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ABSTRACT

Our ultimate goal is to design transportation net-
works whose dynamic performance metrics (e.g. pas-
senger throughput, passenger delay, and insensitivity
to weather disturbances) are optimized. Here the fo-
cus is on optimizing static features of the network that
are known to directly affect the network dynamics.
First, we present simulation results which support a
connection between maximizing the first non-trivial
eigenvalue of a network’s Laplacian and superior air-
port network performance. Then, we explore the ef-
fectiveness of a tabu search heuristic for optimizing
this metric by comparing experimental results to the-
oretical upper bounds. We also consider generating
upper bounds on a network’s algebraic connectivity
via the solution of semidefinite programming (SDP)
relaxations. A modification of an existing subgraph
extraction algorithm is implemented to explore the
underlying regional structures in the U.S. airport net-
work, with the hope that the resulting localized struc-
tures can be optimized independently and reconnected
via a “backbone” network to achieve superior network
performance.

1. INTRODUCTION

The current hub-and-spoke topology of the U.S air
transport network is ill-equipped to handle the three-
fold demand increase projected for the coming decade
[13]. We are interested in developing rigorous meth-
ods for improving the transportation network topol-
ogy. With this in mind, our goal is twofold: (1) to
establish relationships between global network met-
rics and airport network performance measures, and
(2) develop algorithms that exploit these relationships
as part of a larger optimization framework. Comput-
ing global network metrics first requires that we define
what is meant by a “network” in our current context.
For our purposes, a network is a simple (connected)
graph G = (N,E), where N is the set of n nodes

and E is the set of undirected edges between nodes.
Of course air flights are directed, but here we assume
that if a flight exists from one airport to another, the
reverse flight also exists. Thus feasible flight direction
need not be encoded in the static network definition.
Such networks are typically given by an n × n adja-
cency matrix A, where aij = 1 if there is an edge
(i, j) ∈ E connecting nodes i and j and aij = 0 oth-
erwise. In our application, aij = 1 is equivalent to
the existence of a direct flight between airports i and
j. Given this network definition, we wish to uncover
functional dependencies of dynamic performance of
the airport network on explicit topological variables
and implicit topological functions that would allow us
to optimize network performance in terms of topologi-
cal variables. Section 3 describes our use of simulation
to gain insight into these functional dependencies.

2. METRICS OF INTEREST

The network performance measures with which we are
currently concerned are average time in air, average
holding time, average number of hops, average dis-
tance traveled (averages taken over all flights) and the
average number of planes in queue over all airports in
the network. Here a “hop” refers to a direct flight
between two airports in the network. So, the number
of hops required for a flight is equivalent to the num-
ber of edges that must be traversed in the network
representation to travel from origin airport to desti-
nation airport. These measures are subject to a par-
ticular dynamic instance of the static network G, i.e.,
a schedule of flights through the network. Initially, we
sought to determine how two popular network metrics
correlated with these performance measures.

The first metric is the algebraic connectivity of the
network, λ2, which is the first non-trivial eigenvalue of
the network’s Laplacian. The Laplacian L is defined
by

L = D − A (1)

where D is the diagonal matrix of node degrees. The
degree of a node i is the number of edges in G inci-
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dent to i. As before, A is the adjacency matrix of G.
The λ2 metric can be interpreted as a measure of the
network’s connectivity, and is a metric relevant to the
system’s propensity to “synchronize”, i.e., behave in a
regular or predictable manner while maintaining sta-
bility. (see, e.g., [4],[14]). A λ2 of zero means that the
network is disconnected. Second eigenvalues near zero
suggest a nearly disconnected network, while a large
λ2 is consistent with high connectivity. (see, e.g., [2]).

The second metric of interest is s(G). Given an
undirected graph G with edge set E define

s(G) =
∑

(i,j)∈E

didj . (2)

Here di is the degree of the ith node in the network.
The s(G) metric is strongly related to assortativity,
the extent to which high degree nodes are adjacent
to other high degree nodes. Graphs with large s(G)
typically display a more hub-like topology, much akin
to the current U.S. air transport network. (see, e.g.,
[10]). The following section summarizes our early ex-
perimental results regarding the connection between
airport network performance measures and the two
metrics as defined above.

3. NUMERICAL RESULTS

To explore the connection between s(G), λ2 and air-
port network performance, we developed the Airport
Network Simulation Program (ANSP), a tool which
allows the user to simulate the dynamic aspects of a
customized airport network. Alterable input param-
eters include (but are not limited to) a network ad-
jacency matrix, airport capacities, origin-destination
pairs for flights, and three-dimensional flight paths.
All networks must be simple and connected. A module
also exists which keeps track of pairwise airplane sep-
aration throughout the simulation, so that Required
Navigation Performance (RNP) constraints can be en-
forced. The simulation is written in C, and a Fortran
driver code allows for batch runs and more flexible
control of ANSP in a Linux/Unix environment.

As an early experiment to gauge the relationship
between our two network metrics of interest and net-
work performance, we generated a collection of coun-
terparts to the 336 node 1990 U.S. airport network
— each heuristically rewired using tabu search (see
[12]) to achieve target levels (i.e., minimization and
maximization) of the global network metrics λ2 and
s(G).

