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ABSTRACT 
 

Recently a new high-throughput biomarker discovery platform 

based on printed glycan arrays (PGA) has emerged. PGAs are 

similar to DNA arrays but contain deposits of various carbohy-

drate structures (glycans) instead of spotted DNAs. PGA-based 

biomarker discovery for the early detection, diagnosis and 

prognosis of human malignancies is based on the response of 

the immune system as measured by the level of binding of anti-

glycan antibodies from human serum to the glycans on the ar-

ray. Since the PGA offer a multitude of markers which can have 

moderate individual diagnostic power they can be combined in 

order to achieve maximal classification precision assessed by 

the popular performance measure area under the ROC curve 

(AUC). This paper presents an empirical analysis of several 

combination approaches including those that are specifically 

designed to maximize the AUC and those that are  not, such as 

Fisher Linear Discriminant, Support Vector Machines and Gen-

eralized Linear Model. The analysis is performed on real-life 

PGA data from three pilot studies involving malignant mesothe-

lioma, lung cancer and ovarian cancer. 
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1. INTRODUCTION 

 

In the last five years a new biomarker-discovery platform has 

emerged based on glycan arrays [4], that has some advantages 

over nucleic acid-based and other platforms. The printed glycan 

arrays (PGA) are similar to DNA microarrays, but contain de-

posits of various carbohydrate structures (glycans) instead of 

spotted DNAs. Most of these glycans can be found on the sur-

faces of normal human cells, human cancer cells, and on the 

surfaces of many human infectious agents such as bacteria, vi-

ruses, and other pathogenic microorganisms. Transformation of 

cells from healthy to pre-malignant and malignant is associated 

with the appearance of abnormal glycosylation on proteins and 

lipids presented on the surface of these cells. The malignancy-

related abnormal glycans are called tumor-associated carbohy-

drate antigens (TACA), [10]. There is growing evidence [1] that 

numerous TACAs are immunogenic, and that the human im-

mune system can generate antibodies against them. Since multi-

ple glycans arrayed on PGAs are either known TACAs or close-

ly related structures, the antibodies present in human sera that 

bind to glycans on PGA can indicate the status of response of 

the immune system to human malignancies [14,15,16]. A proto-

type of PGA with a library of 200 glycan structures was built at 

Scripps Research Institute, La Jolla, California, under the auspi-

ces of the Consortium of Functional Glycomics (CFG), [3]. Fur-

ther development and standardization of the PGA with 211 gly-

cans was conducted at Cellexicon, Inc., La Jolla, in collabora-

tion with Nicolai Bovin of Shemyakin-Ovchinnikov Institute of 

Bioorganic Chemistry, of the Russian Academy of Sciences, 

Moscow, Russia. The “second generation” of PGA was used in 

several pilot studies on early detection of cancer and cancer risk 

supported by the National Cancer Institute. Research and im-

provement of PGA technology and its relevance in diagnostic 

and prognostic applications is currently continuing in the Tumor 

Glycome Research Group at the Thoracic Surgical Laboratory 

at the New York University, School of Medicine, in collabora-

tion with the Shemyakin-Ovchinnikov Institute.  

The advantages of potential PGA-based serum test for ear-

ly detection of cancer and cancer risk can be summarized as 

follows: (a) minimal invasiveness of serum sampling; (b) mini-

mal sampling variability, in contrast to well known heterogenei-

ty of solid tissue samples; (c) stability of antibodies, (d) low 

cost associated with technology; (e) low labor intensity and 

short duration of the test; (f)  broad scope of the test, i.e. the test 

doesn’t have to be narrowly targeted to a particular disease, e.g. 

cancer type. All these advantages make the PGA platform at-

tractive for early detection of disease and for the potential ap-

plication in screening of general population. 

This study is motivated by the need for combination of 

several biomarkers due to relatively moderate discriminatory 

power of individual glycans caused by still limited glycan li-

brary of the early generation of PGA arrays, and due to relative-

ly small sample sizes. During the extensive experimentation in 

pilot studies we have recognized the importance of the area un-

der the ROC curve (AUC) as a consistent and robust perfor-

mance measure of the discriminatory power of classifiers. 

Therefore we have explored some recently proposed combina-

tion approaches that maximize the AUC value, as well as the 

relevance of popular classifiers such as Fisher Linear Discrimi-

nant (FLD), Support Vector Machine (SVM) and Generalized 

Linear Model (GLM) in the context of maximization of AUC. 

