
A Real-Time Performance Analysis Model for
Cryptographic Protocols

Amos Olagunju, Jake Soenneker

Computer Networking and Applications Program
St. Cloud State University

aoolagunju@stcloudstate.edu

ABSTRACT

Several encryption algorithms exist today for securing data in
storage and transmission over network systems. The choice of
encryption algorithms must weigh performance requirements
against the call for protection of sensitive data. This research
investigated the processing times of alternative encryption

algorithms under specific conditions. The paper presents the
architecture of a model multiplatform tool for the evaluation of
candidate encryption algorithms based on different data and key
sizes. The model software was used to appraise the real-time
performance of DES, AES, 3DES, MD5, SHA1, and SHA2
encryption algorithms.

Keywords: Encryption algorithm, security, performance

measurement, software engineering.

1. INTRODUCTION

A symmetric encryption algorithm uses the same key for both
encryption and decryption. This method is also known as single
key, secret key, or private key encryption because only one key is
required during the encryption and decryption operations.

The Digital Encryption Standard (DES) was developed by the
American National Institute of Standards and Technology based

on an encryption algorithm that was submitted by Horst Feistel at
IBM Research. After a few modifications, the original block
cipher algorithm, called Lucifer, was accepted as the cornerstone
of the DES on January 15, 1977. Although DES was initially
adopted as a national standard for encrypting data used in the US
federal government, DES quickly became a world-wide standard
for symmetric encryption.

Like all other encryption methods, DES consists of both an
algorithm and a key. The DES key is made up of eight bytes of
data. Each byte, in turn, comprises eight bits—seven data bits and
one parity bit—for a total of 56 bits of key data and 8 bits of
parity data. The parity data allows systems using the key to ensure
that the data used to make up the key is not corrupted. The
algorithm breaks the plaintext data into blocks of 16 bits. DES
offers four distinct modes of operations to provide varying levels

of complexity and protection for data encryption. Unfortunately,
because DES uses a 56-bit key to perform encryption, there is
sufficient computing power to crack the key. Triple DES (3DES)
was created to overcome the inherent weakness of DES. But, it

takes three times longer for 3DES to encrypt and decrypt.
Therefore, the Advanced Encryption Standards (AES) that

supports variable key and block lengths was created.

Public-key encryption, also known as asymmetric encryption,
seeks to solve the encryption key exchanges problem by
incorporating a method for securely sharing the necessary key
information. The drawback to this family of algorithms, however,
is that they are typically slower than symmetric encryption
algorithms. The literature provides in-depth concepts of

symmetric and asymmetric encryption [4].

This research focused on the design and implementation of a
multiplatform software as a model for testing encryption
algorithms. The research results are compared to other major
security protocol evaluations in the literature, and to the
performance of Open Secure Socket Layer’s encryption software.
Henceforth, we present the features of a Cryptographic Protocol

Performance Program (C3P). C3P is console interface software
that supports the evaluation of encryption protocols. The design,
implementation, and experimental results of C3P can be replicated
for all well-designed cryptographic algorithms.

The performance of security protocols has been a subject of
attention in the literature. Yet, published practical software tools
for assessing the performance of encryption algorithms against

real-world data and security requirements are rare to find. The
performance reviews of several popular encryption protocols such
as, the RC6, DES, 3DES, AES, Blowfish, and Rjindael have been
evaluated [1]. These security encryption algorithms have been
evaluated on a 2.4GHz IV laptop, in light of their capabilities to
encrypt different types of data (text, audio, and video). Though
the research results in the literature are relevant, there is no clear
discussion of the data used for the comparative evaluation of
encryption algorithms [1]. Consequently, we have designed and

implemented C3P as a tool for testing symmetric and asymmetric
encryption algorithms.

The literature reveals that AES is more efficient than the
comparable encryption protocols in its group [2]. The AES’s
throughput was proclaimed as more efficient compared to the
counterpart symmetric algorithms. In fact, AES is also known to
have better resistance against brute force attacks than other

security encryption protocols. Although a third party application
(Crypto++) was used for the testing the performance of security
protocols in [2], it provides a good source of information.

