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ABSTRACT 

 

In dynamical systems, the information flows converge or 

diverges in state space and is integrated or communicated 

between different cells assemblies termed as CFC. This process 

allows different oscillatory systems to communicate in accurate 

time, control and distribute the information flows in cell 

assemblies. The CF interactions allow the oscillatory rhythms to 

communicate in accurate time, and reintegrate the separated 

information. The intrinsic brain dynamics in 

Electroencephalography (EEG) with eye - closed (EC) and eye 

open (EO) during resting states have been investigated to see the 

changes in brain complexity i.e. simple visual processing which 

are associated with increase in global dimension complexity. In 

order to study these changes in EEG, we have computed the 

coupling to see the inhibitory interneurons response and inter-

regions functional connectivity differences between the eye 

conditions. We have investigated the fluctuations in EEG 

activities in low (delta, theta) and high (alpha) frequency brain 

oscillations. Coupling strength was estimated using Dynamic 

Bayesian inference approach which can effectively detect the 

phase connectivity subject to the noise within a network of time 

varying coupled phase oscillators. Using this approach, we have 

seen that delta-alpha and theta-alpha CFC are more dominant in 

resting state EEG and applicable to multivariate network 

oscillator. It shows that alpha phase was dominated by low 

frequency oscillations i.e. delta and theta. These different CFC 

help us to investigate complex neuronal brain dynamics at large 

scale networks. We observed the local interactions at high 

frequencies and global interactions at low frequencies. The alpha 

oscillations are generated from both posterior and anterior 

origins whereas the delta oscillations found at posterior regions. 

 

Keywords: Electroencephalography (EEG) during resting state, 

Cross Frequency Coupling, Dynamic Bayesian Inference, 
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1. INTRODUCTION 

 

dynamics in EEG over different frequencies bands. [2] reported 

different cross frequencies coupling relations such as amplitude 

to amplitude, phase to phase and phase to amplitude at different 

frequencies. [3] observed that oscillatory activates in human and 

animals modulated in various frequency bands and found that 

fast gamma oscillation (30-150 Hz) is modulated by the slow 

theta oscillation (5-8 Hz). The intracranial electrical recordings 

measured in human such as EEG, EMG are reflected by the 

oscillatory electrophysiological signals. The theta and beta both 

bands are modulated during memory and perception tasks. [4] 

reported that during neuronal delta phase (1-4 Hz) have 

modulated the theta amplitude (4-10 Hz) and theta phase has 

modulated gamma (30-50 Hz) amplitude thereby controlling the 

baseline excitability through oscillatory hierarchy resulting 

stimulus related response in the neuronal ensemble. These 

studies have been reported in monkeys that theta phase and 

gamma power interactions are found in auditory cortex during 

both stimulus driven activity and auditory cortex. A theta- 

gamma interaction in continuous word recognition memory task 

in human medical temporal lobe was observed by [5]. A robust 

high and low frequency bands coupling in the human brain 

ongoing electrical activity was observed by [6] which 

disseminate the activity in cortical area showing effective 

mechanism for communication during cognitive process in 

human. The studies also reveal that cross – frequency coupling 

where the frequency band of one oscillation modulates the 

activity in different frequency bands are ampler in animal than 

in human. [7] [8][9] reported that spike timing of single neuron 

and firing rate can be modulated by theta rhythm and 

intracortical local field potential by the gamma power as 

reported by [4] [7] [10]. Moreover [11] [12] [13] observed the 

changes in theta powers during task related activities in the 

human. [14] have detected the cross-frequency coupling at 

frequencies up to 40 Hz at scalp. [1] also reported that classical 

power spectral analysis based on Fast Fourier Transform (FFT) 

or different time- frequency transforms (e.g. Hilbert, Wavelet, or 

Gabor transform) unable to identify the relationships among 

different frequencies or frequency component as merely because 

these techniques are based on amplitude modulation with a set 
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of defined frequencies across time whereas complex 

transformation in the complex signals like EEG, EMG 

containing different frequency components interacting with each 

other require a corresponding complex transformation of the 

signal to provide information about the phase changes. Thus 

cross-frequency coupling (CFC) technique is hypothesized 

between different frequency bands which serves as local as well 

as global interaction among the processes and related directly to 

the integrated distributed information.  

