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ABSTRACT 

 

Short-range wind speed predictions for subtropical region is 

performed by applying Artificial Neural Network (ANN) 

technique to the hourly time series representative of the site. To 

train the ANN and validate the technique, data for one year are 

collected by one tower, with anemometers installed at heights of 

101.8, 81.8, 25.7, and 10.0 m. Different ANN configurations to 

Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), 

Gated Recurrent Unit (GRU), and Long Short-Term Memory 

(LSTM), a deep learning algorithm based method, are applied for 

each site and height. A quantitative analysis is conducted and the 

statistical results are evaluated to select the configuration that best 

predicts the real data. These methods have lower computational 

costs than other techniques, such as numerical modelling. The 

proposed method is an important scientific contribution for 

reliable large-scale wind power forecasting and integration into 

existing grid systems in Uruguay. The best results of the short-

term wind speed forecasting was for MLP, which performed the 

forecasts using a hybrid method based on recursive inference, 

followed by LSTM, at all the anemometer heights tested, 

suggesting that this method is a powerful tool that can help the 

Administración Nacional de Usinas y Transmissiones Eléctricas 

manage the national energy supply. 

 

Keywords: Artificial Neural Networks, Computational 

Intelligence, Computational Modelling, Computer Science, Wind 

Energy and Wind Speed Forecasting. 

 

 

1.  INTRODUCTION 

 

The integrity of natural systems is already a risk because of 

climate change caused by the intense emissions of greenhouse 

gases in the atmosphere. Currently, environmental pollution is a 

global issue that is receiving considerable attention, and 

alternative renewable resources to reduce pollution must be 

developed [1]. As a burgeoning type of renewable energy, wind 

energy has developed rapidly in the past decade [2,3]. [4] reported 

that wind power has the largest market share among renewable 

energy sources and is expected to maintain its rapid growth in the 

coming years. The country of Uruguay, which is in Latin 

America, surprisingly obtains 94% of its electricity from 

renewable sources [5]. Among the countries of the world, 

Uruguay ranks 4th in the generation of wind energy, according to 

the Renewables 2017 Global Status Report [6]. Wind speed 

forecasting is fundamental in the planning, controlling, and 

monitoring of intelligent wind power systems. However, owing 

to the stochastic and intermittent nature of wind, it is difficult to 

make satisfactory predictions [7]. Accurate short-term wind speed 

forecasting (1 to 12 h ahead) plays a substantial role in addressing 

this challenge. A correct forecast of the wind speed can reduce 

the risk of wind energy breaking in hybrid energy systems.  

 

Regarding wind energy, the variability of the wind direction and 

speed throughout the day makes it difficult to decide whether to 

drive wind turbines, because in practice, wind exhibits temporal 

variations of several orders of magnitude, e.g. annual variations 

(owing to climatic changes), seasonal variations, daily variations 

(owing to the local microclimate), hourly variations (owing to 

land and sea breezes), and short-duration variations (bursts). 

Computational methods have been used to evaluate the wind 

behaviour and thus obtain valuable information for the electro-

energy sector in several parts of the world and computational 

models can be useful for the identification of locations with high 

wind potential and, when used operationally in daily integrations, 

short-term energy generation forecasting [8]. The use of wind 

power generation for fuelling society and industries is very 

challenging for current power system operations. One reason for 

this is that wind power is an intermittent energy source with a 

high degree of randomness and instability [9]. ANN are among 

the most important soft computing methods, widely used for a 

great range of applications spanning across various scientific 

fields.  

 

In [22], the short-term wind speed forecasting for Colonia 

Eulacio, Soriano Department, Uruguay, is performed by applying 

ANN technique to the hourly time series representative of the site. 
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The authors adopted a computational-intelligence model using a 

multilayer perceptron ANN with Levenberg–Marquardt 

Backpropagation. A multilayer perceptron is a class of 

feedforward artificial neural network. The ANN was trained to 

perform the forecasting of 1 hour ahead and then, using it, the 

trained network was applied to recursively infer the forecasting 

for the next hours of the wind speed. The results of the short-term 

wind speed forecasting showed good accuracy at all the 

anemometer heights tested, suggesting that the method is a 

powerful tool that can help the Administración Nacional de 

Usinas y Trasmisiones Eléctricas (UTE) manage the activities of 

generation, transmission, distribution and commercialization of 

electrical energy. 

