

ABSTRACT
Super-resolution is a smart process capable of generating
images with a higher resolution than the resolution of the sensor
used to acquire the images. Due to this reason, it has acquired a
significant relevance within the medical community during the
last years, especially for those specialties closely related with
the medical imaging field. However, the super-resolution
algorithms used in this field are normally extremely complex
and thus, they tend to be slow and difficult to be implemented
in hardware. This paper proposes a new super-resolution
algorithm for video sequences that, while maintaining excellent
levels in the objective and subjective visual quality of the
processed images, presents a reduced computational cost due to
its non-iterative nature and the use of fast motion estimation
techniques. Additionally, the algorithm has been successfully
implemented in a low-cost hardware platform, which guarantees
the viability of the proposed solution for real-time biomedical
systems-on-chip.

Keywords: Super-resolution, medical imaging, motion
estimation, hardware mapping.

1. INTRODUCTION
The imaging field is gaining an increasing importance within
the worldwide medical community, as it greatly helps the health
personnel in order to establish a correct diagnosis. Although the
technology involved in these systems has experienced a
considerable advance during the last decades, in many of them
there is still need of increasing the resolution of the images
beyond the resolution provided by the respective sensor. A
smart solution to this problem is to increase the resolution using
algorithms such as the super-resolution (SR) ones, wherein
high-resolution images are obtained using low-resolution
sensors at lower costs. In this sense, super-resolution can be
defined as a technique to increase the image resolution of
pictures by exploiting the spatio-temporal correlation of data in
several displaced images. In fact, different super-resolution
algorithms have proven to be very effective in the fields of
magnetic resonance imaging (MRI) [1], positron emission
tomography (PET) [2] or three-dimensional microscopy [3], just
to name some. However, these algorithms present a complex
and iterative nature that prevent their use in other brand new
scenarios with real-time constraints and/or high levels of
integration associated, like smart capsule endoscopy systems.
This paper addresses low-cost solutions for the implementation
of SR algorithms over SoC (System-on-Chip) platforms in order
to achieve high-quality image improvements. These solutions
are based on the following three tips: a) to radically modify the

SR algorithms, breaking their iterative behavior in order to
speed up their execution, b) to accelerate as much as possible
the motion estimation stage, as it represents the most
computationally intensive process within the SR procedure, and
c) to avoid the need of developing specific SR hardware by
reusing the logic present in an existing SoC imaging platform.
Several results will be presented in terms of amount of memory
needed, computational load and image quality in order to
demonstrate the viability of the proposed solution for the next-
generation of intelligent biomedical imaging systems.
The remainder of this paper is organized as follows. Section 2
presents the basis of the dynamic SR algorithm used along this
work. Section 3 details the study performed in this work in
order to accelerate as much as possible the motion estimation
stage of the SR algorithm without sacrificing the visual quality
of the processed images. Section 4 presents the details of the
implementation of the algorithm onto a generic hardware
platform and finally, Section 5 outlines the conclusions
obtained in this work as well as future research lines.

2. THE DYNAMIC SR ALGORITHM FOR VIDEO
The approach to SR followed in this work consists on gathering
information from a shifted image set in order to integrate all the
available information in a new super-resolved image.
After an exhaustive study of previous work in SR, the first
super-resolution algorithm (SRA) developed during this
research was described in [4], where a static iterative SRA was
successfully mapped onto a generic hybrid video coding
HW/SW platform. Nevertheless, the algorithm exhibited an
iterative behavior which prevents its real-time execution. In
pursuit of a real-time implementation, the algorithm was firstly
modified to avoid the iterative behavioral obtaining a non-
iterative version for the static SRA described in [5], where the
mapping details onto the aforementioned platform are detailed
in [6]. Although this version works properly for real time
applications, it exhibits a major drawback in the memory
requirements, which results to be very high for a low-cost
single-chip implementation. In order to overcome these
drawbacks, this paper proposes a new dynamic SRA for video.
In particular, the proposed algorithm is composed by three
different and somehow independent processes: registration,
fusion and restoration.
Image registration is the task of finding the motion between two
or more views of the same scene, although it does not
necessarily describe the real motion of either the camera or the
scene. For this purpose, a motion estimation stage is used, as it
estimates the motion vectors between the current frame and
each frame within a working window. In order to estimate

