

Electronic Algebra and Calculus Tutor

Larissa FRADKIN and Victor ZERNOV1

 Sound Mathematics Ltd.

11 Mulberry Close, Cambridge, CB4 2AS, UK

1Now at SmartOdds, 53-79 Highgate Road, London, NW5 1TL, UK

ABSTRACT

Modern undergraduates join science and engineering courses

with poorer mathematical background than most

contemporaries of the current faculty had when they were

freshers. The problem is very acute in the United Kingdom

but more and more countries adopt less resource intensive

models of teaching and the problem spreads. University

tutors and lecturers spend more and more time covering the

basics. However, most of them still rely on traditional

methods of delivery which presuppose that learners have a

good memory and considerable time to practice, so that they

can memorize disjointed facts and discover for themselves

various connections between the underlying concepts. These

suppositions are particularly unrealistic when dealing with a

large number of undergraduates who are ordinary learners

with limited mathematics background. The first author has

developed a teaching system that allows such adult learners

achieve relatively deep learning of mathematics – and

remarkably quickly – through a teacher-guided (often called

Socratic) dialog, which aims at the frequent reinforcement of

basic mathematical abstractions through Eulerian

sequencing. These ideas have been applied to create a

prototype of a Cognitive Mathematics Tutoring System

aimed at teaching basic mathematics to University freshers.,

an electronic Personal Algebra and Calculus Tutor (e-

PACT).

Keywords: Undergraduate Mathematics, Socratic Dialog,

Eulerian Sequencing, Cognitive Tutor.

1. INTRODUCTION

Modern undergraduates join science and engineering courses

with poorer mathematical background than most

contemporaries of the current faculty had when they were

freshers. The problem is very acute in the United Kingdom

but with more and more countries adopting less resource

intensive models of teaching mathematics in schools the

problem spreads. University tutors and lecturers spend more

and more time delivering stepping up courses and support

classes, covering the basics. However, most of them still rely

on traditional methods of delivery which presuppose that the

learners have a good memory and considerable time to

practice, so that they can memorize disjointed facts and

discover for themselves various connections between the

underlying concepts. These suppositions are particularly

unrealistic when dealing with a large number of

undergraduates who are ordinary learners with limited

mathematics background, limited memory, limited

proficiency in explanatory reasoning, limited interest in the

subject and limited time to cover a large amount of material,

all exacerbated by limited contact with teachers and limited

study skills.

The first author has developed a teaching system that allows

such adult learners achieve relatively deep learning of

mathematics – and remarkably quickly – through a teacher-

guided (often called Socratic) dialog, which aims at frequent

reinforcement of basic mathematical abstractions through

Eulerian sequencing. The latter is a name for a systematic

approach to mathematics as a language, which allows

students to analyze (sequence) given mathematical

expressions and thus find relevant solution algorithm

(sequence of solution steps). It teaches learners to generate

self-explanations, that is, argue why various steps are to be

taken and not just what these steps are. This is important,

because the amount learned is proportional to the number of

self-explanations generated. Thus, the Eulerian Socratic

dialog involves a teacher asking a series of questions

surrounding a mathematical concept or solution step, and

answering such questions posed by students. In addition, the

teacher often asks what questions the students should ask

themselves to proceed with the solution process. The dialogs

are conducted in a friendly and sometimes humorous manner.

Below we refer to the system as ESD (Eulerian Socratic

Dialog).

While the teaching methodology described above puts a great

emphasis on explanation of abstract mathematical concepts,

it still requires students to do a reasonable number of

exercises and have their understanding of concepts and deep-

level reasoning skills reinforced every time they make a

mistake. This part of the educational process can be

automated with a Cognitive Tutor, a piece of software

containing an artificial intelligence component to track

students' work and tailor its feedback and hints, which

captures teaching expertise, creating an artificial teaching

expert. Two most prominent and relevant systems of this

nature are AutoTutor that is designed to conduct a Socratic

dialog with freshers studying Newtonian mechanics or IT

and a Carnegie Learning System that employs a similar

approach to teaching school algebra and geometry.