 

[25] show the estimate short-term wind speed forecasting 6 hours 

ahead (nowcasting) applying computational intelligence, by 

RNN, using anemometers data collected by an anemometric 

tower at a height of 100.0 m in Brazil (tropical region), and 101.8 

m in Uruguay (subtropical region), both Latin American 

countries. The results of this study are compared with wind speed 

prediction results from the literature. In one of the cases 

investigated, this study proved to be more appropriate when 

analyzing evaluation metrics (error, and regression) of the 

prediction results obtained by the proposed model. 

 

In [26], the short-range wind speed forecasting in the tropical 

region of Mucuri, Bahia, Brazil, applying the Artificial Neural 

Network (ANN) technique to the hourly time series 

representative of the site is presented. To perform the training, 

and validation of this technique, one month of data were collected 

in a tower with anemometers installed at heights of 100, 120, and 

150 m. Different ANN configurations were applied to this site, 

and heights with aimed to define the most efficient ANN 

configuration, all of Multilayer Perceptrons with Levenberg-

Marquardt Backpropagation training algorithm, to predict the 

wind speed for 1 hour ahead, and then apply it for 3, and 6 hours 

ahead. The mean R2 and Pearson’s r for wind speed forecasting 

for 1 hour ahead was 0.890, and 0.943, respectively. The 

statistical results showed that the application of the ANN 

technique to predict the wind speed at Bahia’s site, and at higher 

heights presented good accuracy, attesting its ability to be used as 

a powerful tool in order to help the Brazil's National Electric 

System Operator (ONS) to improve the usage and integration of 

the wind energy into the national electrical grid. 

 

[27] study the short-term wind speed forecasting in the tropical 

region of Mucuri, Bahia, Brazil, applying supervised machine 

learning algorithm by Multilayer Perceptron Neural Network, 

Recurrent Neural Network technique and Wavelet Packet 

Decomposition to the hourly time series representative of the site 

is presented. To train the Artificial Neural Network (ANN) and 

validate the technique, data for one month were collected by an 

anemometric tower at a height of 100.0 m. Different Wavelet 

families and different ANN configurations were applied for this 

site and height. Based on the outcomes of the study cases and 

results, it can be concluded that the proposed method (RNN + 

Meyer Wavelet level 3) performed the best results in the short-

term forecasting horizon. 

 

Therefore, the objective of this study was to identify the most 

efficient ANN configurations applying fully-connected RNN, 

GRU, and LSTM with Adam optimizer training algorithm for 

wind speed forecasting 1 hour ahead, and do a comparison with 

ANN MLP researched and developed in [22]. The Adam 

optimization algorithm is an extension to Stochastic Gradient 

Descent (SGD) that has recently seen broader adoption for deep 

learning applications in computer vision and natural language 

processing [23]. The algorithm was also applied for 3, 6, 9, and 

12 h forecasts by using observational data collected from one 

tower, which was located in Colonia Eulacio, Soriano 

Department, Uruguay, as a reference. Anemometers were 

installed at heights of 101.8, 81.8, 25.7, and 10.0 m, during the 

period between August 08, 2014 and August 07, 2015.  