Towards the Use of Super-Resolution in
Biomedical Systems-on-Chip

Gustavo M. CALLICO, Sebastian LOPEZ, Felix TOBAJAS, Valentin DE ARMAS, Jose F. LOPEZ,
Antonio NUÑEZ and Roberto SARMIENTO

Institute for Applied Microelectronics (IUMA) & Department of Electronic Engineering and Automatics (DIEA)
University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, E-35017, SPAIN

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013 ISSN: 1690-4524

motion vectors in a feasible way, the frame is split into
macroblocks (blocks of 16×16 pixels). It is important to note
that, in order to obtain SR improvements, the precision of the
motion estimator has to be at least the inverse of the scale factor
(zoom scale). To improve the image quality by means of SR
techniques, it is necessary to obtain information from the
nearby frames and combine it with the current frame. This is the
goal of the fusion stage, as it uses the positions pointed by the
estimated motion vectors within the search window in order to
add information. However, if the nearby frames do not have
enough fresh information to be added to the current frame under
processing, there will be some empty positions in the super-
resolved frame. To display the processed frame properly, these
empty positions, named holes within the field of this paper,
must be interpolated by the restoration stage. Due to their
inherent nature and functionality, the processes of registration,
fusion and restoration will be referred along this paper as
motion estimation, shift and add, and fill holes, respectively, as
it is stated in Figure 1 where the SR approach followed in this
work is depicted. As it is seen in this figure, the motion is firstly
estimated by computing a set of motion vectors per macroblock
(MB) with sub-pixel accuracy (¼ pixel) that will be used to
compensate the motion of every new incoming frame towards
the frame used as the reference one in every frame-time. A
temporal window of WIN frames before and after the current
processing frame has been used together with a search area of
SA pixels around the current MB of size MBS. Next, all the
information is gathered in a higher resolution grid by the shift &
add process that will create the first super-resolved draft image.
Finally, if any pixel is not filled throughout these processes, it
will be interpolated by the fill holes process using a bilinear
surface interpolator.

Lo
w

 r
es

ol
u
ti
on

 f
ra

m
es

S
u
p
er

-r
es

o
lv

ed
 f
ra

m
e

Figure 1. General approach for SR

An average comparison among the previously reported super-
resolution algorithms is shown in Figure 2 in terms of quality of
the super-resolved sequence (measured as the peak signal-to-
noise ratio, PSNR) and memory requirements. As it is depicted,
the single-step approach followed by the dynamic SRA reduces
the memory requirements when compared with the static
iterative SRA in [4], and the static non-iterative SRA in [5] and
[6]. In particular, moving from static iterative to static non-
iterative, produces a 40.32% increase in the memory

requirements while the quality increases in 31.39%. However,
moving from the static to the dynamic SRA (both non-iterative)
decreases the quality in 1.92 dB (only a 6.3 %) while the
memory requirements decrease in 94.84%.

Figure 2. Comparison between the different SR algorithms

Although the proposed dynamic SRA represents an excellent
tradeoff between the quality of the super-resolved images
obtained and the amount of memory needed, it still has
associated a huge computational cost that jeopardizes its real-
time execution. In this sense, a profile of the SR execution
reveals that, in average, about 51% of the computational cost
relies on the ME process. Therefore, any effort focused on
decreasing the computation load of this process will
considerably speed up the overall SR process, allowing a
reliable hardware implementation.

3. FAST MOTION ESTIMATION FOR DYNAMIC SR
Motion estimation represents, as it has been highlighted, a key
task in the SR process, where the final quality of the super-
resolved sequence critically depends on the accuracy of the
motion vectors. From a hardware perspective, the block
matching motion estimation algorithms suppose a higher
guarantee for implementation, being the Full Search (FS)
algorithm the only one that exhaustively evaluates all the MVs
in a predefined search area, thus guarantying the lowest cost
function used and the minimal distortion. The cost function
commonly used is the Summation of the Absolute Differences
(SAD) evaluated pixel-by-pixel between the given reference
macroblock and every candidate position. The price to pay for
this minimal distortion is a very high computational cost, given
as a direct proportion with the square of the size of the search
area. In this sense, a tradeoff problem between quality and
computational load is encountered, being highly
recommendable a situation where the quality loss, compared
with the FS algorithm, is negligible with respect to a significant
reduction in the number of operations to be performed.
For this purpose, a two-stage strategy has been followed in this
work. In the first stage, a preliminary selection has been
performed using nine fast block matching algorithms (FBMAs).
Based in these results, the four FBMAs that exhibited the best
performance in terms of quality and computation load have
been selected to be evaluated in a second detailed stage. In this
second stage, additional simulations have been performed in
order to help in the decision of which FBMA could better
substitute the FS algorithm for SR.