Mono is a platform initiated by Novell that supports a compiler
for generating and executing a Common Intermediate Language

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 201268 ISSN: 1690-4524

mailto:aoolagunju@stcloudstate.edu

byte code and a class library. Mono is an open source
implementation of Microsoft's .NET Framework based on the
ECMA/ISO standards for C# and the Common Language Runtime
[5]. Mono is crucial for converting executable codes into a Linux-
readable binary –for the execution of the C3P on a Linux

machine. Essentially, on a Linux platform, Mono is installed and
used to run the binary executable code. Mono’s C# Compiler can
also be installed on a Windows platform and used to execute C#
classes. The compiler “gmcs” was used to compile the C3P, to
overcome the requirements of generating a binary executable code
in C# 4.0. The “gmcs” generates an executable binary code.

2. C3P DESIGN

The goal of the C3P software was to design a multiplatform for
investigating the effects of the different data and key sizes on the
performance of encryption algorithms. Consequently, efficiency
and lightweight were major factors in the design of C3P. The C#
platform with the existing encryption algorithmic classes made it

easier to design the C3P software.

The architectural overview of the C3P in Figure 1 consists of a
User Interface (UI) with a main menu, a protocol menu, and a
menu for displaying the encryption performance results. The UI
was constructed as a prevailing class for each individual
encryption page. All interface classes have access to functions for
printing the header and footer. Each screen utilizes these functions

to build the basic overlay of a highly efficient interface in a
standard format for each security protocol menu. The dynamic
implementation of the screens makes it easy to enhance the C3P
with features for future investigations of the performance of
security protocols. The schematic view of the interacting program
modules are displayed in Figure 2. Appendix A contains the
snapshots of the major menus of the C3P.

The C3P begins execution through the “Runtimes” module prior

to invoking the main menu with capabilities for activating any of
the encryption protocol menu classes in this research. The
inherited menu classes have access to the “Engine.Stopwatch” and
“Engine.RandomGenerator” classes. These public static
procedures allow the menu classes to derive the execution time.
The latter engine also facilitates the generation of non-pseudo
random strings.

The console environment of the C3P does not require any
conversion of the Windows forms, and provides simplicity of
project design and usability on non-GUI operating systems.
Although it is possible to transport Windows forms to Linux using
Mono, this encryption evaluation approach is not recommended
because of its adverse testing effects on performance.

3. C3P IMPLEMENTATION

The need exists to use tools and libraries that conform to the
Common Language Infrastructure for developing platform-
independent software applications. Mono and DotGNU were two
candidate .NET infrastructure conversion software bundles
deemed relevant to the implementation of the C3P. Mono offers

the .Net conversion to Common Language Runtime (CLR), while
the project code base of the DotGNU provides a hundred percent
Common Language Specification amenable in a class library [5].
However, Mono offers more advantages over the Dot GNU in the
implementation of the “System.Security.Cryptography” class.

Mono is easier and more suited to code conversion and the
overall design of class-based software architecture. Moreover
Mono offers a useful documentation on the compilation of the
CLR binary.

The implementation of the C3P focused on streamlining every
function, method, or class to avoid negating the true performance
of the actual encryption algorithms. C# with existing

cryptographic libraries [6, 7, 8] was used to implement the C3P.
The codes of each data encryption algorithm were implemented in
C3P within the limitation of the hardware. However, the codes
were designed to be as fast as the operations of the original
encryption algorithms.

The progression of instructions for the hash functions MD5,
SHA1, and SHA2 in the literature [8] is:

a) Create an encoder object to encode the string.
b) Create a service provider for the appropriate hash.
c) Create a new array of bytes to capture the value of

computed hash of the encoded string from the service
provider.

d) Return the created array to the calling object.

The process for generating the AES in Cipher Block Chaining

mode available in [6] is:
a) Create an array of bytes of the encoded 16 ASCII

characters (the Initial Vector) of the AES algorithm.
b) Generate a password for the overridden encoded values

(Plaintext, Password, and Salt) of the constructor.
c) Create a Rijndael managed symmetric key object.
d) Set the key object’s cipher mode to the appropriate

mode –Cipher Block Chaining was used in C3P.
e) Create the encrypting object and use a memory stream

to write the blocks to a new array.
f) Close memory streams for efficiency and cleanup.

