

 Validating Avionics Conceptual Architectures with Executable Specifications

Nils FISCHER

 Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences

Berliner Tor 5, Hamburg, 20099, Germany

and

Horst SALZWEDEL

MLDesign Technologies, Inc., 2230 St. Francis Drive,

Palo Alto, CA 94303, USA

ABSTRACT

Current avionics systems specifications, developed after

conceptual design, have a high degree of uncertainty. Since

specifications are not sufficiently validated in the early

development process and no executable specification exists at

aircraft level, system designers cannot evaluate the impact of

their design decisions at aircraft or aircraft application level. At

the end of the development process of complex systems, e. g.

aircraft, an average of about 65 per cent of all specifications

have to be changed because they are incorrect, incomplete or

too vaguely described. In this paper, a model-based design

methodology together with a virtual test environment is

described that makes complex high level system specifications

executable and testable during the very early levels of system

design. An aircraft communication system and its system

context is developed to demonstrate the proposed early

validation methodology. Executable specifications for early

conceptual system architectures enable system designers to

couple functions, architecture elements, resources and

performance parameters, often called non-functional

parameters. An integrated executable specification at Early

Conceptual Architecture Level is developed and used to

determine the impact of different system architecture decisions

on system behavior and overall performance.

Keywords: Complex systems design, Concept validation,

Executable specification, Middle-out design, Uncertainty

reduction, Virtual test bench, Avionics development, Aircraft

level design, Design space exploration.

INTRODUCTION

For many years, the development of complex networked

systems like aircraft, spacecraft or automobiles has been

characterized by high risk and product uncertainty [1].

Complexity has always been a development challenge,

especially for aircraft. In the early days of air flight, all

attempts to develop an airplane failed until the three Lilienthal

siblings developed validated models of aerodynamics through

observation of natural systems and rotating airfoil experiments

[2]. These models were further validated by wind tunnel

experiments of the Wright brothers. Over time, progress in

technology enabled engineers to develop more and more

complex aircraft. When aircraft crossed the sound barrier and

needed to be equipped with stability augmentation systems, in

order to enable pilots to fly these aircraft with rapidly changing

dynamics. The stability augmentation system dynamically

coupled aerodynamics, aircraft structure and control. Again,

many approaches failed to overcome the aero–servo–elasticity

problems. It took some time until Science Applications

International Corporation (SAIC), developed standardized

mathematical descriptions for aerodynamics, structures and

control and a common execution model which describes,

simulates and analyzes integrated and coupled aircraft

dynamics [3]. Today, we face the highest increase of new

functionality and configuration diversity within networked

systems of aircraft. The complexity and quantity of both,

functions, components and sub-systems and the complex

interaction between them are in many cases not well

understood [4]. Nearly all avionics and cabin related systems

are affected. For instance Integrated Modular Avionics (IMA),

in-flight entertainment or cabin service systems to name just a

few. Short times-to-market, strong competition, and complex

design tasks realized by different divisions and groups are

contributing to the overall risk. Different studies indicate that

most design errors are introduced in the very first levels of

systems design, during concept and specification phases.

However, most of these errors are discovered late in the

development process. Usually during integration or even when

the product is already in service. Estimates for the amount of

errors introduced during specification phase range between

60% and 70%. Figure 1 shows respective values for complex

software development. It is derived from the National Institute

of Standards & Technology Planning Report 02-3 in 2002.

Several attempts, such as Requirement-based Engineering

(RBE) and Concurrent Engineering (CE), have been made to

handle complexity and reduce development risk. Some model-

based techniques using modeling languages such as SysML or

UML have been introduced tentatively in order to improve and

validate the quality of the design. However, all of these

attempts have failed to deliver on their promise [5]. UML 2.0 is

common practice for software development [6], but it is also

capable to provide a base for integrated systems modeling and

system architecture descriptions [7]. To derive consistent,

complex and multi domain specifications however, its model

elements and many different diagram types are often not strict

enough and less formal than required to specify unambiguous

and, above all, executable specifications. SysML, a language

derived from UML, enables modeling of system requirements

and their evaluation [8]. It was created as a standardized

expansion of UML to deliver a more specialized language for

designers of complex systems. But since SysML specifications

lack the combination of functional, non-functional, resource

and mission criteria it is, at the moment, not suitable to develop

executable specifications for large scale or system-of-systems.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201246 ISSN: 1690-4524