In addition to these approaches we have also added Ant Colony 

Optimization (ACO) [6], which is recently gaining popularity in 

biomarker discovery [22, 25]. Our version of ACO uses AUC as 

fitness function.  
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 It is important to mention, that the goal of this paper is not 

to propose PGA-based putative signatures, but rather to evaluate 

various combination methods in the light of AUC and PGA-

based predictors. 

 

 

 

2. PRINTED GLYCAN ARRAYS 

 

A printed glycan array (PGA) consists of a glass slide coated 

with a chemically reactive surface on which various glycans are 

covalently attached using standard amino-coupling chemistry 

and contact printing technology [3]. A PGA slide contains sev-

eral sub-arrays of the entire, currently  available glycan library 

in form of microscopic glycan deposits of size about 80 mi-

crons. The version of the PGA used to generate data presented 

in this paper has two concentrations of glycans (10 and 50 M) 

and eight replicates for each concentration, thus resulting in an 

array of 16 sub-arrays, each containing 211 deposits of unique 

glycan structures, and biotin spots used as a printing control.   

The measurement of binding of human anti-glycan anti-

bodies (AGA) to arrayed glycans is achieved as described in 

[17]. The PGA slide is first incubated with the subject’s serum, 

allowing the binding of serum antibodies to glycans in PGA 

deposits. Serum IgG, IgM and IgA immunoglobulins bound to 

printed glycans are visualized simultaneously with the “combo” 

biotinylated secondary goat anti human IgG, IgM and IgA anti-

bodies (Pierce Biotechnology, Inc., Rockford, IL) and streptavi-

din-Alexa555 (Invitrogen/Molecular Probes, Carlsbad, CA). Flu-

orescence signal intensities that correspond to antibodies bound 

to printed glycans are scanned at 90% laser power, and quanti-

fied with ImaGene software (BioDiscovery, Inc., El Segundo, 

CA). The total relative fluorescence signal intensity values 

(appx. range: 1,000 – 32,000,000 Relative Fluorescence Units) 

are used for further data preprocessing and analyses. The pre-

processing included signal screening for noise, normalization 

and normality transformation. 

The population size of the initial studies involving the ear-

ly generation of PGAs with 211 glycans on the array and which 

are used in this study is shown in Table 1. The choice of these 

studies is made for their diversity in terms of resubstitution 

AUC and imbalance of control and case samples. 

 

 

Table 1: Serum samples used in  pilot PGA-based studies 

 

Study Source Control sample (n1) Case sample (n2) 

Mesothelioma NYUSM Asbestos exposed (65) Malignant mesothelioma (50) 

Lung cancer NYUSM Smokers (49) Adenocarcinoma (46) 

Ovarian cancer MDACC Healthy donors (106) Early aggressive o.c., stage I/II (21) 

NYUSM – Department of Cardiothoracic Surgery, School of Medicine, NYU (Dr. Harvey I. Pass) 

MDACC – MD Anderson Cancer Center, Univ. of Texas (Dr. Karen H. Lu) 

 

 

 

3.   OPTIMAL LINEAR COMBINATION WHICH            

MAXIMIZES AUC 

 

 In this section we briefly discuss advantages of using AUC as 

the performance measure in evaluation of combined multiple 

marker tests, and formulate the optimization problem. 

Suppose a predictor matrix X = [xij] , i = 1,2,…,n, j = 

1,2,…,d where xij is the marker value for i-th patient and j-th 

marker. In our case xij represents a continuous measurement of 

the intensity of binding of human antibodies of patient i against 

glycan structure j deposited on the PGA array. These values are 

usually normalized and transformed before the diagnostic analy-

sis.  The matrix X is associated with a column vector y = [yi] 

where yi are labels for control (yi = 1) and case observations (yi = 

2). In many practical situations the individual markers do not 

provide sufficient discriminatory power, and they have to be 

combined. Simple approach to this is linear combination z = Xw, 

where z is column vector of combined markers and w is column 

vector of combination coefficients, usually in normalized form, 

i.e. ||w|| = 1. The diagnostic test of an unknown patient, whose 

marker values are u = [u1, u2, …, ud]
  can be achieved by testing 

the sign of u w + wo, where wo is a decision point determined, as 

well as w,  from the training set (X, y). There are several popular 

approaches to determine the vector w, for example Fisher Linear 

Discriminant (FLD), Generalized Linear Model (GLM), Support 

Vector Machines (SVM), which are based on essentially similar 

optimization criteria, such as Mahalanobis distance between 

sample means, likelihood of odds to belonging to one of the 

samples, and margin between samples, respectively. The per-

formance of the classifier (w, wo) is often measured by the accu-

racy computed for a test set: 

                                                      

1

1 2

( , , ) ,t o

TN TP
Acc f w

n n


 


Tw y                     (1)                            

where T is matrix of markers of the test set (can be replaced 

with X for resubstitution accuracy), yt are labels for the test set, 

n1 and n2 are the numbers of control and case observations in T, 

while TN (true negatives) and TP (true positives) are numbers of 

correctly classified control and case observations, using the dis-

criminant function ,owt w  where t is a row of T. 