2. COGNITIVE TUTORING SYSTEMS

e-PACT has been conceived as a Cognitive Tutor to be

integrated into the ESD mathematics teaching system. A

cognitive tutor is an example of an expert system, an

application that captures expertise of a specialist in a

particular domain. Areas of expertise used in systems of this

nature include the diagnosis of infectious diseases, the

exploration for oil and minerals, the analysis of organic

compounds, income tax planning and calculation, the

operation of an air defence system, the configuration of

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 3 - YEAR 2012104 ISSN: 1690-4524

complex computer systems, and fault diagnosis in a modern

automobile [1]. They all use a knowledge base - a list of

fundamental facts about the domain and the rules that the

human experts use, an inference engine (core) and a graphical

user interface (GUI). Given an uncertainty in building the

knowledge bases there is a danger in relying completely on the

advice of expert systems in making life and death decisions.

However, when a poor decision cannot put anybody or any

business in jeopardy use of expert systems becomes less

controversial.

Despite the initial high hopes use of expert systems is not that

widely spread, because there is more to human expertise than

facts and rules. In particular, most practical educators do not

believe that computers can replace a teacher. Neither do we.

However, there are aspects of teaching that can be automated.

In particular, when learning mathematics there are some

unequivocal facts that have to be mastered, such as algebraic

or calculus rules. The connection between them can be

explained by a teacher but to be internalized by a student the

explanations need much reinforcing. Thus, there is a room for

an expert system that can generate a large number of relatively

simple mathematical exercises and comment on student

mistakes in their solution, constantly reminding them of rules

and definitions. Such a system would operate in a limited

world of basic mathematics and even if some of its responses

were imperfect it could prove a useful teaching tool. We see

no need for such tool once the basics have been mastered. At

this stage students can begin to use traditional textbooks.

Quite a few expert systems of pedagogical nature have been

developed in recent years, with Pittsburgh University and

Carnegie Melon University leading the way. The Pittsburgh

University research revolves around cognitive tutors such as

Andes and later AutoTutor which engage freshers in a

Socratic dialog based on the natural language, simulating the

dialog moves of human tutors. They indicate to students

whether their answers are correct, can generate hints, divide

the problem into different steps and provide proper feedback

for each. The current versions of these tutors are designed to

help college students learn topics in physics and computer

literacy [2] and references therein. The research by Carnegie

Melon University into cognitive mathematics tutors for the

middle school led to creation of the Carnegie Learning

System. Principles behind some of their design ideas can be

found in [3].

Both groups are widely known for their interdisciplinary

approach that combines cognitive psychology with artificial

intelligence. There are other Intelligent Tutoring Systems

based on the Socratic dialog, such as the CIRCSIM-Tutor

designed to teach the first-year medical students the reflex

control of blood pressure. Recently, the Pearson Publishing

House began to offer a comprehensive tutoring system

MyLab [4] which covers many subjects and makes an

extensive use of hinting facilities. It contains a mathematical

module called MyMathLab, but this relies on the traditional

approach to mathematical teaching and makes use of neither

Socratic dialog nor Eulerian sequencing. It thus cannot

promote explanatory reasoning as e-PACT is meant to do.

Practical development of cognitive tutors is now gaining

momentum, e.g. a general Hinting module has been

developed that can be incorporated into any cognitive tutor

[5]. It is designed to help students by giving suggestions,

recommendations etc. It is not optimized for any specific

study area such as mathematics, but implements hinting

strategies, such as the maximum number of hints to select,

meta-information for students, scoring that takes into account

hints etc. A prototype has been created for the generation of

adaptive hints based on the Semantic Web technologies.

Other modern developments in technology enhanced learning

revolve around web based learning environments and agent

based architectures, including animated pedagogical agents

which are used to model social and emotional interactions.

3. ARCHITECTURES OF CURRENT MATHEMATICS

TUTORS

Three major paradigms are used by designers of current

mathematics tutors, Computer-aided assessment (CAA),

Computer-aided instruction (CAI) and Intelligent computer-

aided instruction (ICAI). The CAI type tutors still represent

an overwhelming majority of hundreds of mathematics

software packages that can be found or advertised on the

web. A good example of CAA is Mathletics [6] which

produces a large supply of questions generated at runtime,

each with very complete feedback, including a fully-worked

solution if a student gets an answer wrong. Examples of CAI

applications include guided drill and practice exercises,

computer visualization and computer-facilitated

communication between students and teachers. Well known

current CAI type mathematics tutors for engineering students

are available through HELM [7]. They offer digitized lecture

notes enhanced with hypertext, worksheets and multiple

choice tests. Many students report enjoying the immediate

responsiveness of computer interactions and appreciate the

self-paced and private learning environment. Moreover,

computer-learning experiences often engage the students,

motivate them to learn and increase their independence and

personal responsibility for education.