Figure 1: V-Model including percentages of where errors are likely to be introduced and found together with estimates of relative costs for

error removal within the systems development lifecycle, adapted from [9] and [10]

Other well proven model driven methodologies like SystemC or

Verilog operate on a completely different level of abstraction

and are not intended to be used on complex overall system

level [11]. Both, the level of abstraction and the combination of

functional and architecture system components are currently

hard to find in one of the established software tools. Another

good example is MATLAB Simulink and similar software suite

members, which are widely approved but are mainly used for

control applications and less complex systems [12]. An

example for a more specific tool used for aircraft and military

model based software design is SCADE [13]. This tool provides

formal verification techniques, test coverage and provides

interfaces to many different tools. SCADE also allows code

generation that is qualified to be certified according to one of

the most important software guidance documents for aviation:

The DO-178B, a default guideline by the Radio Technical

Commission for Aeronautics (RTCA) in cooperation with the

European Organization for Civil Aviation Equipment (EASA).

As mentioned before, SCADE is mainly used for software

design and can only partly be used to combine software,

architecture and mission in one comprehensive and executable

model for avionics systems development. We decided to use

the integrated system level design platform Mission Level

Designer (MLDesigner [14]) for the development of early

conceptual level executable specifications. It provides the

ability to develop executable specifications with different

abstraction layers based on a multi-domain concept. These

different modeling domains include Discrete Event, Finite State

Machine or Continuous / Synchronous Data Flow domains that

support the creation of complex mixed systems, e.g. mixed

analog and digital aircraft systems.

To be successful in the future, it is essential to provide a

customer with the best solution for the intended application of a

product. Therefore it is also necessary to be able to optimize a

complex system on an overall system level. In order to achieve

a good quality of system specifications we need to increase the

level of validation early by means of executable concept

specifications. Currently used design practices lack the ability

to create and use such executable specifications during early

design phases. Overall concept architectures and related written

specifications are typically being developed using office

applications according to DoDAF [15]. The resulting

documents are not executable and complex system interactions

cannot be validated. They cannot fill the gap between concept

and specification which ultimately leads to component

realization and integration. An executable concept specification

must be derived which contains all relevant aspects of systems

design, i.e. behavior, architecture and performance parameters,

often related to as non–functional parameter values. In other

words: combine hardware, software, dynamic coupling,

operational scenarios and aspects like weight, costs or timing

constraints. Only then will we achieve early risk and

uncertainty reduction within specifications and systems

development. It is also a crucial prerequisite for a successful

overall architecture optimization.

CIVIL AIRCRAFT AVIONIC SYSTEM

Two system models were developed to illustrate how

executable conceptual design specifications can be created.

Therefore a simplified aircraft communication system (ACS)

and its extended system context, including other systems at

aircraft level as well as a ground facility, were created. These

two system architectures can be simulated and compared to

validate each design approach early and to choose the optimal

system architecture for further development.

Modern civil aircraft are equipped with integrated

communication systems that perform many different functions.

While there are dedicated systems for voice communication

between flight deck and air traffic control, the system

considered here manages communication between different

aircraft systems for the purpose of operation and maintenance

[5]. Figure 2 shows the extended system context of the first

possible system architecture. This communication system is

equipped with three main units which perform dedicated

functions. An Electronic Flight Bag (EFB) is a system element

that supports the flight crew when performing specific tasks

related to flight operation such as the Aircraft Operation

Manual (AOM), calculation of take-off and flight performance

and weather data processing. Since nearly all modern aircraft

use IP-based communication for non-critical systems, a router

system element is required to provide a certain Quality of

Service (QoS) for all connected systems.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 47ISSN: 1690-4524

Figure 2: System level and extended system context with three

dedicated system elements

Civil aircraft use so called Built-in Test equipment (BITE) to

constantly monitor connected components and report any

unusual behavior to the Centralized Maintenance System

(CMS). Most systems also require correlating maintenance data

and sending part of the information about the state of other

systems to the ground via the maintenance system element. The

second system architecture is depicted in Figure 3. In this

approach, the communication system is equipped with only two

units. The router system element is unchanged while EFB and

maintenance system element are realized within one integrated

unit.

Figure 3: System level and extended system context with two

dedicated system elements

Both system models represent identical functional behavior. All

double arrowed lines in both pictures represent communication

and data channels which are used to exchange data between

connected entities. These communication lines are also

considered as essential architecture elements of the system and

its context. Therefore, they are included in the model. In this

example, all system connections at aircraft level are considered

as IP-based networks the ground link is established via radio

link. For more in depth information on aircraft related systems,

design approaches and principles see references [16] and [17].

