
A Dynamic Defense Modeling and Simulation Methodology
using Semantic Web Services

Kangsun Lee* and Byungchul Kim

Department of Computer Engineering, MyongJi University
San 38-2 NamDong, YongIn, Kyunggi-Do

449-728, Republic of Korea

ABSTRACT1

Defense Modeling and Simulations require interoperable
and autonomous federates in order to fully simulate
complex behavior of war-fighters and to dynamically adapt
themselves to various war-game events, commands and
controls. In this paper, we propose a semantic web service
based methodology to develop war-game simulations. Our
methodology encapsulates war-game logic into a set of web
services with additional semantic information in WSDL
(Web Service Description Language) and OWL (Web
Ontology Language). By utilizing dynamic discovery and
binding power of semantic web services, we are able to
dynamically reconfigure federates according to various
simulation events. An ASuW (Anti-Surface Warfare)
simulator is constructed to demonstrate the methodology
and successfully shows that the level of interoperability and
autonomy can be greatly improved.

Keywords: Semantic Web Services, Ontology, Defense
Modeling and Simulation

1. INTRODUCTION

As contemporary warfare becomes complex and network-
centric, simulation is recognized as the only technique to
analyze war strategies and train war fighters accordingly
based on the simulation results. A federate is a basic
structural unit of war-game simulators and usually
combined with other federates to form a “federation”(i.e.
simulation)[1]. Federates should provide the followings
characteristics:

 Interoperability: In order to build a realistic
federation, federates need to be interoperable
regardless of operating systems, development
platforms, programming languages and middlewares.

 Autonomy: Federates should adapt themselves
according to various war events, such as an enemy
detection, a new movement, etc. Any changes to the

* Corresponding author: All correspondences should be

made to ksl@mju.ac.kr

war environment may require dynamic
reconfiguration of the whole federation. Failures to
meet such changes make the simulation results
useless. Therefore, a federate should autonomous
enough to decide when and where to join and leave
the federation based on the varying war conditions.

HLA (High Level Architecture)[1] is an IEEE standard
simulation framework to support the interoperability and
reusability of various simulation applications in defense
community. Communication between federates is managed
by a RTI (Run-Time Infrastructure)[2]. However, the level
of interoperability of HLA /RTI is so low that non M&S
applications are hard to be interoperable within the standard
framework. Also, extensibility is hard to be achieved in non-
military WAN and long distance connection. SOA (Service-
Oriented Architecture) [3] is an enterprise-oriented
conceptual framework to promote the reusability and
interoperability of heterogeneous systems. As we need
simulation interoperability and reusability within the
defense community and commercial enterprise as well,
combining HLA with SOA (Service-Oriented Architecture)
has attracted many attentions. The fundamental advantages
of the combination are ease of interfacing heterogeneous
systems for interoperation, availability of commercially
developed supporting technologies, and compatibility with
the Web based SOA [4]. Many research works have been
proposed to combine HLA with SOA, including XMSF
(Extensible Modeling and Simulation Framework), OGSA-
Based (Open Grid Services Architecture) Simulation
Framework, SI3 (Service Integration/Interoperation
Infrastructure) and HLA Evolved Web Service API [4-7].
Although these frameworks have made great progress on
service-oriented HLA, they lack explicit support dynamic
reconfiguration of federates [8]. In this paper, we propose an
ontology-driven methodology for defense modeling and
simulation to improve interoperability and autonomy of
federates. Our methodology 1) encapsulates war-game logic
either with HLA-compliant federates or with services of
SOA, 2) organizes similar web services into groups and
adds semantic information for future dynamic discovery and
binding, 3) composes web services for a given war game
scenario, and finally 4) monitors web services and
dynamically changes obsolete web services, on the fly, by

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 67ISSN: 1690-4524ISSN: 1690-4524

matching semantic ontology with war events. An
ASuW(Anti-Surface Warfare) simulator has been developed
with the proposed methodology and successfully
demonstrated that we could achieve a higher level of
interoperability and autonomy comparing to conventional
static simulations.
This paper is organized as follows. In Section 2, we propose
our ontology framework for defense modeling and
simulation. Section 3 illustrates our methodology with an
example of ASuW simulation. We conclude in Section 4
with future works to achieve.