Quality vs memory for some SRA versions

23.19

30.47

28.55

49.51

969.01

690.57

22

24

26

28

30

32

34

Iterative Static [4] Non-Iterative Static [5],[6] Dynamic SRA [this paper]

PSN
R

 (dB
)

0

100

200

300

400

500

600

700

800

900

1000

M
em

ory (K
bytes)

PSNR (dB) Memory (Kbytes)

Δ PSNR=31.39

Δ PSNR=-6.3%

Δ Kbytes=40.32%

Δ Kbytes=-94.89%

57SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013ISSN: 1690-4524

For the first preliminary selection and among all the ME
algorithms available in the current literature, nine FBMA
algorithms have been chosen based on their relevance in video
compression environments. These algorithms are:

1. The Three-Step Search (TSS), described in [7].
2. The New Three Step Search (NTS), described in [8].
3. The Four step search (FSS), described in [9].
4. The Two Dimensions Logarithmic (TDL) search,

described in [10].
5. The Cross Search Algorithm (CSA), described in [11].
6. The Diamond Search Algorithm (DSA), described in [12].
7. The Block Based Gradient Descent Search (BBGDS),

described in [13].
8. The One at a Time Search (OTS), described in [14].
9. Parallel Hierarchical One Dimensional Search

(PHODS), described in [15].
These nine algorithms, together with the FS algorithm as the
reference, have been tested inside the SR environment returning
data related to quality and computational load for each FBMA.
In Figure 3, the higher-level block diagram of the SR-core is
shown inside the setup environment. Every test starts reading
the configuration file where several parameters as the images
size, the number of frames to be processed, the block matching
algorithm to be used, and the search area, among others, are
fixed. Firstly, the input High-Resolution (HR) sequence is
decimated in a given integer scale factor (factor 2 in this case)
obtaining the Low Resolution (LR) sequence. At the same time,
the LR sequence is interpolated using the same scale factor, as
it will be used as the lower image quality to surpass. Once here,
the SR process starts using the LR sequence as input.

HR
Sequence DDeecciimmaattee LR

Sequence

SSuuppeerr RReessoolluuttiioonn

Motion
Estimator Shift & Add Fill Holes

FBMA

SR
Sequence

PPSSNNRR
CCoommppuuttaattiioonn

Results:
PSNR (dB)

Operations

Interpolated
Sequence

 Figure 3. Test setup to select the best FBMA

In order to allow a reliable comparison among all the FBMAs,
six real-life CIF sequences (352×288 pixels) commonly used in
image processing testing (DEADLINE, FLOWERS, NEWS, MOBILE,
CHILDREN AND FOREMAN), have been processed. The results
obtained are depicted if Figure 4, where the quality obtained

and the computation of the search algorithms are shown for the
set of sequences used. It is important to mention that, in these
charts, only the results obtained with the algorithms selected for
the second analysis stage are shown. The quality is given as the
average PSNR computed during 100 frames while the
computational cost is given as the average number of operations
performed by the ME algorithms.
The comparison between algorithms has been done by selecting
the set of parameters (MBS, SA and WIN) that maximize the
quality of the FS, which is different for every sequence. The set
of parameters used for every sequence is shown in the header of
every chart. As expected, the average quality always drops
below the quality of the FS.
The average results for every FBMA in terms of performed
operations, percentage of operations with respect to the FS,
PSNR, PSNR loss with respect to the FS and the Standard
Deviation (SD) of the PSNR loss, are summarized in Table 1.