         Although this performance measure is somewhat straight-

forward and natural, it indeed has several drawbacks: (a) the 

measure depends on the decision point wo, (b) the measure is 

largely affected by the sample imbalance, and (c) the measure 

has low resolution, specially in case of smaller samples, which 

notoriously occurs in cross-validation tests. These reasons are 

discussed in [7] and [18]. 

          An alternative measure that doesn’t have these drawbacks 

is the Area Under the ROC curve (AUC).  The ROC curve (Re-

ceiver Operating Characteristic curve) is introduced [24] as a 

graphical tool to evaluate discriminatory accuracy of  binary 

classifiers for various decision points. A single number measure 

for a family of classifiers which entirely eliminates wo, the area 

under the ROC curve, was proposed by [12,5], and is used since 

as a standard in biomedicine and bioinformatics. The best possi-

ble value of AUC (complete discrimination) yields AUC = 1, 

while AUC = 0.5 means that the classifier has no discriminative 
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power). In addition to the advantages mentioned above, the 

AUC also captures the ranking ability of the classifier, which is 

an important notion even more fundamental than classification 

[8]. 

As proposed by [11], the AUC value can be computed for a 

given training, or test set, (X, y) and a given combination vector 

w, without previously deriving the ROC curve:  

2 2 2

2

1 2

( 1) 2
( , )t

S n n
AUC f

n n

 
 yTw  ,             (2) 

where S2 is sum of ranks of rows of Tw taken for case observa-

tions [11]. 

The optimal combination vector can be now estimated from 

the training set: 

 

 2ˆ argmax ( , )f
w

w Xw y                             (3)                                                          

Since (2) has no closed form solution, the optimization must be 

performed by some global optimization approach, such as Ge-

netic Algorithm. Another approach would be to develop a closed 

form of (2) under some simplifying assumptions about the dis-

tributions of control and case samples. This was shown in [23], 

under the assumption that the two samples are normally distrib-

uted with arbitrary covariance matrices. After using the maxi-

mum likelihood estimators for the covariance matrices and 

means, the estimate of the optimal combination vector can be 

expressed in terms of sample covariances and means: 

 

 1

1 2 2 1
ˆ (cov( ) cov( )) ( ( ) ( ))Tmean mean w = X X X X   (4)                                

 

where X1 and X2 are predictor matrices for control and case 

samples respectively. We will refer to this method of optimiza-

tion as Optimal Combination under Normality assumption 

(OCN).  

 Computation of optimal combination w which maxim-

izes AUC under less restrictive assumption than normality is 

investigated by [21,19,20,13]. The approach is based on Gener-

alized Linear Model assumption. The AUC can be generally ex-

pressed [2]: 

 1 2( ) Pr( ), ,j iAUC i I j I   w x w x w            (5)  

                                      

where xk is row vector of markers for patient k from the training, 

or test samples, I1 and I2 are sets of row indices of  matrix X 

which correspond to control and case samples respectively.  

Equation (5) can be extended to: 

 

1 2
1 2

1
( ) ( )j i

i I j I

AUC I 0
n n

 

  w x w - x w >         (6)                                     

where I is indicator function. The function (6) is clearly discrete 

and can not be used by some convenient numerical optimization 

method. Ma and Huang [19,20] have therefore suggested replac-

ing the discrete indicator function with some smooth, monoton-

ically increasing function, such as sigmoid function 

( ) 1/ (1 exp( / ))s z z    . The optimization of AUC(w) can 

then be formulated as: 
 

1 2

ˆ arg max ( )j i
i I j I

s

 

  
w

w x w - x w              (7)                    

To solve (7) we have used the Newton-Raphson method which 

converges very rapidly for a proper choice of parameter , 

which was kept constant throughout the optimization process. 

