
Software Architecture of Manufacturing Execution Systems

Heiko MEYER
University of Applied Science Munich

Department of Business Administration and Engineering
Lothstraße 34, 80335 Munich, Germany

and

Heiko MEYER

Gefasoft AG
Research and Development

Dessauerstraße 15, 80992 Munich, Germany

ABSTRACT

The globalization of the economy and the associated factors of
increasing effectiveness in production, shortening innovation
cycles, safeguarding high quality, etc. are continually
augmenting the pressure on the production business. It has been
possible to compensate somewhat for this pressure in recent
years by relocating production to low-cost countries. However,
in the medium term, the demands of workers in countries that
are now still low cost will increase, and production costs will
rise as a result, so the need for action will arise. Tools will be
needed to increase efficiency in existing production processes. It
also must be considered that production in high-cost countries
definitely has its advantages, so these countries are becoming
more and more feasible as production locations and will remain
so in the long term. The degree of automation is already
extremely high in these countries, so modifying production
processes will not increase efficiency significantly.

Keywords: Database Management System, Enterprise Resource
Planning, Manufacturing Execution System, OPC UA, SOAP,
Web service.

1. INTRODUCTION

Additional new challenges for production-oriented information
technology (IT) systems arise from norms and guidelines such
as quality assurance standards and regulations in the food and
pharmaceutical industries. While these demands were relevant
mainly for security-oriented systems decades ago, now
transparency and traceability are playing an increasingly
important role in other sectors as well.

In order to achieve effective value creation in production,
equipment is needed that can meet these new demands 100
percent. Existing enterprise resource planning (ERP) systems
established on the market are largely administrative and
accounting systems. The new systems needed must include
functions for planning, logging, and control that not only act but
also react in real time. For these systems, the concept of a
manufacturing execution system (MES) has arisen. Since MES
is a multifaceted area, each sector interprets the concept from its
own standpoint.

2. FUNDAMENTAL VARIANTS

If you analyze the architecture of the different systems, which
are temporarily on the market, you will find two architectural
variants with fundamentally different approaches:

 Application-centered systems. Here, the application
controls the booking function in the database and the
business logic of the system. The database serves only
as a performance-saving medium.

 Database-centered systems. With this approach, the
database is not only a data memory but also the pivot
of the entire system. A large part of the bookings and
also parts of the business logic are handled through
the database.

Application-centered approaches offer advantages for
development by the use of high-level languages. Updates are
also simpler because the data structures are less complex. The
main disadvantage is that errors in the application logic
endanger the consistency of the data - in case of doubt,
extensive repairs to the database by the manufacturer become
necessary. In addition, core themes of a database management
system (DBMS), such as cache consistency and transaction
management, must be integrated through the increased use of
multithreading; these have matured for years in DBMS with
regard to freedom from errors, scaling, and performance. In
systems with large data volumes, performance disadvantages
also can arise because optimizations for the use of special
DBMS strengths are not possible or need to be implemented
several times and therefore are left out.

In database-centered systems, all data-related operations also
occur within the DBMS in its native programming language in
the form of what are known as stored procedures. A
disadvantage is that platform dependency is no longer provided
at this point. Software development also becomes more difficult
because generally a high-level language offers more options
than the programming language of the DBMS. This
disadvantage is amplified by various current initiatives to make
high-level languages (e.g., Java or .Net) directly useful for the
programming of stored procedures. Updates are more elaborate
because tests for integrity are an elementary part of the update
process. The great advantage of the database-centered approach
is that transaction management and the safeguarding of data

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

consistency are transferred by declaration to the DBMS. The
existing abilities of the DBMS, such as the support of cluster
solutions or distributed systems, can be used without large
adjustments to the application. The data model is a part of the
application; that is, access becomes simpler for external systems
(e.g., reporting) and is also possible without the contribution of
the manufacturer in cases of doubt. A considerably better
performance can be made possible by focusing on the DBMS
with its specific optimizing options. This is particularly
important for a manufacturing execution system (MES), which
is confronted with a considerably higher transaction volume
than an enterprise resource planning (ERP) system.