 

Cross-frequency coupling (CFC) can be investigated using 

different approaches i.e. using PSI for phase-amplitude coupling 

as described by [18] and correlation coefficients between 

different frequency components i.e. phase-phase CFC (or n:m 

phase synchronization) as described by [15] [17] [20]. [20] used 

first time the n:m phase synchronization technique based on 

phase synchronization of chaotic oscillator to evaluate the 

temporal evolution of the coordinated peripheral tremor activity 

affected directly by the time course of strength of 

synchronization in neural network involving cortical motor 

areas.  

 

To observe the evolution of natural processes in time and space 

scientists have used the systematic observations to analyze the 

nature. The physiological systems are highly complex in nature. 

The complexity of physiological and behavioral control systems 

decreases with aging and disease. Thus, loss of complexity 

(require analysis from methods of nonlinear dynamics) is due to 

the loss or impairments of functional components and or altered 

non-linear coupling functions (require time-frequency 

coherence and cross frequency coupling methods). Hussain et al 

used complexity based methods [53] [54] [55] [63] to investigate 

the dynamics of nonlinear dynamics of physiological time series. 

They observed that structural components loss with respect to 

pathological conditions. Rathore [57] [58] [59] extracted 

geometric and hybrid features to detect and investigate the 

dynamics of Colon Cancer. Hussain et al used Machine learning 

[61] [62] for heart rate variability classification and face 

detection, neural networks [64] for emotion recognition, [60] 

support vector machine for load forecasting and [57] time-

frequency spatial wavelet phase coherence to investigate the 

dynamics in EEG during resting state. Typically, every one 

aimed to generate models based on collected data over specified 

time interval and its dependency that how the faster processes be 

whether seconds or milliseconds. To analyze the data, different 

methods of data analysis be employed as suggested by [20] [22] 

[23] [24] [32] depending on the characteristic of data may be for 

example Bayesian methods, particle filters, Kalan filters, 

maximum likelihood estimators etc. The Bayesian methods are 

preferably used to detect the dynamics in the systems not 

isolated but may be influenced by environment and other weekly 

coupled processes [25] [27]. Recently, [20] [28] used the 

Bayesian method to identify the time-varying dynamics even in 

presence of noise because of its ability to detect the dynamics in 

presence of noise and follow the time evolution of the 

parameters. The dynamical Bayesian inference method can be 

applied to various types of dynamical systems including coupled 

oscillatory dynamical systems e.g. neuronal systems or cardio-

respiratory [1] [19] [29] which are time varying dynamical 

systems subject to external noise.  The method can also be 

applied for detecting causal interactions, directionality of 

influence [1] [30] [31], synchronization and coherence [15] [21] 

[33] [34] and coupling functions [23] [32] [35]. We here aimed 

to detect the cross-frequency coupling and coherence between 

Eye-closed and open subjects during resting states at 19 

electrodes according to 10-20 international system. Dynamical 

Bayesian inference method) already used by [36] to investigate 

the cardiorespiratory coupling functions affected by aging. 

 

 

2. METHODS 

 

Coupling Function  

To understand the interaction between two unidirectional 

coupled oscillators, consider an example of two coupled 

oscillators [35] with phases φ1, φ2. 

 

φ̇1 = ω1 +f1(φ1, φ2) + 𝜉1  

φ̇2 = ω2 + f2(φ1 , φ2)  + 𝜉2    (1) 

Where  ω1,2 are the autonomous, natural frequencies of first and 

second oscillators and f2 is a coupling function added to the 

frequency of second oscillator. This coupling function will 

influence the natural frequency of second oscillator depending 

on its magnitude values either accelerating or decelerating the 

second oscillator. The physics literature reveals this coupling as 

interaction between oscillators whereas the biology literature 

describes it as correlation between them e.g. due to phase 

locking (Pikovsky et al., 1997).  

