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ABSTRACT

In a numerical entity-characteristic incidence ma-
trix we can use simple or multiple regression
and calculate correlations between pairs of char-
acteristics. However, in order to detect similari-
ties/dissimilarities, interdependence, and multiple
probabilistic causality among the characteristics we
have to group the entities in classes. The num-
ber of uniform classes obtained by coding the given
values of these characteristics depends on the bal-
ance between the class uncertainty and class ambi-
guity. The similarity, interdependence, and multi-
ple probabilistic causality among characteristics are
analyzed. When a set of entities and the abundance
of their components are given, the average within-
entity diversity and the average between-entity di-
versity are studied. The results are applied to the
number of endemic and immigrant plant species in
the Galápagos Islands.

Keywords: Uniform Coding, Class Uncertainty
and Ambiguity, Similarity, Interdependence, Prob-
abilistic Causality, Diversity measure, Endemic and
Immigrant Plant Species, Galápagos Archipelago.

1. INTRODUCTION

In analyzing the relationship between a set of enti-
ties and a set of characteristics, more often than not
the values of these characteristics are different real
numbers with different ranges of possible values.
This allows us to do simple and multiple regression
analysis and to calculate correlations between pairs
of characteristics. Such data, however, do not allow
a significant analysis of the similarity/dissimilarity,
interdependence, and probabilistic causality among

the given characteristics or entities. In order to de-
tect them we have to uniformly coarse-grain the
specific range of each characteristic, grouping the
entities in classes determined by the coding of these
ranges. This grouping of entities in classes reduces
the initial uncertainty of identifying the given enti-
ties but increases the amount of ambiguity induced
by the fact that we make no distinction between the
entities that are grouped in the same class. The
number of possible classes depends on the balance
between class uncertainty and ambiguity. Once the
coarse-graining is performed, we can measure the
dissimilarity between characteristics (using, for in-
stance, the Hamming distance), the global interde-
pendence or connection between characteristics (us-
ing either the well-known Watanabe’s logarithmic
measure or the new quadratic measure proposed in
this paper), and the probabilistic causality between
characteristics, (using both the indicator applied by
Tuldava [1] for the one-cause model and its gener-
alization given here for the multiple-cause model).
Also, if we have a set of entities, like the distinct lo-
cal habitats of a larger region, and a probability dis-
tribution for each entity, reflecting the abundance
of its components (species found in these habitats,
for example), a weighted measure of diversity may
be used for calculating the average within-entity
component diversity and the average between-entity
component diversity in the given set of entities.

The methodology presented here is applied to
the data set provided by the measurement of seven
characteristics in the study of the plant species of
29 islands from the Galápagos Archipelago ([2], [3]).
Special attention is given to the relevance of the
area versus elevation in measuring the local and
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global plant species diversity.

2. METHODOLOGY

Let X = {x1, . . . , xN} be a set of entities and
C = {c1, . . . , cm} a set of characteristics. An in-
cidence N ×m matrix A = [aij ] is given, assigning
a real number aij to each pair (xi, cj) represent-
ing the value of the characteristic cj for the entity
xi. If the characteristics are independent, the main
problem in classification theory is to group the en-
tities in disjoint classes such that the interdepen-
dence inside these classes is large and the interde-
pendence among classes is small, ideally zero. In
many problems, however, the characteristics are not
all independent and the analysis is now focused on
them in order to see which characteristics are sim-
ilar/dissimilar and which characteristics influence
the behaviour of other characteristics in a kind of
probabilistic causality.

Using the given incidence matrix, regression anal-
ysis allows us to approximate the unknown true
probabilistic dependence between characteristics by
rough strictly deterministic, mainly linear, func-
tions, and to calculate the correlation between the
pairs of characteristics. The difficulty of such an
approach is that similarity and causality between
characteristics are not strictly deterministic and, on
the other hand, more often than not, the global
interdependence between more than two charac-
teristics is essential, which cannot be detected by
the standard correlations. The difficulties are even
greater when different characteristics have very dif-
ferent scales of possible values. A possible way of
solving such an impasse is by coarse-graining the
range of possible values of the characteristics from
the incidence matrix.

2.1 Grouping the entities in distinct classes
Coarse-graining of the characteristic values from the
given incidence matrix is based on a coding method
which will be explained in the next subsection. The
coding results in a partition of the entities in dis-
joint classes. Grouping the entities in classes de-
creases the amount of initial uncertainty on the set
of entities, because it is easier to identify a class
than an individual entity, but increases the amount
of ambiguity, because when a class is given, no dis-
tinction among its components is made ([4]). In
other words, if we are too close to a forest each tree
seems to be different whereas if we are too far, all
trees seem to be alike; the secret is to be somewhere
in-between, which means to group the similar trees
in relevant classes.

Let X = {x1, . . . , xN} be a set of entities, and
let:

p(x) > 0,
∑
x∈X

p(x) = 1,

be a probability distribution on X. Let Pn(X) =
{X1, . . . , Xn} be a partition of X in n disjoint sub-
sets. Define:

p(Xi) =
∑
x∈Xi

p(x), (i = 1, . . . , n).