The following conclusion can be drawn from this consideration:
Application-centered approaches are easily at an advantage in
systems with relatively low transaction volumes as well as in the
early development stadium. For large systems with high
requirements for availability, data integrity, and performance,
on the other hand, the database-centered approaches are at an
advantage. The considerations in this chapter therefore are
based largely on this approach.

3. OVERVIEW OF CENTRAL COMPONENTS

The software architecture suggested in Figure 1 for an MES is
also present in many systems currently on the market in this
form or a similar form.

Figure 1 shows a server-based system, the core of which forms a
relational database. In order to be able to handle larger data
sets, the database can be divided into two parts—an online
database and an archive database. This database also takes on
the basic functions of data processing, such as the booking in of
complex data into various table structures. Laborious processing
functions such as the calculation of key figures are handled in
an external module. In this module (e.g., in the form of an
application server), the business logic and administrative tasks
(e.g., authentication of the user and data care jobs) of the MES
are mapped out. Independent interface adapters and/or software
services are available as interfaces to neighboring information
technology (IT) systems. A server component is also needed for
the user interface and the reporting module embedded in it. In
the case of a Web solution, this is a Web or application server.

Figure 1: Central software components as an overview.

4. APPLICATION SERVER

An application server is a component that provides a framework
and various services for the execution of applications. Here, the
concept server does not necessarily denote an independent
hardware system. An application server provides special
services such as authentication or access to directory services
and databases via defined interfaces to the applications as a run-
time environment.

The concept application server has developed to become one of
the most used concepts in IT. Other concepts that are used in
this context are middleware and three-tier architecture.
Software applications with a three-level architecture generally
are classified in the presentation, business logic, and data
management layers. Applications for the mapping out of the
business logic are also referred to as application servers in
today’s usage. Because of application in this middle layer, it is
also referred to as middleware.

5. PLATFORM INDEPENDENCE

The necessary outlay for the creation of true platform
independence may seem high but must be taken into account
with regard to the long system running times of an MES
(generally more than 10 years). Changes in the IT landscape of
the company may not lead to the end of the MES implemented;
much more, platform independence should help to minimize
costs for running and care.

At this point, the concept platform refers especially to the
fundamental computer architecture (e.g. processors) and the
operating system used. Naturally, the database also represents a
platform, but this is not taken into account because there are
only a small number of systems on the market that support
different databases. Despite this, true platform independence is
only a given if the user also can select the database system
freely.

On the subject of platform independence, two generally
different viewpoints exist on the market:

 Users, generally in small and medium-sized
companies, who are not set on any particular
platforms and therefore follow the recommendation of
the supplier

 Users, often in large companies with independent IT
departments, who have decided on internal conditions
for platforms and also only permit systems that
comply with these conditions

If a supplier wishes to serve both groups (so the entire potential
market), this supplier’s system absolutely must be platform-
independent. In order to analyze this requirement more closely,
the individual modules of the system are examined separately:

 Database. The database is the central core of the
system. Therefore, the highest requirements with
regard to scalability, availability, and performance are
made of this module. Many suppliers support only one
database system because it is hardly possible to carry
out optimization for different databases. The database
also requires regular software maintenance, for which

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 63ISSN: 1690-4524ISSN: 1690-4524

the relevant skilled workers are needed. Conclusion:
If the database used is platform-independent (e.g.,
Oracle), an implementation on the platform preferred
by the customer can succeed; if not, it is necessary to
use a platform recommended by the supplier.