From these data, it is clear that the NTS is the most robust
algorithm, which exhibit the lowest average PSNR quality loss
(0.09 dB) and PSNR loss SD (0.11 dB). The NTS supposes a
good tradeoff between quality (26.78 dB) and computational
cost (5.66% of FS). The computation can be decreased by using
the DS (4.91% of FS) with only a slight reduction of the quality
(0.1 dB) but it is not so robust as the NTS, experimenting
severe quality drops in sequences like “News” and “Children”.
On the other hand, the OTS offers the lowest computational
load (3.46% of FS) but at the cost of a low robustness (0.35
dB). The TDL is not a good candidate as it has the highest
computation load (6.02% of FS) together with the lowest
average quality (26.3 dB) and robustness (0.39 dB). The
robustness of the NTS can also be observed in the six charts of
Figure 4, where the PSNR variations are small, no matter what
the sequence characteristics are. In order to visually inspect the
quality of the images obtained with each FBMA, Figure 5
shows one frame of the “Mobile” sequence obtained with SR
using three different FBMAs: NTS, DS, and OTS, and the
interpolated image from the low-resolution version. In the
bottom part of Fig. 12 an enlarged detail of the same frames
reveals the video enhancements for the numbers of the calendar
with respect to the bilinear interpolation.
These considerations make the NTS algorithm the best
candidate to potentially substitute the FS algorithm in real-time
SR application, and due to this reason, it has been selected as
the motion estimation algorithm in the implementation of the
SR algorithm detailed in the next section of this paper.

TABLE 1
AVERAGE RESULTS FOR THE SIX SEQUENCES CONSIDERED

FBMA Oper. Oper. as %
of FS

PSNR
(dB)

PSNR
Loss
(dB)

SD
PSNR
Loss
(dB)

NTS 3.25·108 5.66% 26.78 0.09 0.11
TDL 3.55·108 6.02% 26.30 0.57 0.39
DS 2.81·108 4.91% 26.68 0.19 0.24
OTS 1.98·108 3.46% 26.57 0.29 0.35

58 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013 ISSN: 1690-4524

Figure 5. Full frame (top) and detail (bottom) of the

“Mobile” super resolved sequence using four different
FBMAs.

4. IMPLEMENTATION DETAILS
The SR algorithm proposed in this work has been implemented
onto the Texas Instruments (TI) TMS320DM642 Evaluation
Video Module (EVM) hardware platform. The main device of
this platform consists on a fixed point digital signal processor
(DSP), named as DM642 in Figure 6, that works at a clock
frequency of 720 MHz. The aforementioned DSP has 64
general purpose registers and 8 functional units, performing up
to eight parallel instructions. In addition, it counts with a two-
level cache memory. The first level has 128 Kbits for the
program and 128 Kbits for general data, while the second level
has 2 Mbits for program and data. Finally, the hardware
platform also counts with some facilities for video applications
to be mapped onto it: a 32Mbytes external SDRAM memory,
capture video ports that support NTSC, PAL and SECAM
formats, and the display video port that supports RGB, HD,

"Deadline" 100 frames. MBS=16, SA=15, WIN=2

25.881 25.878

25.808

25.875
25.870

25.76

25.78

25.8

25.82

25.84

25.86

25.88

25.9

FS NTS TDL DS OTS

PS
NR

 (d
B)

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

Nu
m

be
r

of
 O

pe
ra

tio
ns

Number of operations
PSNR (dB)

"Flowers" 100 frames. MBS=16, SA=15, WIN=2

21.432 21.373

20.734

21.398 21.390

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

FS NTS TDL DS OTS

PS
NR

 (d
B)

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

N
um

be
r o

f O
pe

ra
tio

ns

Number of operations
PSNR (dB)

"News" 100 frames. MBS=4, SA=15, WIN=2

28.372

28.297

28.319

28.275

28.348

28.22

28.24

28.26

28.28

28.3

28.32

28.34

28.36

28.38

FS NTS TDL DS OTS

PS
NR

 (d
B)

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

8.0E+09

9.0E+09

Nu
m

be
r

of
 O

pe
ra

tio
ns

Number of operations
PSNR (dB)

"Mobile" 100 frames. MBS=16, SA=7, WIN=5

23.339 23.306

22.184

23.250 23.057

21.6

21.8

22

22.2

22.4

22.6

22.8

23

23.2

23.4

23.6

FS NTS TDL DS OTS

PS
NR

 (d
B)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

3.5E+09

4.0E+09

4.5E+09

Nu
m

be
r

of
 O

pe
ra

tio
ns

Number of operations
PSNR (dB)

"Children" 100 frames. MBS=4, SA=15, WIN=2

28.702

28.369

28.175

28.000

27.663

27

27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8

FS NTS TDL DS OTS

PS
NR

 (d
B

)