2. ONTOLOGY FRAMEWORK FOR DEFENSE

MODELING AND SIMULATION

A federate participates a war-game simulation by cycling
the following 4 phases: movement, detection, engagement,
and analysis. Figure 1 shows our ontology framework. The
ontology framework has four slots to specify movement,
detection, engagement and analysis operations of a federate,
respectively.

Figure 1. Ontology Framework

We use WSDL2.0 (Web Service Description Language) [9]
and OWL [10] to describe the semantics of web services.
WSDL describes interfaces to web services. The interface
contains a set of operations each of which has a signature
(i.e. operation name, input, output and exception messages).
WSDL 2.0 is a lightweight approach for adding semantics to
web services. We define an extension to the WSDL 2.0 and
use OWL for describing semantics of WS federates. Similar
web services are grouped together for dynamic adaptation.
For example, missiles are modeled into missile web services
and grouped as other weapon services together, for example,
harpoon services, and ammunition services. Based on the
distance and type of enemies, the optimal weapon service is
selected for a simulation; For example, if an enemy is
detected as an aircraft in a long distance, a missile web

service is employed for a simulation, while an ammunition
web service is selected if the enemy is a ship in near
distance. As Figure 1 shows, the ontology framework
provides a holder to manage web services for automatic
discovery and execution. Figure 2 shows an instance of the
proposed ontology. Cannon weapon web service is
described in WSDL2.0 and semantic information, such as
type (missile), effective range (min and max), speed and hit
accuracy, are described in OWL. We use the semantic
information to dynamically select/deselect Cannon service
according to varying war events. Detailed explanation will
be found in Section 3 with an example of Anti-Surface
Warfare.

<?xml version="1.0" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
targetNamespace="http://selab.mju.ac.kr/Missile/Cannon"
xmlns:tns="http://selab.mju.ac.kr/Missile/Cannon"
xmlns:missile="http://selab.mju.ac.kr/Missile/Cannon"
xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions"
:
<documentation>
<xsd:schema xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:ship="http://selab.mju.ac.kr/ship/missile/schema#">
<ship:KindOfWeapon rdf:ID="Cannon">
<ship:missileType rdf:datatype="http://www.w3.org/2001/XMLSchema#String">
Cannon</ship:missileType>
<ship:minRange
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
30</ship:minRange>
<ship:maxRange
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
36</ship:maxRange>
<ship:speedOfWeapon
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
3079</ship:speedOfWeapon>
<ship:successfulRate
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
90</ship:successfulRate>
</ship:KindOfWeapon>
</xsd:schema>
</documentation>
<types>
:
</types>
<interface name="CannonInterface">
:
</interface>
<binding name="CannonInterfaceHttpBinding"
:
</binding>
<service name="Cannon" interface="tns:CannonInterface">
<endpoint name="CannonEndpoint" binding="tns:CannonSOAPBinding"
:

Figure 2. Ontology Instance: Cannon web service

3. AN EXAMPLE: ANTI-SURFACE

WARFARE SIMULATION

Figure 3 shows the architecture of semantic WS-based
ASuW(Anti-Surface Warfare) simulation. Three federates
have been developed for the Anti-Surface Warfare.

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

 OwnVessel federate is modeled with web services.
It is responsible for movement of the ship and
detection of potential enemies. Based on the target
detected, it searches for the best weapon to employ
using the weapon ontology and strategy ontology.
After engagement, it analyzes the damage level of
the own vessel.

 EnemyVessel federate is also modeled with web
services and has the same logic as OwnVessel
federate.