The amount of uncertainty onX measured by Shan-
non’s entropy ([5]):

H(X) = −
∑
x∈X

p(x) log p(x).

Similarly, the amount of uncertainty on the parti-
tion Pn(X) is:

H(Pn(X)) = −
n∑
i=1

p(Xi) log p(Xi).

In the information balance:

H(X)+H(Pn(X) | X) = H(Pn(X))+H(X | Pn(X)),

where H(Pn(X) | X) is the conditional entropy of
Pn(X) given X, and also H(X | Pn(X)) is the con-
ditional entropy of X given Pn(X), we have:

H(Pn(X) | X) =

−
∑
x∈X

p(x)
n∑
i=1

p(Xi | x) log p(Xi | x) = 0,

because the probability of the class Xi conditioned
by the entity x is equal to:

p(Xi | x) =
{

1 if x ∈ Xi,
0 if x /∈ Xi,

which implies:

p(Xi | x) log p(Xi | x) = 0,

for every i = 1, . . . , n, extending by continuity the
function −t log t to be equal to zero at t = 0.
Therefore:

H(X) = H(Pn(X)) +H(X | Pn(X)),

which shows that the uncertainty H(Pn(X)) de-
creases from H(X) to 0, whereas, at the same time,
the amount of ambiguity:

H(X | Pn(X)) =

= −
n∑
i=1

p(Xi)
∑
x∈Xi

p(x | Xi) log p(x | Xi)

increases from 0 to H(X) in the extreme cases when
n = N and n = 1, corresponding to PN (X) =
{{x1}, . . . , {xN}} and P1(X) = {X}, respectively,
where p(x | Xi) is the probability of the entity x
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conditioned by the class Xi. If we want to balance
these two opposite components of H(X), we choose
the number n of classes such that:

H(Pn(X)) ≈ H(X | Pn(X)) ≈ 1
2
H(X).

Quite often the numerical values from the inci-
dence matrix make the entities from X to be all
different. In such a case, p(x) = 1/N , for each
x ∈ X, and if all classes of the partition Pn(X)
contain the same number of entities, namely N/n,
then we have:

p(Xi) =
N

n
× 1
N

=
1
n
, (i = 1, . . . , n),

H(X) = logN, H(Pn(X)) = log n.

In such a case, if we want to balance the uncer-
tainty and ambiguity, we choose the number of
equal classes to satisfy:

log n ≈ 1
2

logN which implies: n ≈
√
N.

2.2 Coarse-graining the range of the values
of the characteristics
The coarse-graining method has been applied long
ago in statistical mechanics, where the macroscopic
space is viewed as a partition of the microscopic
space, and, more recently, in different fields like the
study of proteins ([6]), the spectral analysis ([7]),
and the theory of price fluctuations ([8]). Here we
are interested in coarse-graining the possible val-
ues of the characteristics in an entity-characteristic
incidence matrix. In such an incidence matrix, to
make the different characteristics comparable, we
order in increasing way the values of each charac-
teristic and we split the corresponding range into
the same number, say n, of equal parts; each such
part gets a distinct symbol. For instance, if we
use three symbols, namely 1,2,3, for the three equal
parts of the increasing values of each characteristic,
this means that the initial numerical values of the
respective characteristic are coded into the vaguer
values: ‘small’, ‘medium’, and ‘large’, respectively.
The initial uncertainty about identifying an entity
is larger than the uncertainty about identifying a
class induced by coding, but this decrease in un-
certainty also leads to the creation of an inherent
ambiguity about distinguishing among the entities
making up the same class. If we use uniform cod-
ing for the values of a characteristic yj using four
symbols, say 1,2,3,4, then we arrange in increasing
order the values of this characteristic for the enti-
ties from the given incidence matrix and we assign
the symbol 1 to all values up to the first quartile,
the symbol 2 to all values between the first quartile
and the median, the symbol 3 to the values between

the median and the third quartile, and the sym-
bol 4 to the values larger than the third quartile.
This kind of uniform coding allows a fair compari-
son among the characteristics in spite of their very
different ranges of initial numerical values. At the
same time, we start with a uniform distribution of
the symbols for each characteristic, which amounts
to a maximum entropy distribution of the symbols
assigned to the values taken by each characteris-
tic allowing the largest interdependence among the
characteristics.

Another way of coding is by ignoring the outliers
first and dividing the resulting range into n equal
subintervals before assigning a distinct code symbol
to all the values that belong to the same subinterval
of the range. In the binary case, for instance, we
assign the symbol 0 to all values which are smaller
or equal to the trimmed mean and the symbol 1 to
all the other values.

After the coding is done for each characteristic,
using the same set of n symbols, the columns of
the new incidence matrix are the vectors c1, . . . , cm,
whose N components are the symbols used in the
respective coding. Now, it is easy to compare the
characteristics and a very convenient measure of
dissimilarity between two characteristics cj and ck
is the Hamming distance dH(cj , ck), which is equal
to the number of different components of the vec-
tors corresponding to the columns cj and ck in the
coded incidence matrix ([9]). The corresponding
measure of similarity is N − dH(cj , ck).