 

In the literature, there are no published short-term forecasts of the 

wind speed for 1, 3, 6, 9, and 12 h at four different anemometric 

heights in subtropical regions (south temperate zone), such as 

Uruguay, using and comparing the results of MLP [22], RNN, 

GRU, and LSTM. Therefore, this study is a novel investigation 

related to the operation of wind power plants for Colonia Eulacio 

in Soriano Department. The main contributions of the study are as 

follows: i) Another innovative aspect of this work is that it uses 

an approach to train the model for the next hour forecasting, then 

recursively inferring the forecasting for the following hours, in 

addition to applying this artificial intelligence method targeting 

short-range wind speed forecasting for this height using RNN, 

LSTM, and GRU. ii) The proposed models elucidate the 

behaviour of the wind speed and allows accurate wind speed 

prediction at different anemometric heights, e.g. 101.8, 81.8, 

25.7, and 10.0 m. The model can be used to identify optimal 

locations of wind turbines and forecast irregular wind energy, for 

different anemometric heights. Short-term wind energy 

forecasting can be improved using this model to enhance the wind 

power quality 12 h ahead. iii) No previous studies applied ANN, 

as RNN, LSTM, GRU, and did a comparison with a classical type 

of neural network (MLP) for short-term wind speed forecasting 

for such heights in Uruguay, which is a humid subtropical climate 

region. Therefore, the results constitute a significant contribution 

to the scientific community. iv) The short-term wind speed 

forecasting model is an important contribution for reliable large-

scale wind power forecasting and integration in Uruguay.  

 

This work is organised as follows: Section 2 presents the 

methodology, Section 3 presents the numerical results and 

discussions, and Section 4 presents the conclusions. 

 

 

2. METHODOLOGY 

 

Regarding the computational procedure, was adopted an 

artificial-intelligence model using a Multilayer Perceptron, 

Fully-connected Recurrent Neural Network,  Gated Recurrent 

Unit and Long Short-Term Memory ANN with Levenberg–

Marquardt Backpropagation to MLP and Adam optimizer [23] to 

RNN, GRU, and LSTM and a training algorithm for short-term 

wind speed forecasting (1, 3, 6, 9, and 12 h) in Colonia Eulacio, 

Soriano Department, Uruguay. The mean wind diurnal cycle in 

different seasons for this location was described by de [10], 

whose analysis employed the same data used in the present study. 

ANN models are implemented through layers of interconnected 

nodes, which are called neurons, and the definition of the number 

of layers is variable, depending on the characteristics of the 

problem. At least three layers are required: an input layer, a 

hidden layer, and an output layer [11]. 

 

Validation employs a set of data used to calculate the error during 

training, for monitoring the fit level of the ANN to the training 

data. Generalisation is the ability of the network to respond 

correctly to conditions never experienced before, that is, the 

testing dataset. According to [12], there are different possibilities 
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for structuring an ANN, because it is necessary to select the type 

of neuron, the number of input parameters, the number of hidden 

layers, the type of training, and the architecture configurations. 

To develop an ANN model, a set of input parameters and a set of 

output parameters are necessary. These sets are subdivided for use 

in two different steps: network training and validation of the 

produced estimates. The correct selection of the predictors is 

fundamental for a satisfactory performance of the model [13].  

 

The advancement of wind energy technology has allowed for the 

installation of turbines at high altitudes; thus, knowledge of the 

wind potential at these heights is required. To validate the 

estimates and increase the number of wind farms installed in 

Soriano Department, anemometric towers with a height of 100.8 

m were installed at locations with promising winds in Colonia 

Eulacio, which is the region considered in this study (Figure 1). 

 

 
Figure 1. Location of the Colonia Eulacio Tower in Soriano 

Department, Uruguay [22]. 

 

As previously mentioned, the measuring station used for this 

study is located in the southwestern region of Uruguay (Colonia 

Eulacio, Soriano Department) and is composed of a triangular 

tower 100.8 m in height and 0.45 m wide. According to Datum 

WGS84, it is located at 33o 16 'S, 57o 31 'W [10]. The altitude of 

the installation location is approximately 100 m, and the location 

is surrounded by fields with plains; thus, it is characterised by 

non-complex terrain. The station is owned by the Administración 

Nacional de Usinas y Transmissiones Eléctricas (UTE), which is 

a state-owned company in Uruguay that is responsible for the 

generation, distribution, and commercialisation of electrical 

energy in the country.  