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

8.0E+09

9.0E+09

N
um

be
r o

f O
pe

ra
tio

ns

Number of operations
PSNR (dB)

"Foreman" 100 frames. MBS=8, SA=15, WIN=2

33.457

33.168
33.228

32.606

33.390

32

32.2

32.4

32.6

32.8

33

33.2

33.4

33.6

FS NTS TDL DS OTS

PS
N

R
(d

B)

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

8.0E+09

Nu
m

be
r

of
 O

pe
ra

tio
ns

Number of operations
PSNR (dB)

Figure 4. Quality and computational load for the set of CIF
sequences used for SR and different FBMAs

Bilinear Interpolation

SR-NTS

SR-DS SR-OTS

Bilinear Interpolation SR-NTS

SR-DS SR-OTS

59SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013ISSN: 1690-4524

PAL, NTSC and S-Video.

Figure 6. General diagram of the TMS320DM642 EVM
platform

It is important to mention that the first implementation mapped
onto this hardware platform was not fast enough in order to
achieve real-time levels of performance. Due to this reason, the
following procedures were considered:

• Compiler options: the compiler used has certain options

that may improve the processing speed, such as loop
unrolling, utilization of SIMD (Single Instruction
Multiple Data) instructions, etc.

• Loop simplification: in order to have an efficient pipeline
within the architecture, the loops in the code have to be as
simple as possible, i.e. no function calls, control flow
changes, data hazards or too much code inside the body of
the loop.

• Multiple memory accesses: the DSP used in this work
can access up to 64 bits in a single instruction, therefore it
is possible to access eight bytes at a time.

• Memory management: the most used variables have to
be placed into the internal memory, speeding up the
access to these variables.

According to these procedures, the following ‘operating points’
were obtained, being the latencies obtained for each one of
them for a 64×80 video sequence depicted in Figure 7:

• O1: First version (without any optimization).
• O2: Some inefficient parts of the code are rewritten based

on the DSP profile.
• O3: The compiler options are used in order to improve the

performance of the code.
• O4: Floating point operations removal. As the

TMS320DM642 is a fixed point DSP, floating point
operations are emulated, wasting several instructions and
cycles. It is important to note that, since the floating point
operations were replaced with fixed point ones, a quality
loss was obtained. In this sense, the performance of the
fixed-point SRA was tested again for several video
sequences, obtaining for all the cases losses not greater
than 0.01 dB.

• O5: Optimized library functions are used.
• O6: Multiple memory accesses in a cycle.
• O7: The most frequently used variables are placed into

internal memory.
• O8: Further memory access improvements.

The application of these optimizations has finally led to a DSP-
based implementation able to process YUV 4:2:0 CIF video
sequences (352×288 pixels) sampled at 20 fps.

Figure 7. Latency obtained for each of the optimizations

considered

5. CONCLUSIONS AND FURTHER RESEARCH
Super-resolution represents a promising solution for the medical
imaging field. In this sense, some recent works have proven the
usefulness of these techniques when applied to different types
of medical images. However, the super-resolution algorithms
utilized in these cases suffer from a double drawback that
prevents their use in future biomedical systems-on-chip. The
first one is their high computational cost, mainly because of the
huge number of operations involved in the motion estimation
stage. The second is their unsuitability for being implemented
into a piece of hardware, due to their iterative and complex
nature.
This paper has presented a set of strategies in order to overcome
these challenging issues. Firstly, a new non-iterative super-
resolution algorithm for video sequences has been introduced,
characterized by its good compromise between the quality of
the super-resolved video sequence and the amount of memory
needed for the super-resolution process. In order to accelerate
the execution of such algorithm, a study about the use of fast
motion estimation algorithms has been also presented in this
paper. The results obtained have revealed that the The New
Three Step Search (NTS) algorithm is able to reduce the
number of operations needed with respect to a generic
exhaustive search algorithm in a 94% with negligible losses in
the final video sequence quality. Finally, this super-resolution
algorithm has been implemented onto a DSP-based platform.
Starting from an initial implementation, the introduction of a set
of simple tricks, mainly related with compiler options and the
use of cache memories, has allowed to process CIF video
sequences sampled at 20 frames per second or, alternatively,
128×160 video sequences sampled at 140 frames per second,
assuring the viability of the proposals introduced in this paper.
In order to explore the goodness of the proposed super-
resolution algorithms, it has been applied over a set of medical
images, following the setup shown in Figure 8. The result
obtained by using the bilinear interpolation for an upscale factor
of 5 is shown in Figure 9(a), while the super-resolved image for
this scale factor is shown in Figure 9(b). As it can be observed
from these figures, the results obtained by using the super-
resolution algorithm introduced in this paper are significantly
better than the ones provided by interpolation, especially for
large scale factors, as it is the case of the results shown in
Figure 9. These encouraging visual proofs, together with its