The entropic measures of global interdependence
([10]–[12]) may be easily applied to the columns
of the coded incidence matrix. Thus, Watanabe’s
measure of connection among all m characteristics
is:

W (c1, . . . , cm) = H(c1)+. . .+H(cm)−H(c1, . . . , cm),

where H(c1, . . . , cm) is the joint Shannon’s entropy
of the vectors (columns) (c1, . . . , cm). Similarly, for
any subset of characteristics, in particular, the in-
terdependence between two characteristics, say c1
and c2, is:

W (c1, c2) = H(c1) +H(c2)−H(c1, c2).

Instead of looking for a deterministic function
which shows how a characteristic c1 is determined
by the characteristic c2, a rigid causality which may
not exist in fact, we can measure the probabilistic
causality from c2 to c1, given by the decrease in the
uncertainty on c1 if the coded value of c2 is known,
divided by the uncertainty on c1, namely ([1]):

R(c1 | c2) =

= [H(c1)−H(c1 | c2)]/H(c1) = W (c1, c2)/H(c1).
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This entropic measure of the probabilistic causality
of c1 given c2 may be extended to the case when
there are several causes, say c2 and c3, involved.
Thus:

R(c1 | c2, c3) = [H(c1)−H(c1 | c2, c3)]/H(c1) =

= [W (c1, c2, c3)−W (c2, c3)]/H(c1),

W (c1, c2, c3) = H(c1)+H(c2)+H(c3)−H(c1, c2, c3).

Assume now that in the coded incidence matrix:
pj(k) is the relative frequency of the symbol k in
the N rows of the column cj ; p1,2(k, `) is the rela-
tive frequency of the pair of symbols (k, `) in the N
rows of the pair of columns (c1, c2); p1|2(k | `) is the
relative frequency of the symbol k in those rows of
column c1 in which the column c2 has the symbol `.
Then, a new quadratic measure of the interdepen-
dence (or connection) between the columns c1 and
c2 is:

V (c1, c2) =
∑
k

∑
`

p2
1,2(k, `)

p1(k)p2(`)
− 1.

As log x ≤ x − 1, where log is the natural loga-
rithm, the relationship between Watanabe’s mea-
sure W (c1, c2) and the quadratic measure V (c1, c2)
is:

0 ≤W (c1, c2) =

=
∑
k

∑
`

p1,2(k, `) log
p1,2(k, `)
p1(k)p2(`)

≤ V (c1, c2).

Also, If c1 and c2 are independent, then:

p1,2(k, `) = p1(k) p2(`),

for all k and `, which implies V (c1, c2) = 0. We
note that, equivalently,

V (c1, c2) =
∑
k

∑
`

p1|2(k | `)p2|1(` | k)− 1.

2.3 Measuring diversity
Let X = {x1, . . . , xN} be a set of entities. Each
entity xi has the components {yij , j ∈ Ii}. Let ni
be the number of elements of Ii. Thus, the entity
xi has ni components. Let n be the number of
the elements of the set I = I1 ∪ . . . ∪ IN . The
sets I1, . . . , IN are not necessarily disjoint, which
means that different entities could have common
components. We have:

ni ≤ n, (i = 1, . . . , N); n ≤ n1 + . . .+ nN .

For each entity xi, let pij be a probability distribu-
tion on its components {yij , j ∈ Ii}. Thus,

pij > 0, (j = 1, . . . , ni),
ni∑
j=1

pij = 1,

for each i = 1, . . . , N . The diversity of the compo-
nents of the entity xi is measured by the indicator:

D(xi) = ni

1−
∑
j∈Ii

p2
ij

 . (1)

called here the Rich-Gini-Simpson indicator. The
ratio D(xi)/ni is the old Gini-Simpson indicator
([13], [14]) for the probability distribution {pij , j ∈
Ii}. The Gini-Simpson index, very popular with
many ecologists, was proved recently to behave
badly when the number of entities is very large. The
Rich-Gini-Simpson indicator, however, preserves all
qualities of the classic Gini-Simpson index while be-
having very well even if the number of entities is
very large.

If λ1, . . . , λN are positive relative weights as-
signed to the entities, such that:

λi > 0, (i = 1, . . . , N);
N∑
i=1

λi = 1,

the alpha, gamma, and beta diversities are defined
by:

αDiv =
N∑
i=1

λiD(xi), (2)

γDiv = n

1−
∑
j∈I

(
N∑
i=1

λipij

)2
 , (3)

βDiv = γDiv− αDiv > 0, (4)

respectively. The αDiv measures the average
within-entity diversity. The γDiv measures the
diversity of the set of averaged entities. The
βDiv measures the average between-entity diversity,
showing the change in the average diversity when we
compare the local entities x1,. . . ,xN to the global
set of entities X.

The formulas (2)-(4), have been given in [15],
only for the particular case when N = 2, n1 = n2,
I1 = I2, λ1 = λ2 = 1/2, and in the general case
in [16], but both in [15] and [16], the Shannon en-
tropy was used as a measure of diversity instead
of (1). The concepts of alpha, beta, and gamma
diversities were introduced in [17], using the multi-
plicative partitioning of diversity, and extended to
the additive partitioning of diversity (4) in [18] and
[16].