 

The software used to program and perform this computational 

procedure was MATLAB version 7.10.0 2010, together with the 

NNTool (Neural Network Toolbox) graphical interface and 

Pyhton with Google Colab, Google’s free cloud service for 

Artificial Intelligence (AI) developers, using Keras. The 

proposed ANN configurations to be analysed to MLP, RNN, 

GRU, and LSTM are as follows (Table 1). In this study, was 

applied a fully-connected network structure for RNN, GRU, and 

LSTM. Fully connected layers were defined using the Dense 

class.  

 

 

 

 

 

 

Table 1. ANN configurations analysed. 

ANN 

config. 

Layers 

Input 

node 

1st hidden 

layer 

2nd hidden 

layer 

Output 

node 

Config. 1 7 9 neur - 1 

Config. 2 7 6 neur - 1 

Config. 3 7 3 neur - 1 

Config. 4 7 1 neur - 1 

Config. 5 7 9 neur 6 neur 1 

Config. 6 7 6 neur 3 neur 1 

Config. 7 7 1 neur 1 neur 1 

 

Each training and forecast simulation took, on average, 3 seconds 

to MLP, 8 minutes to RNN, 16 minutes to GRU, and 18 minutes 

to LSTM (personal computer, 8 GB RAM). The inputs for each 

ANN were the hour, day, month, year, and average hourly values 

of the wind speed, wind direction, and temperature. Therefore, 

the insertion of these meteorological parameters as input data 

contributes to efficient training of the ANN. In this sense, a 

descriptive statistic regarding the wind speed at different heights 

is shown in Table 2. 

 

Table 2. Descriptive statistics for the wind speed. 

Height 

[m] 

Hourly average speed 

[m/s] 

Standard deviation 

[m/s] 

101.8 7.21 3.00 

81.8 6.81 2.74 

25.7 4.98 2.21 

10.0 4.01 2.08 

 

The output vector is the predicted wind speed for the next hour. 

The measuring height for the wind speed and wind direction is 

divided into four cases: 101.8 and 60.8 m; 81.8 and 60.8 m; 25.7 

and 60.8 m; and 10.0 and 60.8 m. The total amount of data is 

8.760 × 7 = 61.320 (100%), and the amount of data used for 

training and validation is 6.133 × 7 = 42.931 (70.01%). Once the 

best model for reproducing the real data is obtained, it is important 

to verify its accuracy by utilising data outside the training sample. 

Thus, the last 2.627 h are not considered during the training of the 

ANN. Therefore, the amount of data used for the forecast 

simulation is 2.627 × 7 = 18.389 (29.99%). Each of the 

aforementioned ANN configurations was trained, validated, and 

tested to determine which was the most efficient for short-term 

(1, 3, 6, 9, and 12 h) wind speed forecasting.  

 

The activation functions, which define the outputs of the neurons 

in terms of their activity levels, that were inserted in this 

simulation were the sigmoidal function, in the form of the 

hyperbolic tangent function (continuous, increasing, 

differentiable, and nonlinear), for the hidden layers on all 

configurations, the linear function for the output layer on MLP 

and Softplus activation function for the dense output layer on 

RNN, GRU, and LSTM (the Softplus is enticingly smooth and 

differentiable; experiments show that the deep neural networks 

with Softplus units get significantly performance improvement). 

To perform the prediction, the first step is to identify what ANN 

architecture can best perform the 1 h forecasting of the wind 

speed for each height. Then, this predicted wind speed value is 

assigned as the input for the second hour of forecasting, while the 

other input parameters used at the start of the forecasting are kept 

unchanged (e.g. wind direction and air temperature). Thus, the 

forecast of the wind speed for the second hour is calculated. This 

procedure, which is shown in Figure 2, is repeated until the nth 

hour of forecasting is reached. 
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Figure 2. Schematic of the procedure used for wind speed 

forecasting for 1, 3, 6, 9, and 12 h after the start time. 

 

As the prediction horizon increases, the quality of the predicted 

wind speed is expected to decrease, which is evaluated in the next 

section. 

