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ABSTRACT

In this paper an evolutionary algorithm is developed
to learn a fuzzy knowledge base for the control of a
soccer playing micro-robot from any configuration be-
longing to a grid of initial configurations to hit the
ball along the ball to goal line of sight. The knowl-
edge base uses relative co-ordinate system including
left and right wheel velocities of the robot. Final path
positions allow forward and reverse facing robot to
ball and include its physical dimensions.

Keywords: Evolutionary Algorithm, Fuzzy Logic
Controller, Robot-Soccer.

1. INTRODUCTION

Determination of a fuzzy logic Knowledge Base (KB)
to satisfactorily control a system is usually built from
expert knowledge. If an expert is not available, some
other method of building the KB is needed, whether
the KB is a single layer, multi-layer or hierarchical
structure. This is especially the case in robot-soccer.
In the absence of expert knowledge, the KB of a fuzzy
logic controller can be learnt using evolutionary algo-
rithms.

The authors in [1] learnt a three-level hierarchical
fuzzy controller system using an evolutionary algo-
rithm to solve a point mass collision-avoidance prob-
lem in a simulated two robot system. Individual
robot paths learnt using a complete KB can be com-
bined by a fuzzy amalgamation post-evolutionary pro-
cess [2, 3, 4, 5]. Combining individual robot paths
learnt using a complete KB and using fuzzy amalga-

mation ‘on-the-fly’ during the evolutionary learning
was shown in [6, 7].

Evolutionary learning of a fuzzy controller for a micro-
robot soccer playing robot was presented in [8]. In this
paper an evolutionary algorithm was used to learn the
fuzzy rules of a three input two output fuzzy con-
troller. Further, relative co-ordinates were used in
preference to Cartesian co-ordinates for two main rea-
sons: a reduction in the number of rules in the fuzzy
KB, and learning can be performed using a single ball
position. Simulation of the robot movement incorpo-
rated physical size and permitted forward and reverse
facing impact with the ball as ‘good’ solutions. Special
consideration was given for robot initial configurations
touching the ball.

Input variables for the fuzzy control system were taken
to be the position of the robot relative to the ball,
described by n = 3 variables x1 = d2, x2 = θ and
x3 = φr as shown in Figure 1.
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Figure 1: Relative co-ordinate parameters

Here x1 is the square of the distance between the robot
centre and the ball, x2 is the angle between robot to
ball line and the ball to goal line, x3 is the projection
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of the robot heading angle φR onto the ball to goal
line.

The velocity of the left and right wheels, vL and vR

control the motion of the robot. These two variables
were taken as output of the fuzzy control system de-
scribed below (momentum and friction were ignored
in the kinematics).

A key feature not included in this analysis is, that the
left and right wheel velocities should also be inputs
into the knowledge base. For inherent along any path
followed by the robot, its current velocity is a key
input variable to establish control.

In this paper we extend the results published in [8],
to include the left and right wheel velocities as in-
put variables to the fuzzy knowledge base defining the
fuzzy controller. We shall first define the robot soccer
system, the design of the new fuzzy controller and the
design of the evolutionary algorithm to learn the fuzzy
rules and finish with a short presentation of results for
control of the robot from a far distance from the ball
and from configurations close and touching the ball.

2. ROBOT SOCCER SYSTEM

The basic robot soccer system considered is that de-
fined for the Federation of Robot-soccer Association,
Robot World Cup (www.fira.net). Full specifications
of hardware, software and basic robot strategies that
are employed in this type of micro-robot soccer sys-
tem can be found in [9]. All calculations for vision
data processing, strategies and position control of the
robots are performed on a centralised host computer.

Kinematics
The kinematics of a wheel chair style robot is given
by Equation 1 from [10].
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where vL is the instantaneous speed at the left wheel
of the robot, vR is the instantaneous speed at the right
wheel of the robot, L is the wheel base length, vC is
the instantaneous speed of the robot centre, ω is the
instantaneous angular speed about the instantaneous
point of rotation (x0, y0). The radius of the arc r
is determined from vC = rω, which is the distance
between (x0, y0) and vC .