The course of actions for DES and 3DES (TDEA) defined in [7]
is:

a) Encode a random string of 8 bytes long.
b) Create a DES Service provider object.
c) Create a new Memorystream object for the

Cryptostream object to read into.
d) Write with a Streamwriter, the original string with the

Cryptostream attached.
e) Clean up all objects. Close all memory sockets.

The MSDN library offers reference information, sample codes
and technical articles for the use of Microsoft® tools, products
and technologies in multiplatform software development. The

MSDN project was valuable in building the C3P.

4. TESTING AND RESULTS

A 2.4GHz Intel Pentium 4, with single core processor similar to
laptops normally used to test the performance of security

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 2012 69ISSN: 1690-4524

http://mono-project.com/ECMA
http://mono-project.com/CSharp_Compiler
http://mono-project.com/Mono:Runtime
http://en.wikipedia.org/wiki/Common_Language_Infrastructure#Overview

protocols in the literature, was applied to investigate the
performances of the various security protocols. We recognize that
machines with more processing power typically provide faster
encryption performance results [1]. In this project, the
performance of the C3P was compared to the encryption

performance of OpenSSL [9] on Ubuntu 9.1. The milliseconds
required by the different encryption algorithms to encrypt various
data sizes are illuminated in Figure 3. The three data sizes of
20,527 bytes, 127,325 bytes, and 232,298 bytes used in this
research are the mid-points of experimental data sizes reported in
the literature [2]. Moreover, these data sizes provide reliable test
bed for comparing the performances of the C3P and OpenSSL.

The experimental results derived from the C3P in Figure 3 exhibit
similar patterns to those generated from the OpenSSL data. AES,
DES, and 3DES all show similar in encryption times for small
data sizes. However, there is a disparity in the encryption times as
the data size increased. This result is not surprising given that
AES requires the password to be generated, and consequently
more encryption time as the data size increased. 3DES [TDEA]
requires approximately triple the time it take the ordinary DES to

encrypt data on an average data scale. The results are not
surprising because they are consistent with the findings in the
literature [2]. Figure 3 also illuminates the execution results of the
hash functions on the C3P. The performance of SHA1 was
slightly better than that of MD5, but SHA2 exhibited the lowest
runtime performance. As the data size grows, the SHA2 tends to
exhibit an exponential-like runtime growth.

The milliseconds required by the different encryption algorithms
to encrypt various data and key sizes are presented in Figures 4, 5
and 6 for AES, 3DES and SHA2 respectively. Figure 4 reveals a
noteworthy change in the encryption performance of the AES as
the key size changes with the data size. The larger the data size,
the more the effects of the key size on the AES encryption
performance. This result is not surprising given that the OpenSSL
exhibited a parallel outcome. Clearly, there is a striking difference
in the encryption times of AES when the key size is doubled from

128 bits to 256 bits as the data size increases.

Figure 5 demonstrates that the key size insignificant effect on the
encryption performance of 3DES as the data size grows. The
experimental results from OpenSSL also attested this claim. In
fact 5,807,450 bytes were encrypted in 3 seconds with 3DES-128
bits key –the amount of time to encrypt 5,780,580 bytes with
3DES-192 bits key. These results explain the minimal effects of

modifying the key size from 128 bits to 192 bits on the encryption
performance of 3DES.

Figure 6 shows that data encryption with SHA2-256 is faster than
data encryption with both SHA2-384 and SHA2-512, as the data
size increases. As the key size increases from 256 bits to 384 bits
there is a remarkable amplification of the encryption time. But,
the change of key size from 384 bits to 512 bits slightly increases

the data encryption time. This observation is not surprising
because the OpenSSL results also revealed no significant
difference between the encryption performance of SHA2-384 and
SHA2-512.

The coefficients of the regression equations for forecasting the
times it take to encrypt bytes of information using the DES, MD5,
AES and SHA algorithms are displayed in Tables 7, 8 and 9. Note

that the coefficient of determination (R-Sq) of each equation is
reasonably high. That is, the models for predicting the runtimes of
the encryption algorithms are reliable. However, the runtimes
derived from any of these prediction equations will depend on the
speed of the CPU as illustrated in Tables 10 and 11. Notice that

the execution time decreased by approximately 25 percent as the
CPU speed increased from nearly 2 GHz to 2.66 GHz. The
equation for forecasting the runtime (T) it takes to encrypt bytes
(B) using the intercept (α), slope (β) and CPU speed (CS in MHz)
is T = (α + β(B)) *2405/CS, where β = STB/(SB)2, α = Average(T)
– β* Average(B), STB and (SB)2 are the covariance of T and B, and
the variance of B respectively. Tables 12, 13 and 14 show the
respective runtime data generated by a 2405 MHz CPU and used

to derive the regression equations for DES, MD5, AES and SHA.
As illuminated in Figure 15, the runtimes exhibited a linear
pattern.