 C2(Command and Control) federate is
modeled with a HLA-compliant Java object. It
monitors OwnVessel federate and EnemyVessel
federate and visualizes current status of simulation. It
is also responsible for generating various war events,
for example, Target Joined, Typhoon
Approaching, Target Leaved, and etc.

The three federates are distributed over the network and are
interoperable via LRC (Local RTI Component) and WSPRC
(Web Service Provider RTI Component)[8]. In this section,
we will show how OwnVessel and EnemyVessel
federate can reconfigure themselves by dynamically
switching their weapon services according to distance and
engagement strategies.

Figure 3. Architecture of semantic WS based ASuW
simulator

3.1 Ontology Construction

As we construct the weapon system of a vessel by
assembling weapon parts (ex. harpoons, torpedoes, missiles,
etc) in real world, the weapon ontology of a vessel is
constructed by selecting weapons on our ontology interface
as shown in Figure 4.

The OwnVessel federate has SM2, ExtendedSM2,
ChunYongMissile, GoolKeeper,
HeaSungMissile, Cannon, and Torpedo anti-
surface weapons of ROKN (Republic of Korea Navy). Upon
selecting these weapons, the weapon ontology of the own
vessel is automatically generated with WSDL2.0+OWL as
shown in Figure 5.

Figure 4. Ontology Interface of ASuW simulator: SM-2,
ExtendedSM-2, ChungYong, GoolKeeper, HeaSungMissile,

Cannon and Torpedo are selected

<owl:ObjectProperty rdf:ID="weaponOfShip">
<rdfs:range rdf:resource="#KindOfWeapon" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasWeapons">
<rdfs:range rdf:resource="#WeaponsOfAegis" />
</owl:ObjectProperty>
<ship:WeaponsOfAegis rdf:ID="AegisShip">
<ship:weaponOfShip rdf:resource="#SM2" />
<ship:weaponOfShip rdf:resource="#ExtendSM2" />
<ship:weaponOfShip rdf:resource="#ChunYongMissile" />
<ship:weaponOfShip rdf:resource="#GoolKeeper" />
<ship:weaponOfShip rdf:resource="#HeaSungMissile" />
<ship:weaponOfShip rdf:resource="#Cannon" />
<ship:weaponOfShip rdf:resource="#Torpedo" />
</ship:WeaponsOfAegis>
<ship:KindOfWeapon rdf:ID="SM2">
<ship:missileType rdf:datatype="http://www.w3.org/2001/XMLSchema#String">
Missile</ship:missileType>
<ship:minRange
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
74</ship:minRange>
<ship:maxRange
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
167</ship:maxRange>
<ship:speedOfWeapon
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
9600</ship:speedOfWeapon>
<ship:successfulRate
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
85</ship:successfulRate>
<ship:countOfWeapon
rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
30</ship:countOfWeapon>
</ship:KindOfWeapon>
…

Figure 5. OwnVessel Weapon Ontology

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 69ISSN: 1690-4524ISSN: 1690-4524

3.2 Dynamic Simulation

The ASuW simulation cycles 1) movement, 2) detection, 3)
engagement, and 4) analysis phase forever until either the
own vessel or the enemy vessel is destroyed. During the
simulation, OwnVessel federate and EnemyVessel
federate dynamically reconfigure themselves by switching
weapon web services according to the varying war events.
The optimal weapon web service is selected by querying the
following into the ontology.

Query in Native Language:
By considering the current distance between the target, the
weapon type of the target, our weapon types and the number of
remaining weapons, What is the optimal weapon to apply for
now?

Query in MySQL:
select ship:kindof Weapon where
ship:minRange < distance and ship:maxRange
> distance and ship:weaponType ==
weaponTypeAgainst fromTarget and
ship:countofWeapon > 0 from OurWarShip

Table 1 summarizes simulation results and shows weapon
services dynamically selected for various war conditions.