As proposed in [16], the ratio between the alpha
diversity and the gamma diversity may be used as
an index of similarity between the entities of the set
X. We denote:

Sim =
αDiv
γDiv

. (5)
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3. APPLICATION

The methodology discussed in the previous sec-
tion was applied to the analysis of the relation-
ship between the endemic and immigrant plant
species found on the islands of the Galápagos
Archipelago. This archipelago is made up of
fairly recently formed islands of volcanic origin.
The endemic species are considered unique to the
Galápagos Islands, and are therefore only found in
this archipelago. It is assumed that these endemic
species evolved on these islands. The immigrant
species category includes both the species which col-
onized the islands a long time ago, and arrived on
the islands by natural means (dispersed by wind,
birds, ocean currents, etc.) and the more recently
arrived species, presumably brought to the islands
as a result of human activities ([19], [20]). From a
practical standpoint, it is often very difficult, if not
impossible, to determine with certainty the exact
ways in which various species arrived at a particu-
lar location.

The 29 islands listed are our entities (x1: Bal-
tra; x2: Bartolomé; x3: Caldwell; x4: Champion;
x5: Coamaño; x6: Daphne Major; x7: Darwin; x8:
Eden; x9: Enderby; x10: Española; x11: Fernan-
dina; x12: Gardner (near Española); x13: Gard-
ner (near Santa Maria); x14: Genovesa; x15: Is-
abela; x16: Marchena; x17: Onslow; x18: Pinta;
x19: Pinzón; x20: Las Plazas; x21: Rábida; x22:
San Cristóbal; x23: San Salvador; x24: Santa Cruz;
x25: Santa Fé; x26: Santa Maria; x27: Seymour;
x28: Tortuga; x29: Wolf).

There are seven characteristics (c1: ‘Total num-
ber of species observed on the respective island’;
c2: ‘Number of endemic species observed on the re-
spective island’; c3: ‘Number of immigrant species
observed on the respective island’; c4: ‘Area (in
km2) of the respective island’; c5: ‘Elevation (in
m) of the respective island’; c6: ‘Distance (in km)
from Santa Cruz (taken to be the central island of
the archipelago)’; and c7: ‘Area (in km2) of the
adjacent island’). The incidence matrix is given in
Table 1. The columns c1, c2, c4, c6 (and the sixth
component of c5) of the data set were taken from
[2] and [21] (pp. 291-293), whereas the columns c5
(except the sixth component of it) and c7 are taken
from [3].

We note that with respect to the seven character-
istics listed, each entity is distinct, which makes it
almost impossible to detect any similarity or causal-
ity among the columns. Also, the scale of values
is different for different characteristics. Using the
standard techniques from statistical inference, how-
ever, we can apply the regression analysis and cal-
culate the correlations between the given character-
istics.

3.1 Regression analysis
In the paper [22], published in 1963, regression anal-
ysis was applied to an incidence matrix containing
only 17 of the islands listed in Table 1. The focus
was on the total number of species (characteristic
c1) and the main conclusion was that the island
elevation (characteristic c5) had the most signifi-
cant impact on the values taken by c1. Ten years
later, regression analysis was applied again in [2],
this time using the data referring to 29 islands of
the Galápagos Archipelago, and the main conclu-
sion was that the number of plant species (char-
acteristic c1) was influenced mainly by the area of
the island (characteristic c4). If we apply regression
analysis using the computer software Minitab ver-
sion 11 on Windows, focusing not only on the total
number of species (c1) but also on the number of
endemic species (c2) and the number of immigrant
species (c3), we obtain the following main results.
Let us name: c1 ‘Species’, c2 ‘Endemic’, c3 ‘Immi-
grant’, c4 ‘Area’, c5 ‘Elevation’, c6 ‘DistSC’, and c7
‘AdjArea’. After storing the numerical values of the
characteristics from Table 1 in the Minitab columns
c1–c7, using the Minitab command ‘regress c1 4 c4–
c7’, where 4 specifies the number of variables used
in regression analysis, we obtain:
Species=51.4−0.007 Area+0.023 Elevation−0.395
DistSC−0.038 AdjArea
Endemic=16.6−0.004 Area+0.063 Elevation−0.095
DistSC−0.009 AdjArea
Immigrant=34.8−0.003 Area+0.172 Elevation
−0.300 DistSC− 0.029 AdjArea.