Tabu search is a metaheuristic — i.e., a heuristic
that can be embedded as a subroutine within other
heuristics — that controls the search trajectory of a

traditional local search so that many locally optimal
solutions can be uncovered. Here “trajectory” refers
to the sequence by which feasible solutions are visited
by the algorithm from one iteration to the next. Of
particular importance here is the set of moves that are
allowed to be made. Given a particular graph G, we
define the set of neighboring solutions to consist of all
graphs obtainable from G by “swapping” any pair of
edges as long as the original network’s degree distribu-
tion is preserved and the graph is connected. A swap
is performed by first identifying a set of four nodes,
consisting of two pairs of adjacent nodes. Then, the
two edges corresponding to these adjacencies are re-
moved from the graph, and two edges are added such
that each node is newly adjacent to a node in the set
of four with which is was not originally paired. Special
care must be taken so that a swap does not disconnect
the graph. At each iteration of the tabu search proce-
dure we chose to implement the first improving swap
encountered — i.e., the first swap leading to an im-
proved network metric — while generating the neigh-
borhood of allowable moves. At this juncture only the
most basic features of tabu search (aspiration criterion
and tabu list) have been employed.

Early experiments (see Figure 1) demonstrate that
the 1990 U.S. airport network topology with heuris-
tically maximized λ2 exhibits the “best” overall per-
formance when the performance metrics are: time av-
erage number of customers in queue over all airports,
average number of hops for each flight, average time
in air for each flight, average distance traveled by each
flight, average holding time for each flight.

4. REGIONAL SUBSTRUCTURES

The tabu search routines described above optimize
over the entire network structure and do not isolate
regional substructures during the optimization pro-
cess. In reality, however, airport networks can be par-
titioned geographically by regional carriers. A supe-
rior rewiring algorithm might take advantage of this
partitioning by optimizing each disjoint component in-
dependently, and then reconnecting the components
with a secondary objective in mind. Chung and Lu [8]
provide a local subgraph extraction algorithm, which
we modified to allow for arc distances of any real
length (as opposed to arcs of unit length). The algo-
rithm requires four inputs, k ∈ Z

+, l ∈ Z
+, l′ ∈ R

+,
and a simple graph G. By “simple” we mean a con-
nected, undirected graph with no self loops or mul-
tiples edges. The algorithm systematically removes
arcs from G in order to expose the underlying sub-
structure. First, all arcs of length larger than l′ are
removed. We then create an arbitrary ordering of the
remaining arcs, as the resulting extraction is indepen-
dent of the initial ordering. Each arc is considered
in turn. For the current arc e, the number of arc-
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Figure 1: A graphical performance comparison be-
tween the 1990 U.S. airport network and its rewired
counterparts
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disjoint paths with at most l arcs passing through e
is counted. If this number exceeds k, then the arc is
deleted from the network. Otherwise, it is retained
and the next arc in the ordering is considered. Once
the algorithm cycles through all remaining arcs in the
list, without executing the removal procedure, the al-
gorithm is terminated. This modified algorithm was
tested on the 1990 U.S. airport network (see Figure
2). For the majority of k, l, l′ parameters tested, the
algorithm extracted subgraphs corresponding to the
western U.S., the northeast, and the southeast. The
subgraphs correspond to geographic areas where re-
gional carriers are likely to operate.

Figure 2: Two applications of the subgraph extraction
algorithm to the 1990 U.S. airport network; top, k =
3, l = 4, l′ = 600.0 (kilometers); bottom, k = 2, l =
2, l′ = 500.0

5. UPPER BOUNDS FOR λ2

It is worth considering the extent to which our tabu
search heuristic succeeds in maximizing the λ2 metric.
An upper bound on λ2 is given for general graphs in
[19]. Let G be a graph and let s and t be any two
non-adjacent nodes in G. It follows that

λ2(G) ≤
1

2
(ds + dt), (3)

where di denotes the degree of node i in G. Thus if
a graph G contains two non-adjacent nodes of degree

one, then we must have λ2(G) ≤ 1. This result holds
for the 336 node 1990 U.S. airport network. It has
also been shown that for a graph G with node set N

λ2(G) ≤
n

n − 1
min
i∈N

{di}. (4)

Thus, if at least one node has degree one then the
bound is n/(n−1) which is nearly 1 for large n. During
our tabu search experiments, a maximum λ2 of 0.97
was realized. It is interesting to note that this value
of λ2 was not achieved while explicitly maximizing λ2,
but rather while minimizing s(G). This pattern has
remained consistent through repeated applications of
our tabu search heuristic to many types of randomly
generated graphs (e.g., geometric, Erdõs-Rényi [11]).
In fact, this relationship is not a coincidence.