Let the next robot position be approximated by a
small time interval ∆t. Assume vL and vR are con-
stant over this interval. If ω = 0, the robot is moving

in a straight line. Equation 2 gives the next robot
position using linear displacement ∆s = vC∆t.
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When ω �= 0, the robot scribes an arc. Curvilinear
robot paths are calculated using translation of the in-
stantaneous point (x0, y0) of rotation to the origin,
rotation about the origin and translation of the ori-
gin back to the point of instantaneous rotation. Fig-
ure 2 shows the symbols used in the curvilinear Equa-
tions 3 4 5.
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Figure 2: Curvilinear formulae symbols

x′
R = xR + r(sin(φR + ∆θ) − sin(φR)) (3)

y′
R = yR − r(cos(φR + ∆θ) − cos(φR)) (4)

φ′
R = φR + ∆θ (5)

where φ′
R ∈ [0, 2π) is necessarily constrained for in-

put into the fuzzy system. The following parameter
values were used: L = 68.5(mm),∆t = 1/60(s). The
playable region was defined as a rectangle from coor-
dinate (0, 0) to (1500, 1300) (measurements in mm.),
ignoring the goal box at each end of the field.

3. FUZZY CONTROL SYSTEM
DESIGN

The inputs into the fuzzy knowledge base are now vari-
ables x1, x2 and x3 defined previously and the two
wheel velocities x4 = vL and x5 = vR. Figure 3 shows
the fuzzy input sets used for each variable. There are
seven linguistic membership sets defined for each vari-
able. For both angles θ and φ: VS is Very Small, S
is Small, SM is Small Medium, M is Medium, ML
is Medium Large, L is Large and VL is Very Large.
Distance squared x1: VC is Very Close, C is Close,
CN is Close Near, N is Near, NF is Near Far, F is Far
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and VF is Very Far. For left wheel velocity vL and
right wheel velocity vR: FR is Fast Reverse, MR is
Medium Reverse, SL is Slow Reverse, S is Stationary,
SF is Slow Forward, MF is Medium Forward and FF
is Fast Forward.
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Figure 3: Fuzzy Input Sets

The new output variables are the changes in the two
wheel velocities, that is, y1 = ∆vL and y2 = ∆vR, and
the new updated velocities are simply calculated as

v
′
L = vL + ∆vL and v

′
R = vR + ∆vR

We define eight membership sets for each output vari-
able: VFR is Very Fast Reverse, FR is Fast Reverse,
MR is Medium Reverse, SR is Slow Reverse, SF Slow
Forward, MF is Medium Forward, FF is Fast For-
ward, and VFF is Very Fast Forward. These sets
have centres: y�

k = −28 + 8k for k = 0, · · · , 7.

In all there are now 75 = 16807 rules in a complete
fuzzy knowledge base for this system. In general, the
�th fuzzy rule has the form:

If (x1 is A�
1 and x2 is A�

2 and x3 is A�
3 and x4 is A�

4

and x5 is A�
5)

Then (y1 is B�
1 and y2 is B�

2).

where A�
k, k = 1, · · · , 5 are normalised fuzzy sets for in-

put variables xk, k = 1, · · · , 5, and where B�
m,m = 1, 2

are normalised fuzzy sets for output variables ym,m =
1, 2.

Given a fuzzy rule base with M rules, a fuzzy con-
troller as given in Equation 6 uses a singleton fuzzifier,
Mamdani product inference engine and centre average
defuzzifier to determine output variables.

yk =

∑M
�=1 y�

k(
∏n

i=1 µA�
i
(xi))∑M

�=1(
∏n

i=1 µA�
i
(xi))

(6)

where y�
k are centres of the output sets B�

k

These values, 33614 of them, are typically unknown
and require determination in establishing valid output
for controls to each wheel of the robot. As there is
no a-priori knowledge about the system control, we
used evolutionary algorithms (EA) [11] to search for
an acceptable solution.

A simple method of implementing Equation 6 is to use
nested loops for the summation and product terms.
This simple encoding requires the loops to consider
antecedents and consequents of 16807 rules.

A special feature of overlapping sets using the Mam-
dani product inference engine is that a minimum of
one and a maximum of two membership sets for each
input variable will fire. A vertical slice through any
variable membership in Figure 3 illustrates this prop-
erty.