 

Using Hilbert transform, we obtained protophases ϑ are 

transformed to true phases φ [37] which grows uniformly in 

time.  We aimed to check the functional influence of delta-alpha, 

alpha-gamma and theta-gamma waves for each case i.e. which 

wave influence and dominate the other wave. The delta waves 

are deep sleep in adult and waking in young adults and gamma 

waves are associated with attention, memory and sensory 

processing. Keeping the property of phase-dynamics [21[35] we 

can build the system of stochastic differential equation.  

 

φ̇α = ωα + fα(φδ, φα) + ξα                                       

φ̇γ = ωγ + fγ(φα, φγ) + ξγ                                      

φ̇γ = ωγ + fγ(φθ, φγ) + ξγ                                (2) 

 

Where ωα,γ are the frequencies of oscillators, fα,γ, coupling 

functions, φδ,α,θ,γ represents the corresponding angles and ξα,γ 

represents the stochastic part modelled as white and Gaussian 

noise where the natural frequency is affected by the coupling 

influence of each corresponding oscillator. 

The differential equation 2) can be decomposed into Fourier 

components as [47]. 

 

φ̇i = ∑ ck
(i)

 φi,k( 

K

k=−K

φi, φj) + √Nξi                               (3) 

 

Dynamical Bayesian Inference 

 

The cross-frequency coupling from phase oscillators is to be 

inferred from Bayesian approach [20, 21]. Consider a time 

series 𝑋 = {𝑥𝑚 = 𝑥(𝑡𝑚)} (𝑡𝑚 = 𝑚ℎ), where m=1,2,3,…..,M. 

from which phase dynamics are extracted (Luchinsky  et a., 

2008; 73]. Using Dynamic Bayesian inference, we aimed to 

compute a set of model parameters 𝑀 = {𝑐𝑘
(𝑖)

, 𝑁𝑟,𝑠} where 𝑐𝑘
(𝑖)

 

denote the coupling and 𝑁𝑟,𝑠 denote the noise matrix. Thus using 

Bayes’ theorem, we can infer the unknown model parameter M 

from X by calculating posterior density 𝑝𝑋(𝑀|𝑋), given a prior 

density 𝑝𝑝𝑟𝑖𝑜𝑟(𝑀) that encompass the previous knowledge of 

unknown parameters based on observations and likelihood 

10                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 15 - NUMBER 4 - YEAR 2017                             ISSN: 1690-4524



function 𝑙(𝑋|𝑀) i.e. the conditional probability density to 

observe X given choice of unknown dynamical model M: 

 

𝑝𝑋(𝑀|𝑋) =
𝑙(𝑋|𝑀)  𝑝𝑝𝑟𝑖𝑜𝑟(𝑀)

∫ 𝑙(𝑋|𝑀)  𝑝𝑝𝑟𝑖𝑜𝑟(𝑀)𝑑𝑀
                                (4) 

 

For high sampling frequency, i.e. small sampling step h, the 

phase dynamics in eq. 1can be well approximated using Euler 

midpoint discretization as: 

 

 𝜑𝑖,𝑚
∗ = (𝜑𝑖,𝑚 + 𝜑𝑖,𝑚+1)/2 𝑎𝑛𝑑 𝜑.,𝑚

∗ = (𝜑𝑖,𝑚+1 − 𝜑𝑖,𝑚)/ℎ. 

𝜑𝑖,𝑚+1 = 𝜑𝑖,𝑚 + ℎ Ψ(𝜑𝑖,,𝑚
∗ , 𝜑𝑗,𝑚

∗ |𝑐 )

+ ℎ√𝑁 𝑧𝑚                         (5) 

Where 𝑧𝑚 is the stochastic integral of the noise term over time 

i.e. 