However, in some applications, especially those involving

abstract reasoning and problem-solving processes, CAI has

not been very effective. Critics claim that poorly designed

CAI systems can even dehumanize or regiment the

educational experience and thus diminish student interest and

motivation. This is not surprising, since digitized lecture

notes offer only a marginal advance on textbooks, simply

alleviating search for relevant material. However, if students

have no proficiency in deep-level reasoning and lecture notes

offer no such reasoning themselves, it is difficult to expect

much pedagogical gain from such notes, whether they are

hardcopy or digitized.

Open object oriented learning environments are a newer

development in CAI aiming to provide users with one

platform which allows them an easy access to various

graphical, modeling and pedagogical tools (agents) as well as

easy interaction between different learners and learners and

human tutors. While an exciting challenge to computer

science and potentially an interesting tool to use in a

classroom, they are subject to the same criticisms as offered

above of old style CAI.

The ICIA tutors come closer to implementing constructivist

epistemology. The architectures of classical cognitive tutors

include procedural representations, conceptual structures and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 3 - YEAR 2012 105ISSN: 1690-4524

production rules while newer architectures also have multiple

soft constraints (e.g. neural networks, fuzzy production

systems) as well as dialog moves generators. Propositional

representations, neural networks and fuzzy production systems

are relevant only to tutors involved in processing natural

language. Procedural representations are used when the

ordering of reasoning steps is important, as it is when teaching

mathematics. Production rules are relevant to all cognitive

tutors, since according to ACT-R theories [8], cognitive skills

are based on production rules. These two representations have

been thoroughly discussed by designers of two major

Cognitive Tutors developed to instruct in technical subjects

and mentioned above, AutoTutor and the Carnegie Learning

System.

Both groups emphasize that the main difficulty lies in

designing a Cognitive Model, that is, the part of the tutor that

is charged with the task of interpreting the student

performance and making instructional decisions based on this

interpretation. To clarify the concept of a Cognitive Model,

the one used in AutoTutor is based on the idea of curriculum

scripts. These are “well-defined, loosely structured lesson

plans that include important concepts, questions, cases, and

problems” to be covered in a particular lesson. For example,

the curriculum script for AutoTutor on computer literacy

currently covers three macrotopics, hardware, the operating

system, and the Internet. There are 12 topics within each of

the 3 macrotopics (36 in total). The script includes 36

computer literacy questions and/or problems and 36 topic

related questions/problems. It also includes 36 Ideal Answers

that correspond to each of the 36 topics. The quality of any

given learner contribution is determined by matching the

learner contribution to each aspect and all possible

combinations of aspects in a particular Ideal Answer.

Additional information contained in the curriculum scripts

includes: (1) anticipated bad answers for each of the 36

topics, (2) corrective splices (i.e., correct answers) for each

anticipated bad answer, and (3) numerous dialog moves (i.e.,

elaborations, hints, prompts, prompt responses and

summaries) that are related to aspects of the Ideal Answers.

All content in the curriculum scripts is written in English, as

opposed to computer code. Therefore, a teacher or other

individual who is not an expert programmer can easily author

a curriculum script.

While holding an exciting promise, the current ICAI

technologies, even as advanced as AutoTutor and the Carnegie

Learning System, are still immature when it comes to teaching

and learning, both because their repertoire is very limited and

because the dialog they generate often leaves a lot to be

desired.

4. ARCHITECTURE OF E-PACT

The natural language processing that hampers the dialog in

such systems as AutoTutor is not to be addressed by e-PACT

and therefore, it is to utilize only the following architectural

features: Cognitive Model, Procedural representation (based

on Decision Trees), Object-Oriented Design, Production Rules

(if – then or condition-action pairs) and Dialog Moves.