A maximum of 25 = 32 out of the 75 = 16807 will
fire for any input into the fuzzy controller. With a
sparse access to the rule base, it makes sense to access
the rule base by developing pointers to the rule being
used.

The number of membership sets was set at seven for
each input variable to make the calculation of the
pointer to the rule an easy radix calculation. It is not
necessary to use the same number of memberships per
variable the same, it was done simply to reduce errors
made in programming and ease debugging.

Each input variable is tried on the input membership
sets to find the one or two memberships that fire.
The set identification is stored in an array with the
membership value(s). Each array is terminated by a
pointer value of −1. Five input variables require five
nested loops to calculate the pointer reference using
the antecedents in accordance with Equation 6. The
pointer refers to the consequent y�

k in the string for
inclusion into Equation 6.
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4. EVOLUTIONARY LEARNING

Our objective here is to learn a rule base for the con-
trol of this system. The first problem is how to formu-
late the knowledge base as a string in the population.

Each output fuzzy set is represented by an integer in
the interval [0, 7] corresponding to the fuzzy output
sets {VFR, FR, MR, SR, SF, MF, FF, VFF}. So
we can uniquely represent a potential knowledge base
solution as an individual string

∼
s contains 2M = 33614

integer represented consequents of the form:

∼
s = {s1

1, s
1
2, · · · , sk

1 , sk
2 , · · · , sM

1 , sM
2 , },

where sj , j = 1, 2 is an integer in the interval [0, 7].

The population at generation t, P (t) = {
∼
sn : n =

1, · · · , N}, where N = 2000 is the number of individ-
uals in the population. The population at the next
generation P (t + 1) was built using a full replacement
policy, tournament selection with size nT = 3, and one
point crossover with probability pc = 0.6. Elitism was
used, with the 10 best individuals carried from popula-
tion P (t) to population P (t+1). An incremental mu-
tation operator with probability pm = 0.01, replaced
the binary mutation used previously. This mutation
operator increments/decrements sk by one with equal
probability using bounds checking, that is, if sk = 0,
it was incremented to sk = 1, and if sk = 7, it was
decremented to sk = 6.

Fitness evaluation of each individual was calculated by
scribing a path using the fuzzy controller and stopping
when either:

(i) iteration (time steps) reached a prescribed limit
(500), or

(ii) the path exceeded the maximum allowable dis-
tance from the ball, or

(iii) the robot collides with the ball.

In (iii) care has been taken to recognise the finite size
of the robot. The robot is a square with side of 80mm
and the ball has a diameter of 42.7mm. Detecting a
collision of the robot and ball is made by calculating
the distance of the ball centre (xB , yB) = (750, 650)
perpendicular to the line in the direction of the robot
dNL passing through the centre of the updated po-
sition of the robot (x′

R, y′
R), and the distance of the

ball dAL projected onto that line. These values are
determined as:

dAL =
|(xB − x′

R) + m(yB − y′
R)|√

m2 + 1
.

dNL =
|(yB − y′

R) − m(xB − x′
R)|√

m2 + 1
.

where m is the gradient of the line passing through
the robot centre, in the direction of the robot. The
following quantity is used to define an exclusion region
determined by the physical size of the robot:

r2
corner = (dAL − 40)2 + (dNL − 40)2.

A flag “HitBall” is raised when the following condition
is true:

IF (((dNL < 40) AND (dAL < 61.35)) OR
((dNL < 61.35) AND (dAL < 40)) OR

(r2
corner < 61.352))

THEN (HitBall = TRUE).

A grid of initial configurations was defined: x =
−750 + 100(k − 1) for k = 1, · · · , 31 and y = −650 +
100(k − 1) for k = 1, · · · , 27 excluding the ball posi-
tion. Each grid point has five angles: θ = 2(k− 1)π/5
for k = 1, · · · , 5. The total number of initial configu-
rations is therefore C = 5(31 × 27 − 1) = 4180. All
initial configurations start with zero, left and right,
wheel velocity.

The final position of the path obtained by running the
fuzzy controller defined by the knowledge base (repre-
sented by each string) from a given grid configuration
was used to evaluate the fitness of each individual:

fi = α1T1 + α2T2 + α3T3 (7)

where α1 = 1.0, α2 = 1.0, α3 = 100.0. The terminal
angle coefficients was heavily weighted to ensure the
correct final alignment of the robot to the ball and the
target goal.