 Business logic/administrative tasks. Many of these
data-processing tasks can be completed directly in the
database using stored procedures. This method is
distinguished by high processing speeds. The
disadvantages are that more complex tasks can be
mapped out only in Structured Query Language (SQL)
with difficulty and that change management is
cumbersome. If you wish to avoid these
disadvantages, you should use a Java- or C++-based
approach. Both codes can be ported to different
platforms with acceptable outlay (and so are platform
independent to a limited extent), provided that you do
not use any special libraries. From the viewpoint of
user friendliness, the encapsulation into individual
“functions” is desirable. For this purpose, the
application of an application server or a script engine
that contains individual jobs in the form of Java or
JavaScript programs is possible.

 Interface adapter. Here, in turn, what we mentioned
under “Business logic/administrative tasks” above
applies to platform independence. It is possible that
the handling of ports also can occur in the same
software module. However, adaptiveness with regard
to change is even more important for interfaces—no
other topic is so often changed and requires as much
time for implementation and testing. The use of scripts
(at best, independent modules per interface) that can
be changed simply and throughout the lifetime of the
entire system is an adequate approach here. However,
the possible existing infrastructure also must be taken
into account, for example, if control systems of the
production department can only be linked usefully via
existing object linking and embedding (OLE) for
process control (OPC) servers. A platform linked
solution (in this case, Windows) must be used here.
OPC technology or Active-X-Controls are only
available in Windows.

 Software services. The use of Web services has
become established for a service-oriented architecture.
The server-based implementation can occur platform
independently in the scope of a Web application
service.

 User interface/reporting. A Web-based approach is
often also platform-independent. However, the many
advantages of a “true” Web solution (using HTML
and JavaScript exclusively) are still offset by the
disadvantage of a sometimes low level of user
friendliness.

6. SCALABILITY

As is generally known, the only constant is change. If we follow
this maxim, which applies somewhat for modern production,
scalability is another important requirement of the system
architecture of the MES in addition to platform independence.

On the one hand, the system must be adjusted as precisely as
possible to the requirements of the customer, and on the other,
changes in the production structure, that is, both changes in the
scope of functions and in the quantity structure, must be easy to
map out in the MES.

Changes in the scope of functions generally arise from the
introduction of new products or from new ideas on organization
and the changed activities linked with them. Examples here are
the introduction of a worker information system or the switch to
group work with a changed wage system. Many system
suppliers cover such functional expansions with independent
software modules, which are offered as add-ons for the basic
software.

Scaling as per the quantity structure is more difficult and also
affects the software architecture. The following key data of the
system should be taken into consideration with regard to
scaling:

 Number of machines and workplaces

 Number of articles produced

 Number of measurement values taken/sample rate for
the measurement values taken

 Number and frequency of reports created (e.g.,
disruption reports from production controls)

 Number of simultaneous users (i.e., client stations on
the network)

 Number and calculation cycle of key performance
indicators (KPIs) and quality data

 Archiving period for KPIs, quality data, measurement
values, and reports

 Type and frequency of evaluations of data sets

 Number of interfaces and frequency of data exchange

These points affect the database in particular, whereby the
transaction volume (effects on the CPU load and the interfaces
of the system) and data volume (effects on the required memory
capacity) aspects are taken into account. This means that both
the processing power of the database system (usually in the
form of additional processors) and the memory capacity (usually
in the form of additional hard drives) should be suitable for
flexible scaling.

Based on the suggested architecture, the second bottleneck
arises with growing quantity structures in the application server.
Here, too, scaling can occur through adjustment of the
processing power (i.e., additional processors), but the individual
processes (applications) of the system can be allocated to
several processing systems. The option to allocate the processes
to several systems is a true advantage for system running and
maintenance as well. With the example of the suggested
architecture, all components represented could be run on a
common server in the simplest case. This architecture would
lower the costs for a small system with small data quantities. At
the other end of the scale, however, each of the software
components represented could work in a separate server system.
In order to be able to realize both extremes represented, the
architecture must be appropriately flexible and as platform-
independent as possible.