 

𝑧𝑚 ≡ ∫ 𝑍(𝑡)𝑑𝑡 = √ℎ 𝐻 ξ𝑚

𝑡𝑚+1

𝑡𝑚

 

 

Here H is the Cholesky decomposition of noise matrix N and ξ𝑚 

is normally distributed random variable vector.  The joint 

probability density of 𝑧𝑚 is employed to compute the joint 

probability density of process in respect of 𝜑𝑖(𝑚 + 1) − 𝜑𝑖(𝑚)  

by imposing 𝑃[𝜑𝑖(𝑚 + 1)] = det (𝐽ξ
𝜑

) 𝑃(ξ), where 𝐽ξ
𝜑

is the 

Jacobin term of transformed variables calculated from base 

function 𝜑𝑖,𝑘.  

 

Thus, the negative log-likelihood function 𝑆 =
− ln(𝑋|𝑀) 𝑖𝑠 𝑡ℎ𝑒𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠 𝑎𝑠: 

𝑆 =
𝑀

2
ln |𝑁| + 

ℎ

2
∑ 𝑐𝑘

𝜕Ψ𝑘(𝜑. , 𝑚)

𝜕𝜑

𝑀−1

𝑚=0

+ [�̇�𝑚

− 𝑐𝑘Ψ𝑘(𝜑.,𝑚
∗ )]𝑇(𝑁−1)[�̇�𝑚

− 𝑐𝑘Ψ𝑘(𝜑.,𝑚
∗ )])       (6) 

 

By considering prior probability of parameter M as multivariate 

normal distribution, and considering the quadratic form of log-

likelihood (6), thus posterior probability will also be multivariate 

normal distribution.  Thus, parameter c with particular 

distribution with mean 𝑐 and covariance matrix∑ ≡𝑝𝑟𝑖𝑜𝑟 ∈𝑝r𝑖𝑜𝑟
−1 , 

the stationary point S can be recursively computed using the 

below equations: 

𝑁

=
ℎ

𝑀
(�̇�𝑚

− 𝑐𝑘Ψ𝑘(𝜑.,𝑚
∗ )

𝑇
(�̇�𝑚

− 𝑐𝑘Ψ𝑘(𝜑.,𝑚
∗ )),                                                              

 𝑟𝑤 = (∈𝑝𝑟𝑖𝑜𝑟)𝑘𝑤𝑐𝑤 + ℎΨ𝑘(𝜑.,𝑚
∗ )(𝑁−1)�̇�𝑚 −

ℎ

2

𝜕Ψ𝑘(𝜑.,𝑚)

𝜕𝜑
, 

 ∈𝑘𝑛= (∈𝑝𝑟𝑖𝑜𝑟)𝑘𝑤 + ℎ Ψ𝑘(𝜑.,𝑚
∗ )(𝑁−1)Ψ𝑤(𝜑.,𝑚

∗ ), 

 𝑐𝑘 = (∈−1)𝑘𝑤 𝑟𝑤                              (7) 

 

Quantification of Coupling 

 

From Dynamic Bayesian inference, from inferred parameter c 

can be used to quantify certain characteristics of coupling 

function either by computing quantitative measures or 

comparing different coupling mechanisms 

 

 Coupling Strength 

 

For evaluating phase-phase cross frequency coupling, one need 

to determine the coupling strength inferred from parameter c 

estimated using Bayesian dynamics inference. This coupling 

strength corresponds to the coupling amplitude extracted from 

phase dynamics of the time series. Here we aim to compute the 

cross-frequency coupling of delta-alpha, alpha-gamma, theta-

gamma frequency bands from 16 subjects of EEG with eye 

closed and eye open during resting states for selected frontal 

electrodes Fp1 and Fp2.  Mathematically, the coupling strength 

is computed using the Euclidean norm of inferred parameters 

that corresponds to Fourier components of the coupling to 

oscillator 𝜑𝑖 from combination of oscillators 𝜌 i.e.  