This algorithm will be referred to as Optimal Combination under 

GLM assumption (OCG). The implementation of the algorithm 

is presented  in Appendix. As shown in the following section, 

the execution speed of this algorithm is close to FLD algorithm. 

 

 

 

 

 

4. EMPIRICAL EVALUATION OF APPROACHES 

 

The comparison of various approaches for finding the optimal 

combination vector w will be done with the reference to the 

“best possible approach” obtained with a global optimization. 

For this purpose we have used genetic algorithm (GA) intro-

duced by [9]. We start with the mesothelioma dataset, for which 

the library of glycans on PGA appeared to be most complete. 

For feature selection we have used the univariate non-parametric 

Wilcoxon-Mann-Whitney rank sum test. The multivariate ap-

proach for feature selection is avoided in this study due to rela-

tively small sample sizes and the risk of over-fitting. The five 

most discriminatory glycans are indicated in Table 2. The table 

also shows the individual AUC values obtained by equation (2).  

Clearly, the individual AUC values are relatively low which jus-

tifies the need for combination of multiple markers.   

 

Table2: Glycan structures for top five glycans determined by 

Wilcoxon-Mann-Whitney rank sum test, for Mesothelioma 

study 

 

Glycan Structure AUC 

Neu5Ac2-3Gal1-4Glc-sp 0.7274 

(Neu5Ac2-8)3-sp 0.6923 

GlcNAc1-6GalNAc-sp 0.6889 

GlcNAc1-4(GlcNAc1-6) GalNAc-sp 0.6868 

Gal1-3GlcNAc1-3Gal1-4Glc-sp 0.6548 

 

The observed (training) AUC values for combination of markers 

for various approaches, AUCO, are shown in Table 3. As seen, 

the best training performance besides the global optimization is 

obtained for OCG and GLM. These approaches are also very 

efficient in terms of execution time (ET). Although the differ-

ences are relatively small, it is desirable to establish their statis-

tical significance. For this purpose we have used paired boot-

strap with replacement with 1000 replications. The box plots of 

the corresponding empirical distributions of differences are 

shown in Figure 1, and the empirical medians are summarized 

in Table 3 (for the variations of medians are used median abso-

lute deviations, MAD).  The figure suggests that the differences 

are statistically significant. This was also verified with paired 

ANOVA test for all six groups, and with non-parametric Wil-

coxon signed-rank test performed for all combinations of pairs 

of approaches. In both cases all  p-values were close to zero. 
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Figure 1: Empirical distributions of paired differences between 

AUC obtained with GA and other approaches generated by 

bootstrap with replacement using 1000 replications in Mesothe-

lioma study. 

 

 

 

Figure 1 and Table 3 are concerned with the resubstitution 

AUC values. In order to evaluate the generalization power of the 

approaches considered above we applied the unbiased repeated 

10-fold cross-validation with 100 repetitions. The results are 

shown in Figure 2. The cross-validation test was applied for 

various set sizes which range from a single glycan up to combi-

nation of seven glycans. The cross-validated AUC value for all 

approaches has reached the maximum at 5 to 6 glycans. The 

curves begin to drop after the glycan sets become larger than six 

(not shown here) which is a consequence of over-fitting.  The 

cross-validation results are summarized in Table 3. It is interest-

ing to notice that SVM has demonstrated the best performance, 

which is however only slightly above GLM (for d = 5) . 

           The box-plots for empirical distributions of paired differ-

ences between GA and other approaches for resubstitution AUC 

for the other two studies listed in Table 1 are shown in Figures 

3 and 4. The figures again indicate small differences, which are 

still statistically significant judging by ANOVA and Wilcoxon 

signed-rank tests. The ranking in resubstitution performance is 

basically similar as for the Mesothelioma study.  
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Figure 2: Cross-validated AUC values for various number of 

markers and various approaches in Mesothelioma study 
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Figure 3: Empirical distributions of paired differences between 

AUC for lung cancer 

 

 

 

 

 

 

Table 3: Observed, bootstrapped and cross-validated AUC for 

Mesothelioma study (n1 = 65, n2 = 50, d = 5) 

 

OCN – optimal combination under normality assumption 

             (equation (4)) 

OCG – optimal combination under GLM assumption  

            (equation (7)) 

FLD –  Fisher Linear Discriminant 

GLM – Generalized Linear Model (without interaction terms) 

ACO – Ant Colony Optimization 

SVM – Support Vector Machine 

GA –   Genetic Algorithm (global optimization)  
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Figure 4: Empirical distributions of paired differences between 

AUC for ovarian cancer 

 