When the C3P was used to encrypt 500,000 random bytes 5 times
with DES on a personal computer with a processor clock speed of
2659 MHz, the average time was 100 milliseconds. The graphical
display of the runtimes is shown in Figure 16.

5. CONCLUSIONS

We have designed and implemented the C3P as replica of

console-driven platform-independent software for testing the
performance of security protocols. The current C3P
implementation only supports a 32-bit long integer. The C3P
supports the specification of data files to be encrypted. The C3P
provides a graphical display of the encryption runtimes when the
number of iterations is specified for the random bytes to be
encrypted. The C3P can be easily modified to support decryption.
The C3P architecture is generic and flexible to support the
performance evaluation of emerging novel encryption protocols.

The C3P is a valuable instructional tool for courses in
cryptography, advanced network programming and software
engineering. The C3P is a priceless tool for investigating the
tradeoffs between enhanced securities versus processing
performance.

6. REFERENCES

[1] D. S. Abd Elminaam, H. M. Abdual Kader & M. M. Hadhoud,

“Evaluating the Performance of Symmetric Encryption
Algorithms,” International Journal of Network Security,
vol.10, no.3, pp. 213-219, 2010. Retrieved Dec 5, 2010, from
http://ijns.femto.com.tw/contents/ijns-v10-n3/ijns-2010-v10-
n3-p213-219.pdf

[2] A. Al Tamimi, “Performance Analysis of Data Encryption
Algorithms,” 2010. Retrieved Dec 5, 2010, from
http://www1.cse.wustl.edu/~jain/cse567-

06/ftp/encryption_perf/index.html

[3] DotGNU Project Development Site. (2010). Retrieved Dec 8,
2010, from http://www.gnu.org/software/dotgnu/

[4] D. Mackey, Web Security for Network and System
Administrator, 2003, Boston, MA: Thomson Learning, Inc.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 201270 ISSN: 1690-4524

http://ijns.femto.com.tw/contents/ijns-v10-n3/ijns-2010-v10-n3-p213-219.pdf
http://ijns.femto.com.tw/contents/ijns-v10-n3/ijns-2010-v10-n3-p213-219.pdf
http://www1.cse.wustl.edu/~jain/cse567-06/ftp/encryption_perf/index.html
http://www1.cse.wustl.edu/~jain/cse567-06/ftp/encryption_perf/index.html
http://www.gnu.org/software/dotgnu/

[5] Mono Development Page, 2010. Retrieved Dec 2, 2010, from
http://www.mono-project.com

[6] MSDN Library – DES Encryption and related Cryptographic
Protocols, 2010. Retrieved Dec 2, 2010, from

http://msdn.microsoft.com/en-
us/library/system.security.cryptography.des.aspx

[7] MSDN Library – 3DES Encryption, 2010. Retrieved Dec 1,
2010, from http://msdn.microsoft.com/en-
us/library/system.security.cryptography.tripledes.aspx

[8] MSDN Library – SHA2 and related Message Digest Protocols,
2010. Retrieved Dec 1, 2010, from
http://msdn.microsoft.com/en-

us/library/system.security.cryptography.sha256.aspx

[9] OpenSSL Command Line How-To, 2010. Retrieved Dec 3,

2010, from http://www.madboa.com/geek/openssl/

APPENDIX A. Snapshots of C3Pv2 Menus

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 2012 71ISSN: 1690-4524

http://www.mono-project.com/
http://msdn.microsoft.com/en-us/library/system.security.cryptography.des.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.des.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.tripledes.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.tripledes.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.sha256.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.sha256.aspx
http://www.madboa.com/geek/openssl/