Apparently unknown to the authors of [15], s(G)
is equivalent to a well known metric in computational
chemistry. For a (chemical) network, the general
Randić index Rα(G) is defined as the sum of prod-
ucts (di × dj)

α over all edges (i, j) of G. That is,

Rα(G) =
∑

(i,j)∈E

(di × dj)
α. (5)

Thus, when α = 1, s(G) and R1(G) are equivalent.
In 1975, the chemist Milan Randić [20] proposed the
topological index Rα(G) for α = −1 or − 1/2 under
the name branching index. He explained the utility of
R in measuring the extent of branching of the carbon-
atom skeleton of saturated hydrocarbons. Bollobás
and Erdös [5] generalized this index by allowing α to
take on any real number. An up to date summary of
results for the Randić index can be found in [17]. A
result of particular interest in [18] relating λ2, λn and
Rα(G) is the following theorem.

Theorem Let G be a simple connected graph of order
n. Then

1

2

n∑

i=1

d2α+1
i −

k

2
λn ≤ Rα(G) ≤

1

2

n∑

i=1

d2α+1
i −

k

2
λ2 (6)

where

k =

n∑

i=1

d2α
i −

(
∑n

i=1 dα
i )2

n

is a graph invariant. As we have previously noted
s(G) = R1(G). In addition, if we restrict our atten-
tion to simple connected graphs with a fixed degree
sequence, we see that the all the terms in the upper
and lower bounds are fixed except for the eigenvalues
of the Laplacian, λ2 and λn. It is worth noting that
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these two eigenvalues are precisely the ones linked to
network synchronization in the literature.

Recall that our simulation experiment found those
networks optimized by tabu search to maximize λ2

directly to perform best — better than the networks
which actually exhibited the largest λ2 values, i.e, the
networks for which tabu search explicitly minimized
s(G). This does not mean that the maximization of λ2

as a valid optimization criterion should be abandoned.
The plots in Figure 1 demonstrate that the minimized
s(G) graphs suffer, largely due to excessive holding
times, which our oversimplified system likely fails to
model with sufficient accuracy.

When considering transportation networks in
which all nodes have relatively large degrees, the λ2

bounds presented above may not be sufficiently tight.
For this reason other means of bounding the algebraic
connectivity of simple graphs are needed. Boyd and
Gosh ([6],[7]) formulate a semidefinite program (SDP)
relaxation for this problem. Note that Lij is the ele-
ment in the ith row and jth column of the Laplacian
matrix L.

maximize s

subject to s(I − 11T /n) � L

LT = L

L1 = 0

0 ≤ Lij ≤ 1, i 6= j. (7)

Note that s = λ2, where λ2 is the second eigenvalue
of L. The degree distribution d = (d1, d2, . . . , dn)
associated with the SDP can be fixed by enforcing
the following set of constraints.

Lii = di i = 1, 2, . . . , n. (8)

Because this SDP formulation is a relaxation, the
Lij are unlikely to satisfy the binary requirements of
the discrete optimization problem. Thus, one short-
coming of the the SDP approach is that no feasible
Laplacian for the discrete problem is generated as
part of the solution. However, the SDP problem has
the potential to be used as a subroutine in a branch
and bound algorithm to solve the discrete problem
exactly. A naive approach would be to branch by
fixing one element of the Laplacian returned by the
SDP relaxation to 0 or 1, and resolving. Due to
the computational effort required to solve the SDP
for networks with n > 50, a more viable alternative
might be to develop an approximation algorithm
based on the SDP problem.

6. CONCLUDING REMARKS

First, it is worth considering how good the bounds
are on the Randić index in (6) for the α = 1 case.
Does this mean that optimizing s(G), which appears
to be easier, will automatically optimize λ2 and λn?

In addition to improving the performance of tabu
search and providing better bounds on λ2 it is pos-
sible to formulate optimization models whose goal is
to design a network with maximum λ2. In [6] a bi-
nary optimization problem is formulated that begins
with an initial base graph and a collection of addi-
tional edges E that may be added. The optimization
model adds k edges from E so that λ2 is maximized.
An SDP results by considering a linear relaxation of
the binary constraints. The authors of [6] provide a
heuristic that yields feasible solutions to the binary
optimization model. One application of this model
for transport network design is to assist in decisions
regarding the selection of new routes to add to an ex-
isting network. That is, select k routes from a larger
set of proposed routes so that λ2 is maximized. A
second application is to use as a base graph the re-
sults from the subgraph extraction algorithm. The
set of edges E from which we select k edges would
re-connect the subgraphs in a way that maximizes λ2.

In addition to directly optimizing a particular
static graph metric in the hope of affecting the sys-
tem dynamics it is possible to link network topology
with a given model of the network dynamics. For ex-
ample, in [9] a particular diffusive system dynamics
model led to Ramanujan (expander) graphs as best.
Ramanujan graphs are regular graphs with large al-
gebraic connectivity. Clearly, the complete U.S. air
transport network does not have this structure as
the airports (nodes) are not identical. However, if
a slightly different coupling function is used [9] a dra-
matically different network topology emerges as best.
For this system an optimal topology emerges whose
degree distribution is shown to decay faster than an
exponential (power law). To our knowledge, there is
currently no dynamical system model for the U.S. air
transport network.
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