 

 

3. NUMERICAL RESULTS AND DISCUSSIONS 

 

The statistical indicators employed to analyse the results are the 

Root-Mean-Square Error (RMSE), Mean Squared Error (MSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), coefficient of determination (R2 or R-squared), and 

Pearson’s correlation coefficient (r or Pearson’s r). Values close 

to 0.0 are adequate for the MAE, MSE, and RMSE, values close 

to 0.0% are adequate for the MAPE, and values close to 1.0 are 

adequate for the R-squared. The Pearson’s correlation coefficient 

ranges from −1.0 to 1.0. A value of 1.0 implies that a linear 

equation perfectly describes the relationship between matrices A 

and B, with all the data points on a line for which B increases as 

A increases. A value of −1.0 implies that all the data points are on 

a line for which B decreases as A increases. A value of 0.0 implies 

that there is no linear correlation between the variables. 

 

Each ANN architecture presented in Section 2 was trained, 

validated, and tested using the input vector for each hour, with the 

wind speed of the next hour as the desired output vector. The use 

of a large number of hidden layers is not recommended, because 

the error measured during training is propagated to the previous 

layer. The number of neurons in the hidden layers is generally 

defined empirically and depends strongly on the distribution of the 

training and validation patterns of the network. When connected 

and trained in multiple layers, the ANN model can represent any 

nonlinear function [14]. An advantage of the ANN model is that 

it can learn the relationship between complex, nonlinear inputs 

and outputs [15]. The best ANN configurations for Colonia 

Eulacio are presented in Table 3. The aforementioned ANN 

architectures that were identified as the most efficient for the 1 h 

forecast for each height were applied in the computational 

simulation to predict the wind speed for 3, 6, 9, and 12 h in 

Colonia Eulacio at all the heights tested. The best MLP 

architecture was defined in [22]. 

 

Table 3. The best ANN configurations. 

ANN / 

heights 

101.8 m 81.8 m 25.7 m 10.0 m 

Best ANN configuration 

MLP 7 4 7 4 

RNN 1 3 7 5 

GRU 7 6 6 5 

LSTM 6 5 1 1 

 

The results for the MAE, MSE, RMSE, MAPE, R-squared, and 

Pearson coefficients for 1, 3, 6, 9, and 12 h wind speed 

forecasting in Colonia Eulacio are presented in Table 4 for a 

height of 101.8 m. The lowest values of the MAE, MSE, RMSE, 

and MAPE, as well as the highest Pearson’s correlation 

coefficient and R-squared values, were recorded for the 1 h 

forecast for all the analysed heights (101.8, 81.8, 25.7, and 10.0 

m). The mean R-squared and Pearson’s r for 1 h wind speed 

forecasting were 0.843 and 0.918, respectively. The lowest 

MAPE value was 15.840%, for a height of 101.8 m and a 

prediction horizon of 1 h. 

 

Table 4. Performance indices of forecasting results obtained by 

different models on the case study (for the height of 101.8 m). 

