  Task:  activates an action to be taken; 
•  Procedure:  activates a preprocessed action; and 
•  Initiate:  activates a preferred course of action. 

 
 

12.  SYSTEM MONITORING 
  
TSSM architecture allows easy access to the SA to 
continuously monitor the process and verify the accuracy of the 
results.  Figure 6 is a presentation of the TSSM architecture.  
As Figure 6 indicates, there are key factors that are used to 
evaluate the effectiveness, efficiency, and applicability of the 
TSSM.  If required, the factors are also used to perform task 
analysis and recommend reengineering remedies to improve the 
system or to prevent potential problems.  As in any other 
software development procedure, most of the TSSM problems 
and bottlenecks are likely to occur in the beginning of the 
development process.   This phenomenon is considered as a 
natural progression of a LDP, and requires sufficient resources 
to overcome the deficiencies [19].  The SA monitor TSSM 
developments and improvements regularly using the following 
key factors: 

•  Feature problems:  decrease; functional feature 
problems found in the system test; 

•  Emergency releases:  decrease; number of emergency 
releases incorporated into system test or field; 

•  Degree of variations:  decrease; variation across 
features; 

•  Test turnover decisions:  increase; decisions related 
to system test turnover; 

•  Development resources:  decrease; resources of the 
development phase following turnover of the system; 

•  Case numbers:  decrease; number of test 
specifications and test cases written between releases 
of the product; 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 192



•  Preparation times:  decrease; test inspection 
preparation time according to the established 
standards and norms; and 

•  Delivery times:  decrease; test specification 
inspection delivery times. 

 

 
 

Figure 6: Telecommunication System Specification Model 
Architecture. 

 
 

13.   TEST SPECIFICATION 
  
The TSSM test specification is a detailed formal documentation 
of all test cases that discuss and analyze a feature, a module, or 
an activity.  The primary purpose of the specification is to test 
and evaluate TSSM features and operations of the software 
modules.  Features could be internal or external in operations 
and applications.  The internal features are the ones that are not 
visible to the users and are usually supporting the external 
modules and the services they provide.  The external features 
are directly visible to the users and are primarily used for 
external operations and applications of the system [16]. 
 
There are two types of TSSM test specifications: Core Test 
Specifications and Elemental Test Specifications.  The Core 
Test Specifications basically discuss features that provide new 
architectural elements that are essential in the LDP of the 

system and are on the critical path of the development cycle.  
They generally provide a common base for other feature 
developments.  They are gauged by the SA to determine 
soundness of the system and to prevent potential problems.   
The Core Test Specifications are primarily in sequence, in that 
if one is disrupted, others are adversely impacted and a major 
part of the system may fail.  These specifications must be 
gauged early in the LDP cycle and should be monitored 
throughout the process [15].   
 
Elemental Test Specifications pertain to features that have a 
low degree of interdependencies with other features.  Their 
failures, therefore, do not hinder the development progress and 
do not cause a major failure of the system. 
 

14.  SUMMARY 
  
The primary goal of the intelligent and online TSSM is to 
design, develop, test, and maintain a telecommunication system 
using CASE tools.  Through its NNT, the TSSM monitors and 
tracks all LDP activities.  The Internet-based TSSM provides 
two functions:  user intelligence, and CASE tools intelligence.   
 
The CASE tools are implemented to improve the online LDP 
documentation, and validation of the SA specifications and user 
requirements.  The LDP satisfies two objectives:  (1) to finalize 
the development phase of the system, and (2) to decrease or 
eliminate the possible errors passing through the process.   The 
LDP allows the SA to utilize more of their resources in 
successful completion of the system, and less on correcting 
errors, or solving problems [14]. 
 
The TSSM CASE tools help SA in two critical mechanisms:  
Internet-based customized documentation and reporting; and 
intelligence on information quality control for accuracy and 
completeness.  The CASE tools are divided into two categories: 
Component CASE tools and Integration CASE tools.  To 
support the LDP, the CASE tools utilize eight primary modules 
that are divided into two functional categories:  Upper CASE 
tools supporting the LDP strategic planning, analysis, and 
monitoring activities; and Lower CASE tools supporting other 
LDP activities [13]. 
  
In summary, the TSSM LDP consists of four methodologies: 
implementing CASE tools, developing the system according to 
the SA specifications, testing the system, analyzing the test 
outputs, and monitoring the LDP.  The TSSM benefits the SA 
efforts by effectively tracking the LDP activities, enabling the 
SA to quantitatively and objectively measure progress of the 
process, and comparing the results with the industry standards 
[18].  The LDP is an evolutionary as well as a revolutionary 
process that enabled the SA to make changes or modify the 
process whenever it is required.   
 