Obviously, we can get the corresponding regres-
sion equations for c1, c2, and c3 as functions of only
one or some of the characteristics c4,. . .,c7. It is of-
ten forgotten that these linear functions are only
a rough approximation of the way c1, c2, and c3
depend on the other characteristics. The real de-
pendence among characteristics is not strictly de-
terministic but probabilistic. We get:
Species = 65.3 + 0.0815 Area
Endemic = 21.8 + 0.0193 Area
Immigrant = 43.5 + 0.0692 Area
Species = 16.0 + 0.197 Elevation
Endemic = 8.96 + 0.0499 Elevation
Immigrant = 7.0 + 0.147 Elevation
Species = 106 − 0.315 DistSC
Endemic = 21.2 − 0.0721 DistSC
Immigrant = 74.5 − 0.242 DistSC
Species = 95.9 − 0.136 AdjArea
Endemic = 28.5 − 0.00244 AdjArea
Immigrant = 67.4 − 0.0112 AdjArea
Species = 21.2 + 0.0189 Area + 0.169 Elevation
Endemic = 9.44 + 0.00172 Area + 0.0473 Elevation
Immigrant = 11.8 + 0.0172 Area + 0.121 Elevation

We can see from the above linear functions that
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the island elevation is the most important char-
acteristic as far as the number of different plant
species is concerned. The elevation of islands in the
Galápagos Archipelago is related to the diversity
of habitats found on these islands. The higher the
elevation, the greater the diversity of habitats avail-
able for various plant species, and the greater the
number of vegetation zones present on the islands
[23]. A greater habitat variety is generally linked to
a greater species diversity. Also, regression analysis
shows that where there are many endemic species
there are also many immigrant species, because:
Endemic = 9.41 + 0.292 Immigrant
This suggests that habitats which can sustain large
numbers of immigrant species can also support, at
the same time, large numbers of endemic species.
Thus, as long as a habitat contains sufficient rel-
evant resources, a great species diversity, consist-
ing of both endemic and immigrant species, can be
found there.

3.2 Correlations
Pearson’s correlation is shown in Table 2 for all
pairs of characteristics. The correlation between
endemic and immigrant species is positive and very
strong (0.955), confirming the coexistence between
these two categories of plant species. Again, the
correlation between the number of plant species and
elevation is larger than that between the number
of plant species and the area of the respective is-
land. Both the numbers of endemic species and
immigrant species have weak negative correlations
with the area of the adjacent island and the dis-
tance to the centre of the Archipelago, respectively.

3.3 Coarse-graining
We switch from the initial numerical values of the
characteristics to symbols after grouping the 29
islands, as uniformly as possible, in four disjoint
classes (the four-symbol coding) and in two dis-
joint classes (the binary coding). This is equivalent
to introducing the symbol 1 for ‘very small’, 2 for
‘small’, 3 for ‘large’, and 4 for ‘very large’, in the
four-symbol coding, and, respectively 0 for ‘small’,
and 1 for ‘large’ in the binary coding.

For c1 (Species), for instance, we use the Minitab
command ‘describe c1’ which gives the minimum
value 2.0, the first quartile 11.0, the median 44.0,
the third quartile 100.5, and the maximum value
444.0. Then, the four-symbol coding uses the com-
mand:
code (0.0:11.0)1 (11.0:44.0)2 (44.0:100.5)3
(100.5:500.0)4 c1 c11
The column c11 will contain the values of the char-
acteristic c1 for the 29 islands after the four-symbol
coding. Similarly, using:
code (0.0:44.0)0 (44.0:500)1 c1 c12

the column c12 will contain the values of the charac-
teristic c1 for the 29 islands after the binary coding.
If two coding intervals overlap, then the first assign-
ment matters. Thus 44.0, from the last command,
gets the symbol 0. Table 3 contains the incidence
matrix after the four-symbol coding and the binary
coding are performed, respectively.

3.4 Similarity
The values of the Hamming distance dH(ci, cj) be-
tween the pairs of characteristics from the four-
symbol incidence matrix and from the binary inci-
dence matrix are given in Table 4. As the Hamming
distance counts the number of different values of
two vectors with the same number of components, it
measures the dissimilarity between the correspond-
ing characteristics. Therefore, a small value of it
means a large similarity. The largest similarity is
between the endemic species and immigrant species.
Also, both the endemic species and the immigrant
species have more similarity with the corresponding
island area than with the corresponding island ele-
vation. Let us note that if the Hamming distance is
calculated for the initial incidence matrix, we obtain
that there is no similarity between the number of
endemic species and the elevation of the correspond-
ing island (the Hamming distance between them is
equal to 29), whereas the similarity between the
same characteristics is 18 (the Hamming distance is
11) after the four-symbol coding and 25 (the Ham-
ming distance is 4) after the binary coding. This
shows that the coarse-graining is necessary if we
want to detect any kind of similarity.

3.5 Interdependence
Watanabe’s measure of global interdependence may
be easily calculated for the coded incidence matri-
ces. For the four-symbol coding we obtain the val-
ues:
W (c1, c4) = 0.616697;W (c1, c5) = 0.495887;
W (c1, c6) = 0.0954175;W (c1, c7) = 0.102132;
W (c2, c4) = 0.700586;W (c2, c5) = 0.728960;
W (c2, c6) = 0.172981;W (c2, c7) = 0.182142;
W (c3, c4) = 0.559629;W (c3, c5) = 0.393402;
W (c3, c6) = 0.151990;W (c3, c7) = 0.200251;
W (c1, c4, c5) = 1.57796;W (c1, c6, c7) = 0.98434;
W (c2, c4, c5) = 1.67118;W (c2, c6, c7) = 1.14579;
W (c3, c4, c5) = 1.55065;W (c3, c6, c7) = 1.02288.