MLP 

Prediction 

Horizon [h] 
1 3 6 9 12 

MAE 0.89 1.67 2.24 2.59 2.87 
MSE 1.40 4.68 7.95 10.3 12.38 

RMSE 1.18 2.16 2.82 3.22 3.51 

Coefficient: r 0.92 0.73 0.54 0.43 0.34 
R2 0.84 0.53 0.30 0.18 0.11 

MAPE (%) 15.84 30.13 39.19 43.65 47.10 

RNN 

Prediction 

Horizon [h] 
1 3 6 9 12 

MAE 0.93 2.64 7.29 7.78 7.94 

MSE 1.53 9.77 60.99 68.97 71.43 

RMSE 1.23 3.12 7.81 8.30 8.45 
Coefficient: r 0.91 0.70 0.40 0.25 0.17 

R2 0.84 0.49 0.16 0.06 0.03 

MAPE (%) 17.58 63.56 173.12 183.97 187.0 

GRU 

Prediction 

Horizon [h] 
1 3 6 9 12 

MAE 0.91 1.96 6.41 8.49 8.85 

MSE 1.45 5.92 47.56 80.69 87.04 

RMSE 1.20 2.43 6.89 8.98 9.33 
Coefficient: r 0.91 0.71 0.47 0.03 0.03 

R2 0.83 0.50 0.22 0.001 0.001 

MAPE (%) 18.35 45.84 149.54 197.63 204.7 

LSTM 

Prediction 

Horizon [h] 
1 3 6 9 12 

MAE 0.89 3.45 5.85 6.08 6.13 

MSE 1.43 16.15 42.22 45.03 45.71 

RMSE 1.19 4.02 6.49 6.71 6.76 
Coefficient: r 0.91 0.63 0.13 0.10 0.09 

R2 0.84 0.39 0.01 0.01 0.01 

MAPE (%) 17.33 88.09 146.65 151.25 152.4 

 

The results in Table 4 indicate that as the wind speed forecasting 

load increases, the quality of the output data of the ANN 

prediction decreases. Thus, a longer forecasting time yields a 

larger error. As explained in the previous section, these results 

were expected, as the adopted procedure uses input data from the 

start of the forecasting, in addition to the wind speed computed in 

each forecast hour, to predict the wind speed for the nth hour, 

leading to an accumulated error. This result is in accordance with 

the literature, e.g. [16], [17], [18], and [19]. Figure 3 presents a 

graphical comparison of the RMSE and Pearson coefficient for 

different ANN model. The graph lines are of 101.8 m. The graph 

indicates that as the prediction horizon [h] increases, the RMSE 

increases, indicating that the error between the actual and 

predicted values increases. 
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a) 

 

b) 

 
Figure 3. a) Graphical comparison of the RMSE and b) Pearson 

coefficient at different prediction horizon for different ANN 

models (height = 101.8 m). 

 

By definition nowcasting refers to short lead time weather 

forecasts. The U.S. National Weather Service specifies zero 

to three hours, though forecasts up to six hours may be called 

nowcasts by some agencies. Nowcasting is usually made with 

techniques that differ significantly from normal numerical 

weather prediction models [24]. Figure 4 shows the comparison 

of the statistical results for the RMSE at different heights to 

predict the wind speed at 6 h ahead (this is important to 

nowcasting to short lead time wind speed forecasting) using 

different ANN. The best results are recorded for the MLP 

network, followed by LSTM neural network. 

 

 
Figure 4. RMSE for 6 hours ahead using MLP, RNN, GRU, and 

LSTM in different heights. 

 

Figure 5 shows the dispersion between wind speed anemometer 

and wind speed predicted 6 h ahead. 

 

 
Figure 5. Dispersion's results at 101.8 m for forecast 6 h ahead. 

 

Figure 6 presents a comparison of the results of the ANN wind 

speed forecasting at 6 h through MLP designed in [22], with 

real data, which were recorded at Colonia Eulacio with an 

anemometer height of 101.8 m. The ratio between the wind speed 

predicted by the ANN model and that measured by the 

anemometer can be observed with respect to time and the 

measured wind speed. The middle lines in the plots indicate one-

to-one correspondence, and the outer lines indicate difference by 

a factor of two. 

 

a) 

 

b) 

 

c) 

 
Figure 6. Wind speed forecasting at 6 h: a) The results of six-step 

predictions of the wind speed series. b) Comparison data of a 

factor of two (wind predicted/wind anemometer versus time) of 
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the results obtained with the forecast model (six-step predictions) 

and the real data. c) Comparison data of a factor of two (wind 

predicted/wind anemometer versus wind anemometer) of the 

results obtained with the forecast model (six-step predictions) and 

the real data.  

 

In this study the degradation of the forecast can also be observed 

by noting that as the forecast horizon increases, the predicted 

curve moves away from the real curve. Table 5 presents the 

percentage of the data of a factor of two (fraction of data [%] for 

0.5 ≤ Wind predicted/Wind anemometer ≤ 2.0) to height of 

observed data = 101.8 m. This showed that MLP and LSTM 

models were the only ones that maintained results above 58% 

within the factor of two. 