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

7. FLEXIBLE ADJUSTMENT VERSUS SUITABILITY
FOR UPDATES

The only constant is change. Does this saying sound familiar?
Correct—that was the introduction to the preceding section of
this chapter. But this statement is just as valid for this section.
Changes to real production also require changes in the MES.
These changes should be implemented as quickly as possible
with low financial and organizational outlay. Despite this, the
MES should be a standard product, that is, suitable for updates,
stable, and ensured for the future. Thus it applies that the
competing requirements of high flexibility and stability must be
united in one system. This can be achieved only with extensive
and complex parameterization options and simultaneous
suitability for updates. Suitability for updates refers primarily to
all core functions of the system, which must remain the same
independently of the specific application. But what does
suitable for parameterization mean? Is this just a number of
switches, system parameters, or user profiles— or are other
mechanisms also required? This question cannot be answered
globally but must be answered specifically for individual
modules and functions of the system:

 Interfaces. Various methods and technologies, such as
OPC, telegram exchange via TCP/IP, remote function
calls (RFC), message queues (e.g., MQSeries or
Com+), Web services, and database interfaces based
on views, have become popular for the technical
development of software. Here, a flexible system
should support various technologies, and the partners
must agree on one of those technologies. The data
exchanged are, however, hardly normed and are
subject to frequent changes. Therefore, flexible tools
such as programmable scripts are needed for
configuration of the interface content. In order to
guarantee suitability for updates for scripts as well, it
must be ensured that already existing tools remain
viable in the case of an update to the framework (e.g.,
scripting engine).

 Main functions. The main functions of the MES, such
as resource management, fine planning, and Machine
Data Acquisition (MDA), should be available as
modules of the overall system. This means that it is
easy to carry out functional scaling. In the case of an
update, individual modules also can be brought to a
new status.

 Partial functions. Within these main functions are
partial functions that can be activated or deactivated
independently of their application. Here, there is the
option of configuration on the basis of system
parameters. These parameters must be saved in an
update-secure manner to avoid unpleasant surprises
after software updates.

 Project-specific data processing. Data processing,
such as the calculation of KPIs, is also strongly
influenced by customer requirements. The use of
scripts that are easy to change for the system supplier
or that even can be adjusted by the customer is a tried
and tested method. Here, too, the condition applies
that scripts must be suitable for update. In the case of
a software update, then, only the framework for

running the scripts is changed to a new software status
and not the scripts themselves.

 User interfaces for standard functions. It should at
least be possible to adjust these interfaces in their look
and feel to suit the needs of the user. For example, it
should be possible to adjust a given corporate identity
with predefined colors and a company logo globally.
Saving the settings, such as selection of columns for a
table view, and the default saving of the table should
occur user-specifically.

 Customer-specific user interfaces. In some projects,
not all needs of the customer can be covered with
standardized interfaces. The software concept should
allow for the project-specific creation of interfaces for
exceptions. These interfaces created especially for a
customer also must function after an update to the
entire system.

 Visualization via black diagrams/flowcharts.
Although standardized visualization with a generic
approach (e.g., mapping out all machines/stations with
the most important order-processing data) saves
projection outlay, it is often too inflexible. A freely
“parameterizable” visualization solution with the
option to provide process visualization increases both
the flexibility of the MES and its acceptance by users.

 Reporting. Meaningful and optically pleasant reports
are the calling cards of the MES for company
management, and this is why a highly flexible
reporting system is needed. A set of standard reports
should be present in the basic interface of the system.
However, it must be possible for trained users to
change these reports and for the reports to be used as
templates for the creation of the user’s own reports.

Software that is adaptable and also suitable for updates is
absolutely realizable with modern IT tools. However, this comes
at the cost of performance because of the necessary complexity.
A simple system with few parameterization and setting options
seems to be less expensive at first glance. The limitations can be
seen only in the course of implementation or when the system is
in use, when the first extensions are needed. Then the seemingly
cheaper system also can develop into a money pit.