The first quantity in the fitness sum is T1 =
d2(R,DP ). It is the final squared distance between
the robot centre R and the destination point DP =
(688.5, 650) when the path is terminated as described
above. It determines the accuracy of the fuzzy con-
troller to control the system to the desired destination
configuration.

Term T2 is the iteration count for each path and is
used to minimise the time taken to reach the desired
destination configuration.

The third quantity T3 = 1000 sin2(φ) where φ is the
final angle of the robot relative to line BG. This term
is included to enable forward facing and reverse facing
solutions to be accepted at the final destination.

The evolutionary algorithm was terminated after a
prescribed number of generations. The best individ-
ual, that is, the one with the minimum fitness, is taken
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as the “best” fuzzy logic controller or defining the
“best” knowledge base determined by the algorithm
for this problem.

In [8] the learning of the knowledge base took place by
summing the fitness evaluations for ALL starting con-
figurations in the grid. This led to heavy computation
in fitness evaluation, and difficulties in achieving con-
vergence to acceptable paths in some instances from
the initial configuration to the target point. See [8],
for a detailed discussion.

A new method for learning a knowledge base across
the grid configuration, is employed and reported
here. The evolutionary algorithm was run sequentially
through the full number of initial configurations, being
allowed to run for 10 generations at each configuration
before moving to the next. That is, each individual
in the population was evaluated with fitness derived
from a single grid point for 10 generation, at which
instance, fitness was then calculated at another point
in the grid for the next 10 generations and so on. The
evolutionary process was stopped after a total of 500
000 generations in all were completed.

5. RESULTS

The results obtained in the final “best” fuzzy knowl-
edge were excellent, obtaining very smooth continuous
paths to the target with both forward and reverse fac-
ing in the final position depending on the initial con-
figuration. Only a very small number of aberrations
existed but the paths to the target were still accept-
able. We show a number of the many images obtained
in Figures 4, 5, 7 and 6.

In Figures 4 and 6 the robot has final approach to
the ball forward facing, and in the other two figures,
reverse facing.

B(750,650), G(1500,650), c0072(-750,750,4  /5),
DP(688.65,650), iteration=72

π

Figure 4: Long distant path from left

Compared to [8], the trajectories obtained are very
smooth, there is much less tendency for the robot to
execute high momentum turns resulting in a “cusp”
along the trajectory.

A problem with pre-mature convergence of the evolu-
tionary algorithm was reported in [8]. The algorithm

B(750,650), G(1500,650), c2095(750,850,0),
DP(688.65,650), iteration=45

Figure 5: Long distant path from right

B(750,650), G(1500,650), c2342(950,350,4  /5),
DP(688.65,650), iteration=47

π

Figure 6: Short distant path from bottom

now outlined in this paper has shown no pre-mature
convergence problems.

6. CONCLUSION

In this paper we have shown how to design a compli-
cated fuzzy controller to control a micro-robot that
incorporates both forward and reverse impact with
the ball, and precise directional control to a destina-
tion behind the ball, from configurations far from the
ball as well as close and touching the ball. The fuzzy
controller incorporates as input current left and right
wheel velocities and it’s output determines changes in
these two velocities. We have also shown that it is
capable to learn the rules of such a knowledge base
using an evolutionary algorithm.

The present analysis has been undertaken from initial
configurations in which starting left and right wheel

B(750,650), G(1500,650), c3867(2050,1150,4  /5),
DP(688.65,650), iteration=86

π

Figure 7: Short distant path from top
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velocities are zero. To properly model this problem,
initial configurations with non-zero velocities should
be incorporated.

This requires extending the grid configuration to in-
clude the extra two variables of vL and vR, and in so
doing drastically increases the already heavy compu-
tation in the evolutionary learning of the fuzzy rules.
Research in this direction is currently being under-
taken.

It has already been noted that by increasing the num-
ber of input variables, the fuzzy rule base has in-
creased in size considerably. Further research is being
undertaken on this problem by decomposing the fuzzy
knowledge base into a three layered hierarchical fuzzy
knowledge bases, [12], which considerably reduces the
number of rules in the overall fuzzy control system and
may reduce the already high computation associated
with learning the fuzzy controller.
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