 

Table 5. Percentage of the data of a factor of two (height = 

101.8m). 

ANN 

model 

Prediction 

horizon 

Percentage of the data of a 

factor of two 

MLP 

1 h 98.44% 

3 h 93.29% 

6 h 88.29% 

9 h 82.43% 

12 h 77.44% 

RNN 

 

1 h 

 

98.21% 

3 h 84.64% 

6 h 50.67% 

9 h 47.90% 

12 h 46.69% 

 

GRU 

 

1 h 

 

97.79% 

3 h 93.71% 

6 h 56.92% 

9 h 43.58% 

12 h 40.69% 

LSTM 

 

1 h 

 

98.29% 

3 h 76.94% 

6 h 60.70% 

9 h 59.05% 

12 h 58.39% 

 

The results in Figure 7 indicate that on average, the MLP ANN 

has better results than the Persistence model for a prediction 

horizon of 1 h. 

 

 
Figure 7. Comparison between the ANN models and the 

Persistence reference model for wind speed forecasting 1 h ahead. 

 

The investigation of mechanisms that aid the short-term wind 

speed forecasting, as performed in this study for 1, 3, 6, 9, and 12 

h for the generation of energy in wind farms, has been critical to 

ensure the proper functioning of traditional energy systems. 

Accurate prediction of the short-term wind speed output helps 

system operators to adjust scheduling plans in a timely manner, 

make correct decisions, reduce the standby capacity, reduce the 

operational costs of the power system, and mitigate the adverse 

effects of wind power fluctuation.  

 

 

4. CONCLUSIONS 

 

According to the statistical results of this study, the application 

of artificial intelligence is a viable alternative for the prediction 

of wind speed and thus wind power generation, mainly owing to 

the low computational cost. However, an ANN architecture that 

is appropriate for the project must be selected, and the data fed to 

the network must quantitatively and qualitatively be analysed, as 

these variables directly impact the results of the forecast. This 

work is relevant because it is a first step in the application of the 

MLP, RNN, GRU, and LSTM models to wind speed prediction, 

and there are no previous studies on the application of artificial 

intelligence using deep learning through such neural networks for 

this region.  

 

The statistical results for the prediction horizons of 1 to 12 h, for 

each anemometric height, exhibited predictable behaviour 

similar to that for short time ranges. These results are novel 

because no other studies have used this computational model to 

predict the wind speed for 1, 3, 6, 9, and 12 h in Uruguay. The 

application of the MLP and LSTM for wind speed forecasting at 

different heights was adequate. From the analysis, it was found 

that the MLP model was superior to the other neural network’s 

models, as they were able to achieve a relatively lower prediction 

error. The MLP approach here introduced uses a differentiated 

process of forecasting based on inference.  

 

The surprising result is that the simplest model architecture, a 

multilayer perceptron (MLP), with only two hidden layers of one 

neuron in each of them works best among the considered 

architectures. This result allows one to suspect that deeper neural 

network architectures, ensemble or other models may be more 

beneficial. The 1 and 3 h forecasts were particularly accurate, and 

as the forecast time increased, the accuracy of the results 

decreased, as expected. However, this degradation did not make 

the forecasting results for longer prediction horizons useless; 

thus, the proposed technique can produce satisfactory short-term 

wind speed forecasts (up to 12 h) with low computational costs 

to help wind-farm operators with decision making.  

 

This study contributes to the scientific community by providing 

wind speed forecasting information for a country of South 

America with high wind power potential (Uruguay), considering 

the interest of private companies and UTE in the energy sector. 

The suggestion is that futures works can be developed studying 

the Wavelets decomposition in the weathers data and be applied 

to the deep learning technology to wind speed forecasting. Wind 

ramp and longer forecasting horizons are also a great subject of 

research. 
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