8. SERVICE-ORIENTED ARCHITECTURE

The basic idea of service-oriented architecture (SOA) aims to
organize business processes into individual services. The client
calls up a service for a defined task (i.e., order to the service),
this order is then processed through the server, and the result
(i.e., response from the server) is sent back to the client. The
structure of the service (i.e., data structure for order and
response) is managed in a common repository. A unique address
(i.e., the server that provides the service) exists for every order
to which an order can be sent.

The best-established technological SOA approach takes the
form of Web services. The World Wide Web Consortium
(W3C) has carried out an extensive standardization of Web
services and data exchange using the Simple Object Access
Protocol (SOAP, a protocol for data exchange via HTTP and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 65ISSN: 1690-4524ISSN: 1690-4524

TCP/IP) and therefore makes it possible to apply the technology
in heterogeneous environments (Fig. 2).

Figure 2: Concept of Web services with SOAP.

The “Service Broker” depicted in the figure is required for
companywide or globally used services to inform an arbitrary
client which server provides which services. These metadata,
which describe a Web service, are exchanged with the aid of the
Universal Description, Discovery, and Integration (UDDI)
protocol. If these Web services are used only “locally,” which is
generally the case within an MES, or in connection with
neighboring systems, the service broker can be omitted. The
Web Service Description Language (WSDL) descriptions of the
services are known to the clients in this case. The functions and
the interface of a Web service are precisely defined in a WSDL
file. With this information, the client can use the service
provided. The data exchange itself is carried out via SOAP (see
above; usually via HTTP, but other protocols are also possible)
or via RPCs.

Using this architecture, it is possible to arrive at a situation
where a process and the related data are mapped out only once
in the company’s IT system, and the software functions are still
made available to all users in their specific context. Thus the
desired integration of applications and production data is
achieved.

For example, internal interfaces such as the connection of MDA
(Machine Data Acquisition)/PDA (Production Data Acquisition)
terminals to a server can be implemented in a simple, flexible
manner with Web services. Another example is the handover of
attendance records for workers to the MES from a staff
timekeeping record. Using these data, the MES can plan the
resources that are actually present or carry out a plausibility test
for order responses related to workers. By querying the data
using an ID, this also can be rendered anonymous in the MES.
In this example, the staff timekeeping system is the server, and
the MES is the client for the Web services.

9. CONCLUSION

At the beginning, it was described two general approaches for
the architecture of an MES whereby a suggestion, namely, the
database-centered approach, is subsequently examined in more
detail. Here, the central components of the system were
explained. Essential characteristics of a modern MES, such as
platform independence and scalability, were explained. The
basis of innovative communication mechanisms, such as the
OPC UA, is a service-oriented architecture (SOA). This
approach is also valid for the architecture and communication
mechanisms of MES.

10. REFERENCES

[1] International Society of Automation (ISA):

http://www.isa.org.
[2] Manufacturing Enterprise Systems Association

(MESA): http://www.mesa.org.
[3] Meyer, H. et al.: Manufacturing Execution Systems

(MES) : Optimal Design, Planning, and Deployment. 1.
Edition, McGraw-Hill, New York: 2009.

[4] Schaefer, M. et al.: MES – Anforderungen, Architektur
und Design mit Java, Spring & Co. 1. Auflage,
entwickler.press, Frankfurt am Main: 2009.

[5]

[6]

[7]

Thiel, K.; Meyer, H.; Fuchs, F.: MES – Grundlage der
Produktion von morgen – Effektive Wertschöpfung
durch die Einführung von Manufacturing Execution
Systems. 1. Auflage, Oldenbourg-Industrieverlag,
München: 2008.
Ricken, M.; Vogel-Heuser, B.: Engineering von
Manufacturing Execution Systems. SPS/IPC/Drives
Kongress, Nürnberg: 2009.
Scholten, B.: MES Guide for Executives: Why and
How to Select, Implement, and Maintain a
Manufacturing Execution System. ISA, Durham: 2009.

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

	GS116BQ