Cognitive Model and Procedural Representation

e-PACT is meant to utilize the EDS lecture/tutorial model of

teaching and make use of a scaffolding tool not usually

adopted in mathematics instructions, a Decision Tree. The

Lectures and Summaries of lectures are to be included under

Help as texts containing didactic descriptions supported by

examples, but some conversational aspects of the EDS

methodology built around the first author’s experience of how

students learn and think are to be automated. To widen the

Tutor repertoire the idea of a database/back-end is abandoned:

e-PACT is meant to generate a large number of problems at

random and is to be programmed to “discuss” any of them.

Thus, on the one hand, the e-PACT’s cognitive model is to be

simpler than any of those used in AutoTutor or CLS but on

the other hand, unlike them, it is to generate and discuss a

large number of possible exercises (of prescribed types). This

can run into hundreds.

e-PACT is meant to contain Intelligent Context Aware Parsers

that recognize common errors and misconceptions and

dynamic Decision Trees that sequence solution steps and

guide the student through them with prompts and comments.

e-PACT is to tailor its hints and responses to specific student

mistakes. Whatever student’s turn, e-PACT is to present

relevant and effective comments to build his/her mastery of

the subject. By constructing human-like dialogs and using

correct verbalization of mathematical processes e-PACT is

meant to emphasize communication skills.

Whether commenting on a particular answer or engaging

student in a Decision Tree based dialog, creators of e-PACT

creators to strive to ascertain that an intelligent feedback is

provided in all cases, and that the feedback is always delivered

in an understandable and conversational manner. This is a

challenge, because e-PACT is meant to interpret many

different styles of mathematical input, allowing students to use

a variety of conventions and be tolerant of many low-level

mistakes. This is a conscious choice, since “in tutorial

systems, effective progress in teaching the problem-solving

target is frequently hindered by expressive sloppiness and

low-level errors made by the student, especially in

conventionalized expressions such as formulas.” [9]. Thus, the

current e-PACT prototype is tolerant to a number of spaces

used by the user, it can interpret a function whether the

argument is bracketed or not (such inputs as sin(x), sinx and

sin x would be all acceptable); if an expression is bracketed

more than once, the prototype just generates a gentle warning

that the input contains extra brackets; and if a bracket is

missing here or there, this is also handled through warnings

rather than error messages. If an error is of the type expected

of a dyslexic student, say the input is ex rather than
x

e the

prototype sends a detailed message on the corresponding

mathematical convention, drawing the student’s attention to

the fact that in mathematics the order and position of symbols

is often imbued with a particular meaning. The e-PACT

prototype already “knows” enough algebra to be able to

comment on such input as 1−p whether it is given in that

form or as
p

1
and in its messages use the language appropriate

to the form chosen by student.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 3 - YEAR 2012106 ISSN: 1690-4524

While this tolerance provides for better usability it makes

interpreting the student performance and arriving at

instructional decisions based on this interpretation so much a

harder task.

Object Oriented Design

e-PACT’s object oriented design is based on the classes that

model mathematical objects. For example, in the current

prototype the class Function Elementary contains the same

elements as elementary functions used in undergraduate

mathematics, function name, argument and power index (if

applicable); the class Sum of Two Functions models addition

of functions etc. The e-PACT’s architecture as engineered at

the highest level is shown in Figure 1: the Random Problem

Generators are meant to generate a variety of exercises,

Solvers are meant to solve them rather than have solutions

stored in a database, Intelligent Input Readers are meant to

interpret a large class of possible inputs, including the ones

containing extraneous symbols and Solution Comparators are

meant to compare the expected answers with the ones

provided by students. The e-PACT Controller is meant to

manage the GUI interaction between the user and Core,

including interaction with the dynamic Decision Trees to be

affected via a Decision Tree Based Dialog module (see

Figure 2). It is planned that in the full version of e-PACT the

Controller takes into account the particular difficulties

experienced by the user and adapts by taking him/her to the

topics that require extra revision.

Production Rules

Comparators implemented in e-PACT are not meant to

involve any statistical analysis but compare identifiable parts

(aspects) of the mathematical objects, such as sign,

coefficient, function name, argument, term factor, sum,

product etc. All instructional decisions and messages are

meant to be based on such comparisons and therefore, be

context-dependent.

For this reason, e-PACT messages are meant to utilize

information from different pieces generated by the Compare

methods in different classes, such as Elementary Function,

Simple Function, Sum of Two Functions, Product of Two

Functions etc., each responsible for its own portion of the

mathematical input. The messages are meant to be formatted

to alleviate comprehension, using indents and helpful

connectives, depending on the number of identifiable aspects

in the student answer and the number of mistakes in each.