||𝑓𝑖:𝜌|| = √∑ (𝑐𝑘
(𝑖:𝜌)

)
2

𝑘

                      (8) 

For one oscillator, there are 2×𝐾 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 and its coupling 

strength is indexed into 𝑐′ part out of 𝑐(𝑖) 𝑣𝑒𝑐𝑡𝑜𝑟, similarly two 

oscillators are composed of 22×𝐾2 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 and coupling 

strength is indexed into 𝑐′′(𝑖) part of vector and accordingly same 

happen for more than two oscillators 

 

3. RESULTS 

 

The phase synchronization (phase-phase CFC or amplitude – 

amplitude CFC) plays vital role in the functioning of brain in 

different ways. The regulations in the inter-area communication 

was extensively studied by [39] [40] [41] [42] [43] where cross 

location and same frequency phases are coupled between 

different brain areas. Likewise, same location and cross 

frequency coupling can be served as potential mechanism in 

regulating communication in different spatio-temporal scales. 

The phase-phase CFC were also investigated by [44] [45] that 

serves as physiological mechanism to link the activities 

occurring significantly at different rates e.g. in NREM sleep, the 

firing rate patterns correlations are observed during learning 

with a rate of six to seven times faster. [8] investigated that 

different frequencies interactions provide means to understand 

the complex neural dynamics in the frequency specific neural 

networks. The processes in the brain could be efficiently 

integrated with neuronal cell assemblies that are oscillating with 

different frequency synchronously. These phenomena can 

provide enhanced combinational opportunities to store the 

complex temporal patterns and to optimize the synaptic weights 

used in conjunction with relevant algorithms. [6] investigated 

that cross - frequency coupling in the present research plays a 

vital role in cognitive learning, neuronal computation and 

communication.  

 

We have computed phase-phase CFC in lower and higher 

frequency bands for 19 electrodes. Figure 1 to 2 depict the CFC 

using lower frequency CFCs delta-alpha, delta-beta, theta- alpha 

and higher CFCs theta-beta, theta-gamma and alpha-gamma. 

The strongest CFC was observed between and within delta and 

alpha, delta and theta frequencies using both temporal and 

spatial scales. These different CFCs show that there are different 

neuronal interactions at work. In EC delta-alpha the highest 

coupling was obtained at C4 electrode, delta-alpha the strongest 

coupling was found in central regions i.e. C3, C4 and Cz and 

right parietal P8. Similarly, in delta-theta the strongest coupling 

was found at frontal Fp1 and Fp2 probes. Moreover, in theta-

beta CFC during EC coupling was found stronger in parietal P7 

and Pz and left temporal T7. In theta-gamma coupling during EC 

it was found stronger in Fp1 and O2 whereas in alpha-gamma it 

was found stronger in occipital are O1 and O2 during EC.  
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Likewise, during EO delta-alpha coupling was found stronger in 

Cz, in delta-theta CFC, it was found stronger in frontal probes 

such as F3, F4, Fz, F7 and F8 and right temporal probe T8. In 

theta-alpha coupling was found higher in O1, while in theta-beta 

it was found stronger in Fz and F8 whereas in theta-gamma this 

coupling was highest in T8 and O2 and in alpha-gamma the 

highest coupling was found in T7, T8 and O2. 

 

The significance map in Figure 1 to 2 denotes the statistically 

significance p-values computed using paired t-test. The strongest 

significance was found in delta-alpha and theta-alpha CFC in 

most of the electrodes in each 19 chosen electrodes. In delta-

alpha CFC the very significant results are obtained at electrode 

Cz, the electrodes F3, F7, Fp1, Fz, O1 and O2 also exhibit just 

significant results while other electrodes show no significant 

results. Thus, left frontal and occipital shows the significant 

results with EO>EC and central Cz also shows the highest 

significance. In theta-alpha CFC the statistically very significant 

results are obtained at electrodes F4 and T8 while the electrodes 

F3, F7, Fp1, O1, P4, Pz and P7 also showed only significant 

results (p<0.05). The electrodes C4, O2 and P8 show almost 

significant results.  Thus, the left frontal, occipital, parietal 

regions and right frontal F4, temporal T8 and parietal P4 regions 

shows the significant results in theta-alpha CFC. 