15.  ACKNOWLEDGEMENTS 

The authors greatly appreciate our colleagues at the University 
of Nebraska at Omaha for their encouragement and support.  
This paper and project would not have been possible without 
generous grants from the NJK Holding Corporation and its 
subsidiaries.  They are eternally grateful to Dr. Mark Pauley 
and graduate students Linfeng Cao, Louis Weitkam, and Megan 
Hrabanek of the University of Nebraska at Omaha for their 
efforts.  In addition, our sincere gratitude is given to Systems 
Engineers in the Bell Laboratories and IBM Watson Research 
Center for their reviews and recommendations 

 

Neural Network 
Software 

Data Flow 
Diagram Module 

Database Access 
Module 

& 
Repository 

Interface Module 

Management 
Module 

Linkage 
Module 

User Interface 
Software 

Intelligent 
Analytical 
Software 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 1 93



16.  REFERENCES 
 
[1]   Beath, C. M. & Orlikowski, W. J. “The Contradictory 

Structure of Systems Development Methodologies: 
Deconstructing the IS-User Relationship in 
Information Engineering.”  Information Systems 
Research, 10, 1994. 

[2]   Cerveny, R. P.; Garrity, E. J. & Sanders, G. L. “A 
Problem - Solving Perspective on Systems 
Development.”  Journal of Management Information 
Systems, Vol. 6, No. 4, 1990. 

[3]  Chechik, M., & Ding, W. “Lightweight Reasoning 
about Program Correctness.”  Information Systems 
Frontiers, Vol. 4, No. 4, 2002. 

[4]  D’ Ambrogio, A., & Iazeolla, G.  “Steps towards the 
Automatic Production of Performance Models of 
Web Applications.”  Computer Networks, Vol. 41, 
No. 1, 2003. 

[5]  Lending, D., & Chervany, N. L.  “CASE tool Use and 
Job Design:  a Restrictiveness/Flexibility 
Explanation.”  Journal of Computer Information 
Systems, Vol. 43, No. 1, 2002. 

[6]  Lundell, B., &Lings, B.  “Comments on ISO 14102: 
the Standard for CASE tool Evaluation.”  Computer 
Standards and Interfaces, Vol. 24, No. 5, 2002. 

[7]  Insfran, E. & Pelechano, V. & Pastor, O.  
“Conceptual Modeling in the Extreme.”  Information 
and Software Technology, Vo. 44, No. 11, 2002. 

[8]  Baik, J., Boehm, B. & Steece, B. M.  “Disaggregating 
and Calibrating the CASE tool varable in COCOMO 
II.”  IEEE Transactions on Software Engineering, 
Vol. 28, No. 11, 2002. 

[9]  Hong, S. S.  “Schedulability Aware Mapping of Real 
Time Object Oriented Models to Multi Threaded 
Implementations.”  Journal of KISS:  Computing 
Practices, Vol. 8, No. 2, 2002. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
[10]  Balaji, V. & Sangeetha, B.  “Testing and Maintaining 

De-Localized Software Systems in a Multi Site 
Environment Using Web Based Tools.”  Journal of 
Software Maintenance and Evolution Research and 
Practice, Vol. 14, No. 3, 2002. 

[11]  Brinksma, E.  “Verfication is Experimentation.”  
International Journal on Software Tools for 
Technology Transfer, Vol. 3, No. 2, 2001. 

[12]   Pelechano, V., Pastro, O. & Insfran.  “Automated 
Code Generation of Dynamic Specializations:  an 
Approach Based on Design Patterns and Formal 
Techniques.”  Data and Knowledge Engineering, 
Vol. 40, No. 3, 2002. 

[13]  Keil, M. & Kendall, J. E. “Systems Analysis and 
Design.” 3rd ed., Prentice Hall Englewood, New 
Jersey, 1994. 

[14]   Bradley, S. R. & Agoginto, A. M. “Design Capture 
and Information Management for Concurrent 
Design.”  Addison Wesley, New York, 1991. 

[15]  Raghunathan, B. & Raghunthan, T. S.  “Adaptation 
of a Planning System Success Model to Information 
Systems Planning.”  Information Systems Research, 
Vol. 5, No. 3, 1994. 

[16]  Premkumar, G. & King, W. R. “Organizational 
Characteristics and Information Systems Planning: 
An Empirical Study.”  Information Systems 
Research, Vol. 5, No. 2, 1994. 

[17]  Short, J. E. & Venkatranan, N. “Beyond Business 
Process Redesign: Redefining Baxter’s Business 
Network.”   Sloan Management Review, 1992. 

[18]  Chen,Y. M.; Miller, R. A. & Lee, D. L.  “Object 
Oriented Part Model for Geometric Reasoning.”  
Journal of Integrated Computer-Aided Engineering, 
Vol. 1, No. 5, pp. 375-395, 1994. 

[19]  Greenberg, S.  “Real Time Groupware as a 
Distributed System: Concurrency Control and its 
Effect on the Interface.” Proceedings of the 
Conference on Computer Supported Cooperative 
Work, Chapel Hill, North Carolina, USA, ACM 
Press, New York,  pp. 207-217, 1994. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 194



System Test 
(Delivered) 

Regression Test 
(Applied) 

Statistical Analysis 
(Applied) 

Test Specification 
(Incorporated) 

Code 
(Finalized) 

Features 
(Integrated) 

Test Specifications 
(Applied) 

Program Units 
(Integrated) 

Code 
Documented & Tested 

Unit Test Cases 
Documented & Tested 

Internal Design 
Specifications 

Documented & Tested 

Feature  
Definition 

Documented & Tested 

Functional  
Test Cases 

Documented & Tested 

System  
Analysts  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  Information Systems Specification Model and Features. 
 
 

 
 
 
 
 
 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 1 95