When creating a Cognitive Tutor, the advantages of using the

object-oriented design rather than a database are two-fold: we

can deal with relatively large classes of problems at once and

extra levels of difficulty and extra complexity can be added

without affecting the design functionality. This implies that

the Cognitive Tutors designed in this manner are easily

maintained and enhanced. The clarity of design is also an

advantage: the Core classes model traditional mathematical

concepts and thus new researchers can be easily integrated

into the team.

Dialog moves

The types of dialog moves used in e-PACT are similar to the

ones used in other Cognitive Tutors but since responses are

only half pre-programmed their implementation is more

involved. The types of moves used in the current prototype

are positive feedback, negative feedback, splice, elaboration,

explanation, summary, prompt, guess and connection.

A sample screen shot is presented in Figure 3.

Figure. 1. e-PACT Architecture: assessment of student’s final

solution.

Figure. 2. Architecture of the Decision Tree Based Dialog.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 3 - YEAR 2012 107ISSN: 1690-4524

Figure 3. A screen shot of a recent Differentiation Tutor with a sample dialog on Level 2

5. THE USER REQUIREMENTS FOR E-PACT

The user requirements for e-PACT are similar to the

requirements for the Carnegie Learning System:

Simple, Straightforward GUI

1) Straightforward presentation of mathematical

symbols

2) No distracting images or photos, minimalist

presentation

3) Intuitive

4) Easy to use

Just-in-time Feedback

1) Hints are contextual and oriented towards helping the

student to follow key steps in the problem.

2) Immediate feedback enables the student to self-

correct and leads to more effective learning and

applying of the mathematical rules

3) e-PACT recognizes the most common student errors

and responds appropriately.

Achievement monitor

1) As a student becomes more proficient in a skill, e-

PACT progresses him/her to a higher level of

difficulty.

2) Teachers can view off-line snapshots of each dialog.

3) Students receive an immediate and precise feedback,

which is a strong motivator to succeed.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 3 - YEAR 2012108 ISSN: 1690-4524

6. TESTING E-PACT

The e-PACT testing can be separated into feature testing,

testing of its reaction to correct answers and testing of its

reaction to incorrect answers. Features to address revolve

around mathematical conventions, usability, data typing and

GUI. Both alpha and beta testing are required.

Alpha Testing
A considerable amount of alpha-testing can be carried out

during the implementation process. Testing of the Generate,

Print and Solve methods is easily automated to ascertain that

all problems and solutions are generated and printed correctly.

It is more difficult to test Parsers and Compare methods. Only

partial automation of this testing process can be achieved: it is

impossible to envisage all possible erroneous inputs.

Here are several examples of issues that were addressed during

the alpha feature testing of the current prototype.

 Mathematical conventions In order for e-PACT to

help students concentrate on mathematics rather than learn

various artificial ways of communicating with the application

developers addressed various issues revolving around algebraic

rules:

1) The factor 1 and the term 0 can always be dropped but if a

student keeps them in his/her answers e-PACT does not

treat this as an error.

2) e-PACT is aware of commutativity of both addition and

multiplication.

3) It is a mathematical convention to drop power index 1. In

view of this, a power index 1 should not be printed when

composing a message on power and by the same token,

while in its responses e-PACT normally refers to both the

function name (power) and power index, when the power

index is 1 the function name changes to linear and the

power index is not mentioned.

Usability To make e-PACT attractive to users its

prompts and responses are presented in a readable and

engaging manner employing simple yet technically correct

language:

1) If the correct answer involves a power but the student

inputs a different function instead, the error message

specifies that the correct function is power but does not

mention the power index. The index is mentioned only if

the student answer is a power but his/her index is incorrect.

2) The argument of an exponent is referred to as a power and

the argument of power is referred to as an independent

variable - unless the power is -1 and the student presents

the answer as “one over”, in which case the argument is

referred to as a denominator.

3) When the student answer contains many mistakes, they are

all described in a formatted and easily readable manner.

4) If the student enters the Decision Tree Based dialog but

half way through realizes what the final answer is, in order

not to loose his/her interest the student this final answer is

allowed and commented.