These values show that the total number of plant
species, the number of endemic species, and the
number of immigrant species, respectively, have a
stronger interdependence with the corresponding is-
land area and elevation and a much weaker inter-
dependence with the distance to the centre of the
archipelago and the area of the adjacent island.

If we use the quadratic measure of interdepen-
dence we obtain for the binary incidence matrix
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from Table 3:
V (c2, c4) = 0.742880;V (c2, c5) = 0.523900;
V (c3, c4) = 0.630861;V (c3, c5) = 0.429693,
which show that the number of plant species in the
Galápagos Islands depends more on the area than
on the elevation and this dependence is larger for
the endemic species than for immigrant species.

3.6 Probabilistic causality
For the binary incidence matrix from Table 3 we
obtain the following values for the one-cause and
two-cause probabilistic causality:
R(c1 | c4) = 0.637702;R(c1 | c5) = 0.420846;
R(c1 | c6) = 0.000802;R(c1 | c7) = 0.007940;
R(c2 | c4) = 0.637702;R(c2 | c5) = 0.420846;
R(c2 | c6) = 0.021317;R(c2 | c7) = 0.000802;
R(c3 | c4) = 0.527942;R(c3 | c5) = 0.340000;
R(c3 | c6) = 0.007349;R(c3 | c7) = 0.001066;
R(c1 | c4, c5) = 0.75544;R(c1 | c6, c7) = 0.01833;
R(c2 | c4, c5) = 0.75544;R(c2 | c6, c7) = 0.02666;
R(c3 | c4, c5) = 0.58118;R(c3 | c6, c7) = 0.01992.

These values show, convincingly, that the area of
the corresponding island and its elevation (in this
order) are the essential factors in the probabilistic
relationship with the number of different types of
plant species.

3.7 Species diversity
We apply here the formalism from section 2.3. In
this context, the entities are the 29 islands, taken
as habitats. We focus on the columns c1, c2, c3, c4,
and c5 from Table 1. Each habitat has two com-
ponents (component 1 is the set of endemic plant
species, component 2 is the set immigrant plant
species), except x3, x9 and x17 which have only
component 1. Therefore, N = 29, ni = 2, Ii =
{1,2}, for i =1,2,4,. . . ,8,10,. . . ,16,18,. . . ,29, and ni
=1, Ii = {1}, for i =3,9,17, whereas I ={1,2}. The
probability pi1 is the relative frequency of the en-
demic species and pi2 is the relative frequency of
the immigrant species in the habitat xi. These rela-
tive frequencies are obtained by dividing the values
from the line i of the columns c2 and c3, respec-
tively, with the corresponding value from column
c2. Thus, p11 = 23/58 = 0.3966, and p12 = 35/58 =
0.6034, and so on, down to p29,1 = 12/21 = 0.5714,
and p29,2 = 9/21 = 0.4286 . When the area of the
habitats is taken into account, the corresponding
relative weights are obtained from column c4 of Ta-
ble 1 according to the formula:

λi =
area(xi)

area(x1) + . . .+ area(x29)
, i = 1, . . . , 29.

When the elevation of the habitats is taken into
account, the corresponding relative weights are ob-
tained from column c5 of Table 1 according to the

formula:

λi =
elev(xi)

elev(x1) + . . .+ elev(x29)
, i = 1, . . . , 29.

For instance, λ1 = 25.09/7851.18, for area weight-
ing, and λ1 = 150/10493, for elevation weighting.

Using two decimals, the relative area weights are:

λ1 = 0.00, λ2 = 0.00, λ3 = 0.00,
λ4 = 0.00, λ5 = 0.00, λ6 = 0.00,
λ7 = 0.00, λ8 = 0.00, λ9 = 0.00,
λ10 = 0.01, λ11 = 0.08, λ12 = 0.00,
λ13 = 0.00, λ14 = 0.00, λ15 = 0.59, (6)
λ16 = 0.02, λ17 = 0.00, λ18 = 0.01,
λ19 = 0.00, λ20 = 0.00, λ21 = 0.00,
λ22 = 0.07, λ23 = 0.07, λ24 = 0.12,
λ25 = 0.00, λ26 = 0.02, λ27 = 0.00,
λ28 = 0.00, λ29 = 0.00.

Using two decimals, the relative elevation weights
are:

λ1 = 0.01, λ2 = 0.01, λ3 = 0.01,
λ4 = 0.00, λ5 = 0.00, λ6 = 0.01,
λ7 = 0.02, λ8 = 0.00, λ9 = 0.01,
λ10 = 0.02, λ11 = 0.14, λ12 = 0.00,
λ13 = 0.02, λ14 = 0.01, λ15 = 0.16, (7)
λ16 = 0.03, λ17 = 0.00, λ18 = 0.07,
λ19 = 0.04, λ20 = 0.00, λ21 = 0.03,
λ22 = 0.07, λ23 = 0.09, λ24 = 0.08,
λ25 = 0.02, λ26 = 0.06, λ27 = 0.01,
λ28 = 0.02, λ29 = 0.02.