 

 

 

 

 

 

 

Method AUCo Median AUC AUCCV ET (sec) 

OCN 0.8582 0.8729 ± 0.019 0.8046 0.036 

OCG 0.8649 0.8837 ± 0.018 0.8051 0.114 

FLD 0.8566 0.8717 ± 0.019 0.8039 0.105 

GLM 0.8637 0.8754 ± 0.019 0.8106 0.123 

ACO 0.8559 0.8769 ± 0.019 0.7980 2.744 

SVM 0.8578 0.8677 ± 0.018 0.8112 0.324 

   GA   0.8665 0.8877 ± 0.018   0.8054      3.261 
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5. CONCLUSION 

 

The goal of this study was to empirically evaluate several ap-

proaches for combining the multiple test markers based on 

printed glycan array data obtained from three pilot studies, and 

to conclude whether any of these methods is particularly superi-

or in light of the maximization of AUC value. Three of these 

methods (GA, OCN and OCG) are specifically designed to op-

timize AUC, while the others (FLD, ACO, GLM and SVM) are 

not designed for this purpose but are very popular in diagnostic 

classifiers. The paired bootstrap tests have shown that there is a 

small difference in performance of resubstituted AUC value, in 

favor of GA and OCG, but the difference is not substantial 

enough to disfavor approaches as GLM and SVM. Moreover, 

the cross-validated AUC performance evaluated on mesothelio-

ma study has shown that the SVM and GLM provide slightly 

better predictive precision and predictive AUC value than the 

approaches specifically designed to optimize AUC. The rele-

vance of these findings will be reexamined in the near future 

with the next generation of PGA arrays with 300 and 400 gly-

cans, and on larger serum populations.  
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APPENDIX 

 

The OCG algorithms based on equation (7) is implemented 

in MATLAB which supports vectorized functions and rap-

id array index manipulation.  In order to make the pseudo-

code below more concise we will define some basic over-

loaded functions and index manipulation operators, using 

simple examples.  

 

Suppose vectors 1 2 3[ , , ]a a aa  and 1 2 3[ , , ]b b bb , 

then: exp( ) a 1 2 3[exp( ),exp( ),exp( )]a a a , 

 a 1 1 1[ , , ]a a a     , 

* a b 1 1 2 2 3 3[ , , ]a b a b a a ,  

/ a b  1 1 2 2 3 3[ / , / , / ]a b a b a b , 

( )sum a 1 2 3a a a  , ( ,4)rep a  [ | | | ]a a a a   

( ,4)Trep a  [ | | | ]T T T T
a a a a   

( )row A  1 2 3[ ( ) | ( )... | ( )]row row rowA A A , 

([2,2,1,3]) a  
2 2 1 3[ , , , ]a a a a . 

Also ( , )A i  and ( , )A j  denote i-th row and j-th column 

of matrix A respectively.  Finally, we need notion of con-

stant vectors ( ) [1,1,...,1]n e  (n repeated 1’s), and 

( ) [1,2,..., ]n nc .  Using these definitions the gradient g 

and Hessian matrix H of AUC(w) , as well as the optimiza-

tion  process are implemented as follows: 

 

1 1 2  ( ( ( ), );  row rep n nk c                   

2 2 1  ( ( ) , );Trep n nk c                           

{k1 and k2 are (n1n2)-element constant index vectors 

which are generated before the optimization} 

 

1 1z X w ;  2 2z X w ;                     

{X1 and X2 are sub matrices of X which correspond  

 to control and case samples} 

2 2 1 1( ) ( ) z z k z k ;                           

1 2( ) / (1 exp( ))n n p e z ;     

{The vector of sigmoid values} 

 

( );J sum p                                     

{The objective function n1n2 AUC(w)} 

2 2 1 1( , ) ( , )   Z X k X k ; 

*(1 ) / q p p ;   {First derivative of p} 

( , )rep dQ q ; 

( * )sumg Q Z ;     {The gradient} 

* (1 2 ) / r q p ; {The second derivative of p} 

( * ( , ) * ( , ))ijH sum i j  r Z Z ;    

{Elements of the Hessian matrix} 
1

1 ( ) ( );k k k k



  w w H w g w             

{Iterative process, the initial value w1 is determined 

by OCN , eq. (4)} 

1 1| ( ) ( ) |k kJ J   w w   {The stopping criteria} 

  

The equations above could have been implemented in standard 

vector notation, which would however result in a couple of 

hundred times slower execution. 
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