 

 

 
 

 
Figure 1: Delta-Alpha CFC EC, EO and Significance using 

paired test 

 

 

 
Figure 2: Theta-Alpha CFC EC, EO and Significance using 

paired test 

. 

 

4. DISCUSSION AND CONCLUSION 

 

In this study, we computed different discussed in below section: 

 

Delta/theta-alpha CFC 

 

Isleretal (2008) investigated the widespread CF phase 
coupling of delta-theta and delta-alpha rhythms where the delta 

oscillations phases are coupled to the localized theta and alpha 

oscillations in different regions central, posterior, right parietal 

regions etc.  [1] in his study found that there exists delta-alpha 

(phase-phase and phase-amplitude) CFC in EEG resting state 

data. The coupling was seen within the parieto-occipital and 

frontal regions and these regions are connected via large scale 

couplings networks which show that there is a mechanism of 

direct communication in these regions in different cell 

assemblies. This coupling was found asymmetric from posterior-

occipital to frontal regions especially during EC condition while 

during EO condition during rest this delta-alpha coupling can be 

found inverse. 

 

Theta/Alpha-Gamma CFC 

 
There are many theories that are describing the interplay 

between different frequency bands. They slow oscillations such 

as theta or alpha due to low frequency are considered to serve 
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the network over long distances while the fast oscillations such 

as gamma due to high frequency are considered to synchronize 

the cell assemblies over short spatial scales [3]. [6] studied the 

theta/alpha-gamma and observed that phase-amplitude CFC 

vary across brain areas in different manners such as task-relevant 

manner and quickly changes in response to motor, sensory and 

cognitive events and also linked by the learning tasks 

performance.  Moreover, this CFC was observed as distinct in 

brain rhythms, however it varies across function of task demands 

and cortical areas. For example, during auditory tasks, the theta-

gamma CFC was higher than alpha-gamma at the anterior sites 

and equal across cortex, however, posterior alpha-gamma was 

observed greater than the anterior alpha-gamma CFC. Likewise, 

in visual tasks the alpha-gamma CFC was observed at posterior 

electrodes and found greater than theta-gamma CFC.  Moreover, 

the theta-alpha phase detection coupling was recently studied in 

the frequency ranges (4-13 Hz) by [46] [47] [48]. 

 

At delta-alpha to alpha and theta-alpha to alpha CFC, the 

Coupling in EC condition is stronger in most cases than in EO 

condition and only few connections which are found stronger in 

EO than in EC. In delta-alpha to alpha CFC, stronger connection 

in EC are centro-occipital, temporo-central few parietal and 

frontal; in theta-alpha few stronger connections are found such 

as frontal, fronto-central, fronto-occipital, fronto-parietal, 

occipito-central. [1] also investigated CFC and found that in 

delta-alpha CFC showed large scale connections going from 

anterior to posterior where delta modulate alpha and using cross 

Bispectrum (cBIS) an inverse CFC modulation alpha to delta 

was observed. Where different delta-alpha or alpha-delta CFC 

directions are dependent upon the location of generation of delta 

and alpha generator.  Previous studies [50, 51, 52] also revealed 

that alpha oscillations have posterior and anterior origins 

whereas delta oscillations have an anterior origin. Using both 

coupling directions and frequency generation origins, one might 

be able to investigate different types of CFC at a larger scale 

particularly when alpha oscillations are involved.  Using 

coupling we also observed large scale coupling with alpha 

oscillation dominant from posterior to anterior direction which 

shows the influence of alpha frequency generator on other brain 

origins. This coupling was found large during EC may be due to 

inhibition as reported in the literature [49]. 
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