The values of the diversity index D(xi), measur-
ing the local plant diversity on the islands xi, (i =
1,2,. . . ,29), are:

D(x1) = 0.95719 D(x2) = 0.87409
D(x3) = 0.00000 D(x4) = 0.92160
D(x5) = 1.00000 D(x6) = 0.95062
D(x7) = 0.84000 D(x8) = 1.00000
D(x9) = 0.00000 D(x10) = 0.78478
D(x11) = 0.93884 D(x12) = 0.82878
D(x13) = 0.64000 D(x14) = 0.99750
D(x15) = 0.76280 D(x16) = 0.99039
D(x17) = 0.00000 D(x18) = 0.91679
D(x19) = 0.84877 D(x20) = 0.75000
D(x21) = 0.97959 D(x22) = 0.71301
D(x23) = 0.89986 D(x24) = 0.67273
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D(x25) = 0.99063 D(x26) = 0.76213
D(x27) = 0.92562 D(x28) = 1.00000
D(x29) = 0.97959

Applying the formulas (1)-(5) we obtain the fol-
lowing numerical values:

(a) For the relative area weights (6):

αDiv = 0.780552, γDiv = 0.792200,
βDiv = 0.011648, Sim = 0.985297.

(b) For the relative elevation weights (7):

αDiv = 0.825584, γDiv = 0.927908,
βDiv = 0.102324, Sim = 0.889726.

(c) For the relative equal weights:

λi = 1/29, (i = 1, . . . , 29),

we obtain the corresponding values:

αDiv = 0.790528, γDiv = 0.999980,
βDiv = 0.209453, Sim = 0.790544.

A on-going debate in island biogeography focuses
on whether the area or the elevation is more relevant
for the species diversity found in various habitats.
The answer is not an easy one. When equal weights
are taken into account, then diversity is measured
by taking only the species abundance into account.
From the above data it is obvious that there is not
much difference in the within-habitat diversity for
the three kinds of relative weights taken into ac-
count. The gamma diversity, the similarity, and the
between-habitat diversity, however, are more differ-
ent. Compared to the case of equal weights, there
is less between-habitat diversity when the elevation
is taken into account and even less between-habitat
diversity when the area is taken into account. Sim-
ilarity between local habitats and the region con-
taining all habitats is larger when the elevation is
taken into account and very large, close to the max-
imum value 1, when the area is taken into account.
We cannot conclude, however, that area is more rel-
evant than elevation for the simple reason that, in
this case, the range of the area and the range of
the elevation are very different. The equal weights
correspond to the uniform distribution, which has
the Shannon entropy equal to:

Huniform = ln 29 = 3.36730.

The distribution (7) of the island elevation is not
uniform, its entropy being:

Helevation = −
29∑
i=1

λi lnλi = 2.79883,

whereas the distribution (6) of the island area is
even less uniform, with an entropy equal to:

Harea = −
29∑
i=1

λi lnλi = 1.44442.

Indeed, according to Table 1, Isabela, the entity x15,
has a tremendously large area compared to all the
other islands, overshadowing the contribution of the
smaller islands to the diversity of the whole region
when areas are taken into account. This is why, in
the case (a) mentioned above, the gamma diversity
is almost equal to the alpha diversity, and the sim-
ilarity between the averaged local islands and the
entire Archipelago is very high. There are also dif-
ferences between the local elevation of the different
islands of the Archipelago, but the distribution (7)
of the relative weights is more uniform than the dis-
tribution (6) of the relative area weights, as shown
by the corresponding values of the Shannon entropy
given above.

4. CONCLUSION

In an incidence matrix where the rows are enti-
ties, the columns are characteristics and the en-
tries are real numbers, we can do the regression
analysis and calculate correlations. If, however,
we want to analyze the similarity, interdependence,
and probabilistic causality between characteristics
or between entities, we have to coarse-grain first
the range of values taken on by characteristics, clas-
sifying the entities into classes. This paper deals
with coarse-graining based on keeping the right bal-
ance between uncertainty and ambiguity induced by
this grouping of entities into disjoint classes. Af-
ter coarse-graining, we may use the resulting coded
incidence matrix in order to detect the dissimilar-
ity (using the Hamming distance), interdependence
(using both Watanabe’s logarithmic measure and
a new quadratic measure proposed in this paper),
and probabilistic causality (using Tuldava’s mea-
sure and a generalization of it) between characteris-
tics or between entities. Also, if we have a set of en-
tities, like the local habitats of a larger region, and
a probability distribution reflecting the abundance
of some components (species living in those habi-
tats, for example) of these entities, a new weighted
measure of diversity, called the Rich-Gini-Simpson
quadratic index, is defined in this paper and used
for calculating the average within-component diver-
sity and the average between-component diversity
in the given set of entities. This new index preserves
all the properties of the classic Gini-Simpson index,
which is used by many ecologists, but also behaves
very well when the number of distinct species is very
large, a case where the Gini-Simpson index is not
suitable to be used, as shown recently by Jost ([24],
[25]). An application involving the endemic and im-
migrant plant species from 29 Galápagos Islands is
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discussed, and special attention is given to the rele-
vance of the area versus elevation in measuring the
local and global plant species diversity.
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Table 1: The initial numerical incidence matrix.