Table 1. Simulation Results

 OwnVessel EnemyVessel
Time Position

(x,y,z)
Selected
Weapon

Position Selected
Weapon

0 90.350.0 SM2 787.352.0 n/a
3 99.349.0 SM2 787.352.0 n/a
7 109.348.0 ChunYong 774.354.0 n/a
10 189.341.0 ChunYong 761.356.0 n/a
15 219.338.0 HaeSung 710.365.0 HaeSung
17 249.336.0 HaeSung 659.374.0 HaeSung

Table 2 summarizes the implementation environment of the
ASuW simulator.

Table 2. Implementation Environment

Federate
Environment

OwnVessel,
EnemyVessel

Command/Control

OS Windows XP Windows XP
Main Memory 2Gb 1Gb
CPU 2.33Ghz 1.5Ghz
Programming
Language JAVA

Platform JAVA 5.0 JDK + Apache Tomcat 4
Scenario DB MySQL DataBase
RTI poRTIco v0.8 [11]

Figure 6 visualizes the simulation results.

Figure 6. Visualization of ASuW Simulation

4. CONCLUSION

In this paper, we proposed a semantic WS (Web Service)-
based methodology for defense modeling and simulation.
Our methodology can greatly extend interoperability of
federates by allowing communications between military
M&S resources (i.e. HLA-based federates) and non-military
M&S resources (i.e. SOA-based federates). Unlike the
HLA-based static simulation where federates and
interactions are fixed in integration time, our methodology
can reconfigure federates on the fly by dynamically
searching, discovering and binding web services according
to the various war events.
In the future, we would like to enhance the ontology
framework to support more complex reconfiguration. Also,
we also plan to explore various war-game case studies to
continuously improve our methodology.

5. REFERENCES

[1] IEEE Std 1516-2000. IEEE standard for modeling

and simulation (M&S) high level architecture (HLA)
- framework and rules, 2000

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

[2] IEEE Std 1516-2000. IEEE standard for modeling
and simulation (M&S) high level architecture (HLA)
– federate interface specification, 2000

[3] Erl T., Service-Oriented Architecture: Concepts,
technology and design, Prentice Hall PTR, 2005

[4] Brutzman D, Zyda M, Pullen M, Morse KL, Extensible
Modeling and simulation Framwork(XMSF)
challenges for Web-based modeling and simulation,
http://www.mocesinstitute.org/xmsf/XmsfWorkshopSy
mposiumReportOctober2002.pdf

[5] Li BH, Chai XD, Di YQ, Yu HY, Du ZH, Peng XY.,
Research on service oriented simulation grid:
Autonomous Decentralized Systems, 2005, IAD 2005,
Proceedings, 2005, pp 7-14

[6] Strelich TP, Adams DP, Sloan WW. Simulation-based
transformation with the service
integration/interoperation infrastructure, Technology
Review Journal, 2005, Vol. 13, No. 2, pp 99-115

[7] Möller B, Dahlin C., A first look at the HLA Evlopved
Web Serive API, In proceedings of Euro Simulation
Interoperability Workshop, 2006

[8] Wenguang WANG, Service-Oriented High Level
Architecture, Simulation Interoperability Standards
Organization, 08E-SIW-022., 2008

[9] Web Services Description Language (WSDL) Version
2.0: RDF Mapping, (2007),
http://www.w3.org/TR/wsdl20-rdf/

 [10] Lee W., Lacy. OWL: Representing Information
Using the Web Ontology Language, Trafford
Publishing., 2005

[11] poRTI,
http://www.porticoproject.org/index.php?title=Main_P
age, Latest Stable Version (Portico v0.8)

ACKNOWLEDGEMENT

This work was supported by Defense Acquisition Program
Administration and Agency for Defense Development under
the contract UD080042AD, Republic of Korea

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 71ISSN: 1690-4524ISSN: 1690-4524

	GS301PZ