Data typing General usability issues common to all

AI projects are addressed in e-PACT as well:

1) If the student types a character where a number is expected

this can cause software failure as data typed translations

will not match. The problem is dealt with by using

intermediary objects which test for appropriate input

contents prior to conducting a typecast.

2) If the student types an extraneous input in front, or at the

end of legitimate input e-PACT sends a message advising

them to double-check input in front or at the end or both.

3) If the student input misses an argument, either through

oversight or due to dyslexia or dyscalculia the problem is

spotted and commented on.

 GUI issues Many GUI tests have been conducted to

ascertain that editing facilities are intuitive, allowing use of

the cursor and arrows as well as DELETE key and only the

uncorrupted final version of the student input that is passed to

the Core. It is well known that while some users prefer to

submit their input by pressing ENTER others look for a

SUBMIT button. Both solutions have been implemented. It is

also well known that some users prefer to move the mouse to

the menu bar options while others prefer hot keys. Both

solutions have been implemented.

Beta Testing

By way of beta testing, a number of first authors’ students

were observed by independent researchers using the software

[10]. Even when exposed to it for the first time, most needed

very little assistance with the technical aspects of

communicating with e-PACT, and even less assistance with

the mathematics. They found the system easy to use, since it

follows the approach adopted in their lectures and tutorials. “It

doesn’t tell you what to do”, one student said, and then went

on to explain that the software does not show the next step in

the solution or the answer, instead “the feedback encourages

you to think about what you need to do; (Differentiation

Module of – LF) e-PACT takes you back to the Decision Tree,

so you will be able to differentiate any function”.

The only issue identified was the fact that inexperienced users

do not read instructions issued by e-PACT but scan the page

for a button to push. In order to resolve this issue

1) the wording of many of e-PACT instructions has been

simplified,

2) the manual type instructions are presented on a grey

background, mathematical instructions are presented on

the yellow background, while the Answer Box employs

the white background,

3) after each Tutor prompt users are directed to the Answer

Box At the moment this is achieved by implementing a

flashing square. Other attention focusing devices will be

deployed in future.

7. CONCLUSIONS

Two modules of e-PACT, a Differentiation Tutor and Tutor for

Solving Algebraic Equations are included into the current

prototype of e-PACT. It is planned to use the experience gained to

redesign e-PACT and implement several other modules that would

allow students work on mathematical topics they need to exercise

most.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 3 - YEAR 2012 109ISSN: 1690-4524

8. REFERENCES

[1] K. Devlin Goodbye Descartes: The End of Logic and the

Search for a New Cosmology of the Mind, New York:

John Wiley, 1997.

[2] A.C. Graesser, D. S. McNamara and K. VanLehn

“Scaffolding Deep Comprehension Strategies Through

Point&Query, AutoTutor, and iSTART”, Educational

Psychologist, Vol. 40, No.4 2005, pp. 225-234.

[3] V. Aleven, B. Mclaren, I. Roll, and K. Koedinger, “Toward

Meta-cognitive Tutoring: A Model of Help Seeking with a

Cognitive Tutor”, Int. J. Artif. Intell. Ed., Vol. 1, No.2,

2006, pp. 101–128.

[4] http://www.coursecompass.com/

[5] P.J. Muñoz-Merino, and C.D. Kloos (2009). “An

architecture for Combining Semantic Web Techniques with

Intelligent Tutoring Systems”, Intelligent Tutoring

Systems Conference, Vol. 5091, 2009, pp. 540–550.

[6] M. Greenhow “Mathletics – a suite of computer-assisted

assessments”, MSOR Connections, Vol. 8, No 3, 2008.

[7] http://www.lboro.ac.uk/research/helm/

[8] R.J. Anderson and C Libiere, The Atomic Components of

Thought, Maywah, New Jersey: Lawrence Erlbaum, 1998.

[9] H. Horacek, M. Wolska “Handling Errors in Mathematical

Formulas”, Lecture Notes in Computer Science, Vol.

4053, 2006, pp. 339-348, Berlin/Heidelberg: Springer.

[10] L. Fradkin, V. Zernov, C. Crisan and S. Lerman “First

 Year Engineering Mathematics: The London South Bank

University experience”, MSOR Connections, Vol. 10, No.

10, 2010.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 3 - YEAR 2012110 ISSN: 1690-4524