c1 c2 c3 c4 c5 c6 c7
x1 58 23 35 25.09 150 0.6 903.82
x2 31 21 10 1.24 109 26.3 572.33
x3 3 3 0 0.21 114 58.7 170.92
x4 25 9 16 0.10 46 47.4 0.18
x5 2 1 1 0.05 10 1.9 903.82
x6 18 11 7 0.34 119 8.0 903.82
x7 10 7 3 2.33 168 290.2 2.85
x8 8 4 4 0.03 10 0.4 903.82
x9 2 2 0 0.18 112 50.2 0.10
x10 97 26 71 58.27 198 88.3 0.57
x11 93 35 58 634.49 1494 95.3 4669.32
x12 58 17 41 0.57 49 93.1 58.27
x13 5 4 1 0.78 227 62.2 0.21
x14 40 19 21 17.35 76 92.2 129.49
x15 347 89 258 4669.32 1707 28.1 634.49
x16 51 23 28 129.49 343 85.9 59.56
x17 2 2 0 0.01 25 45.9 170.92
x18 104 37 67 59.56 777 119.6 129.49
x19 108 33 75 17.95 458 10.7 903.82
x20 12 9 3 0.23 10 0.6 903.82
x21 70 30 40 4.89 367 24.4 572.33
x22 280 65 215 551.62 716 66.6 0.57
x23 237 81 156 572.33 906 19.8 1.24
x24 444 95 349 903.82 864 0.0 0.03
x25 62 28 34 24.08 259 16.5 903.82
x26 285 73 212 170.92 640 49.2 0.01
x27 44 16 28 1.84 100 9.6 25.09
x28 16 8 8 1.24 186 50.9 4669.32
x29 21 12 9 2.85 253 254.7 2.32

Table 2: The correlations between characteristics.

c1 c2 c3 c4 c5 c6
c2 0.974
c3 0.998 0.955
c4 0.616 0.618 0.609
c5 0.738 0.792 0.714 0.750
c6 −0.186 −0.181 −0.186 −0.109 0.000
c7 −0.139 −0.105 −0.147 0.037 0.257 −0.107
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Table 3: The four-symbol coding and the binary coding.

c1 c2 c3 c4 c5 c6 c7 c1 c2 c3 c4 c5 c6 c7
x1 3 3 3 3 2 1 3 1 1 1 1 0 0 1
x2 2 3 2 2 2 2 3 0 1 0 0 0 0 1
x3 1 1 1 1 2 3 3 0 0 0 0 0 1 1
x4 2 2 2 1 1 3 1 0 0 0 0 0 1 0
x5 1 1 1 1 1 1 3 0 0 0 0 0 0 1
x6 2 2 2 2 2 1 3 0 0 0 0 0 0 1
x7 1 1 1 2 2 4 2 0 0 0 0 0 1 0
x8 1 1 2 1 1 1 3 0 0 0 0 0 0 1
x9 1 1 1 1 2 3 1 0 0 0 0 0 1 0
x10 3 3 4 3 3 4 1 1 1 1 1 1 1 0
x11 3 4 3 4 4 4 4 1 1 1 1 1 1 1
x12 3 2 3 2 1 4 2 1 0 1 0 0 1 0
x13 1 1 1 2 3 3 1 0 0 0 0 1 1 0
x14 2 2 2 3 1 4 2 0 0 0 1 0 1 0
x15 4 4 4 4 4 2 3 1 1 1 1 1 0 1
x16 3 3 2 4 3 3 2 1 1 0 1 1 1 0
x17 1 1 1 1 1 2 3 0 0 0 0 0 0 1
x18 4 4 3 3 4 4 2 1 1 1 1 1 1 0
x19 4 3 4 3 3 2 3 1 1 1 1 1 0 1
x20 2 2 1 1 1 1 3 0 0 0 0 0 0 1
x21 3 3 3 3 3 2 3 1 1 1 1 1 0 1
x22 4 4 4 4 4 3 1 1 1 1 1 1 1 0
x23 4 4 4 4 4 2 2 1 1 1 1 1 0 0
x24 4 4 4 4 4 1 1 1 1 1 1 1 0 0
x25 3 3 3 3 3 2 3 1 1 1 1 1 0 1
x26 4 4 4 4 4 3 1 1 1 1 1 1 1 0
x27 2 2 2 2 2 1 2 0 0 0 0 0 0 0
x28 2 2 2 2 2 3 4 0 0 0 0 0 1 1
x29 2 2 2 2 3 4 2 0 0 0 0 1 1 0

Table 4: The Hamming distance between characteristics.

c2 c3 c4 c5 c6 c7 c2 c3 c4 c5 c6 c7
c1 4 5 10 12 24 21 2 1 2 4 15 16
c2 9 8 11 24 17 3 2 4 17 14
c3 10 15 25 20 3 5 16 15
c4 9 24 18 4 15 16
c5 21 22 13 18
c6 25 23
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