Figure 1. Architectural layout of the C3P

Figure 2. Schematic View of the Interacting Program Modules

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 201272 ISSN: 1690-4524

Figure 3. Time Performance of Different Encrypting Protocols for Various Random Data Sizes

Figure 4. Execution Times for Various

 AES Key and Random Data Sizes

Figure 5. Execution Times for Various

 3DES Key and Random Data Sizes

0

20

40

60

80

100

120

140

160

180

200

DES 3DES [192 Bits] AES [192 Bits] MD5 SHA1 SHA2 [384 Bits]

20, 527 Bytes

137,325 Bytes

232,298 Bytes

0
20
40
60
80

100
120
140

AES
(128
Bits)

AES
(192
Bits)

AES
(256
Bits)

20, 527
Bytes

137,325
Bytes

0

20

40

60

80

100

120

140

3DES (128
Bits)

3DES (192
Bits)

20, 527
Bytes

137,325
Bytes

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 2012 73ISSN: 1690-4524

Figure 6. Execution Times for Various

 3DES Key and Random Data Sizes

DES 3DES128 3DES192 MD5

Intercept 0.8821 4.52459 5.70569 1.607

Slope 0.0002 0.00053 0.00054 0.0001

Correlation 0.9968 0.99446 0.99786 0.9983

R-Sq 0.9935 0.98895 0.99573 0.9965

Table 7. Regression Equations of DES and MD5

AES128 AES192 AES256

Intercept 10.0601 11.791 19.4022

Slope 0.00028 0.0003 0.00036

Correlation 0.99142 0.9909 0.9843

R-Sq 0.98292 0.9819 0.96886

Table 8. Regression Equations of AES

SHA1

SHA2-
256

SHA2-
384

SHA2-
512

Intercept 0.5671 14.36323 9.413761 -27.077

Slope 0.0001 0.000249 0.000757 0.001094

Correlation 0.991 0.977094 0.998049 0.96722

R-Sq 0.9821 0.954712 0.996102 0.935515

Table 9. Regression Equations of SHA

BYTES MD5 SHA2-384

50000 6 147

100000 14 175

200000 28 281

500000 72 579

 Table 10. Execution Times for 1997 MHz CPU

BYTES MD5 SHA2-384

50000 2 55

100000 5 72

200000 10 139

500000 29 359

 Table 11. Execution Times for 2659 MHz CPU

BYTES DES 3DES128 3DES192 MD5

20527 4 10 12 7

50000 17 29 33 10

100000 22 67 67 14

137325 30 69 71 21

150000 33 95 89 22

175000 39 109 107 27

200000 45 114 116 31

232298 48 116 120 35

250000 54 125 143 40

300000 71 153 169 47

350000 77 194 196 54

400000 93 219 222 61

450000 100 245 248 68

500000 109 268 273 75

Table 12. Execution Times of DES and MD5 on

 2405 MHz CPU

0

50

100

150

200

250

SHA2
(256
Bits)

SHA2
(384
Bits)

SHA2
(512
Bits)

20, 527
Bytes

137,325
Bytes

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 201274 ISSN: 1690-4524

BYTES AES128 AES192 AES256

20527 7 8 9

50000 15 24 36

100000 41 36 56

137325 53 60 66

150000 58 65 71

175000 63 71 81

200000 67 78 95

232298 84 94 118

250000 89 102 124

300000 94 110 132

350000 106 123 151

400000 122 131 162

450000 137 154 174

500000 147 166 183

Table 13. Execution Times of AES on 2405 MHz

 CPU

BYTES SHA1
SHA2-
256

SHA2-
384

SHA2-
512

20527 2 13 17 18

50000 4 19 40 46

100000 11 28 85 102

137325 18 47 117 124

150000 21 52 128 143

175000 26 65 141 162

200000 29 72 161 182

232298 33 81 191 197

250000 36 89 210 231

300000 40 97 235 291

350000 43 105 284 318

400000 48 111 298 378

450000 56 118 349 413

500000 67 129 384 644

Table 14. Execution Times of SHA on 2405 MHz

 CPU

Figure 15. Graph of the Runtimes of MD5

Figure 16. Sample Graph of Runtimes for DES

0

10

20

30

40

50

60

70

80

0 200000 400000 600000

MD5

MD5

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 6 - YEAR 2012 75ISSN: 1690-4524