60 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013 ISSN: 1690-4524

aforementioned characteristics in terms of speed and ease of
integration, definitely point out the proposed super-resolution
technique as a potential candidate for real-time image and video
enhancement in future biomedical systems-on-chip.

Figure 8. Setup for super-resolving medical images.

(a)

(b)

Figure 9. Comparison of the results obtained with bilinear
interpolation and the proposed super-resolution algorithm

ACKNOWLEDGMENT

The authors would like to thank Prof. Kamran Eshraghian for
his encouraging support during this work.

REFERENCES
[1] H. Greenspan, G. Oz, N. Kiryati and S. Peled, “Super-

resolution in MRI”, Proceedings of the IEEE

International Symposium on Biomedical Imaging, 2002,
pp. 943-946.

[2] J.A. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom, and
H. Azhari, “Super-resolution in PET imaging”, IEEE
Transactions on Medical Imaging, vol. 25, no. 2, 2006,
pp. 137-147.

[3] B. Huang, W. Wang, M. Bates and X. Zhuang, “Three-
Dimensional Super-Resolution Imaging by Stochastic
Optical Reconstruction Microscopy”, Science, vol. 319.
no. 5864, 2008, pp. 810 – 813.

[4] Gustavo M. Callicó, Rafael P. Llopis, Antonio Núñez,
Ramanathan Sethuraman, Marc Op de Beeck. “A Low-
Cost Implementation of Super-Resolution based on a
Video Encoder,” IEEE IECON Conference, vol. 2, 2002,
pp. 1439-1444.

[5] Gustavo M. Callicó, Rafael P. Llopis, Antonio Núñez,
Ramanathan Sethuraman. “Low-Cost and Real-Time
Super-Resolution over a Video Encoder IP,” IEEE
ISQED Conference, 2003, pp. 79-84.

[6] Gustavo M. Callicó, Rafael P. Llopis, Antonio Núñez,
Ramanathan Sethuraman, “Mapping of Real-Time and
Low-Cost Super-Resolution Algorithms on a Hybrid Video
Encoder”, SPIE Microtechnologies for the New
Millenium, vol. 5117, 2003, pp. 42-52.

[7] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro,
“Motion-compensated interframe coding for video
conferencing,” Proceedings of the National
Telecommunications Conference (NTC), 1981.

[8] R. Li, B. Zeng, and M. L. Liou, “A new three-step search
algorithm for block motion estimation,” IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 4, no.4, 1994, pp. 438-442.

[9] L. Po and W. Ma, “A novel four-step search algorithm for
fast block motion estimation,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, no.
3, 1996, pp. 313–317.

[10] J.R. Jain and A.K. Jain, “Displacement measurement and
its application in interframe image coding,” IEEE
Transactions on Communications, vol. 29, no. 12, 1981,
pp. 1799-1808.

[11] M. Ghanbari, “The cross-search algorithm for motion
estimation,” IEEE Transactions on Communications,
vol. 38, no. 7, 1990, pp.950–953.

[12] S. Zhu and K.K. Ma, “A new diamond search algorithm
for fast block matching motion estimation,” IEEE
Transactions on Image Processing, vol. 9, no. 2, 2000,
pp. 287–290.

[13] L.-K. Liu and E. Feig, “A block-based gradient descent
search algorithm for block motion estimation in video
coding,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 6, no. 4, 1996, pp. 419–422.

[14] R. Srinivasan and K. Rao, “Predictive coding based on
efficient motion estimation,” IEEE Transactions on
Communications, vol. 33, no. 8, 1985, pp. 888–896.

[15] E. Chan, A. Rodriguez, R. Gandhi and S. Panchanathan,
“Experiments on block matching techniques for video
coding,” Multimedia Systems, vol. 24, 1994, pp. 228-241.

61SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013ISSN: 1690-4524

	9S793SV