EARLY CONCEPTUAL MODEL-BASED DESIGN

In current approaches of complex systems design such as

aircraft, structured approaches are widely used. The design task

is decomposed through various design stages until the

remaining complexity permits to develop buildable solutions.

All these buildable solutions need to be assembled into a

complete system to solve the overall design problem. Dividing

a complex design problem into a number of less complex

problems and assembling these partial solutions is an approach

widely accepted [18], [19], [20]. Usually, system and concept

designers concentrate on operational and functional aspects of a

system under design. Physical architecture, resource

dimensioning and performance compliance is left to the

implementer or an external supplier. However, concentration

on a purely functional design without any reference to a

reasonable architecture is not sufficient [21]. Also, a holistic

design process needs to look at problems that may arise from

system integration. An overall solution which is assembled

from operative standalone sub-solutions may not work at all.

Therefore it is necessary to begin conceptual design at aircraft

level [22].

Usually, a conceptual design is generated at the very first levels

of systems design. Most concepts are derived from top-level

operational needs and customer inputs. While the concept is

steadily decomposed into sub-concepts and top-level

specifications are created, system and function designers assign

a set of attributes to each derived function. Thus, the designer

makes assumptions about a possible implementation of the

function being defined. These assumptions may also be based

on experience from previous projects and/or similar designs.

Consequently, a design decision about a functional architecture

is not based on functional aspects alone, but rather influenced

by the implicit assumptions about the physical architecture that

the designer made. The system specification however does not

explicitly state these assumptions thus making it difficult to

validate all requirements [5]. To overcome this validation gap,

executable concept specifications have been created for the two

different civil aircraft communication system architectures

using the design tool MLDesigner.

An executable concept specification binds logical behavior

(Function), architecture components (Elements) and

performance constraints and requirements as well as specific

resources in one combined multi-domain model. Resources are

either allocated to Functions, Elements or (Sub-) Systems

whereas Functions are allocated to Elements or standalone.

Simulations are used to validate the system design as early as

possible and to solve typical integration problems during

design, not during implementation and test. In a first step, a

functional model without any reference to any architecture was

created. Figure 4 shows the ACS module in MLDesigner. This

model is used as an operational baseline for the overall

concept. It is also used to show the difference between purely

functional and architectural executable specifications. General

aspects of a so called Function model block at conceptual level

are depicted in Figure 5. A Function is an MLDesigner module

that does describe logical behavior formed by different coupled

functional building blocks or C++ code. In other words, logical

behavior is composed of inputs, processing and outputs.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201248 ISSN: 1690-4524

Figure 4: Functional blocks of the communication system on system level in MLDesigner

Functions can also be coupled with resources that are essential

for their correct behavior. Each Function also contains a

generic Finite State Machine (FSM). This generic FSM is

bound with the behavior of the respective Function block. It is

used as observe and control mechanism and puts the whole

Function block into several internal states. For instance a

Function can be in normal mode, switched off or failed.

Depending on its internal state, a Function can adjust its

behavior during simulation, e.g. a Function fails and is

therefore deactivated or activated. To add long term

probabilistic behavior and uncertainty, the state machine of

each Function can be linked to a fault inducing module that

fails, enables or stimulates a Function in a certain way with

defined probability and a chosen probability distribution.

Figure 5: Function properties in executable conceptual models

In the second step, an underlying conceptual architecture was

introduced and Functions were allocated to MLDesigner

modules called Elements. Figure 7 shows how the system

structure changed on system level from functional to

architectural design for variant one of the two proposed system

architectures. In addition to functional behavior and

communication links, the introduced architectural layer of the

system includes concepts of networks, a radio link as well as

other performance relevant execution components. These

include CPUs and memories as well as network protocols.

These concepts introduce additional model parameters, such as

the average latency and the maximum bandwidth of a network,

the number of instructions per second that a CPU can process

and the capacity of involved memories. A so-called Element is

a container for Functions as well as for model components

representing architectural system features as mentioned above.

An Element can also form a complete Electronic Control Unit

(ECU) which can contain further elements. Just like Functions,

Elements also contain a set of different features as indicated in

Figure 6.

Figure 6: Element properties in executable conceptual models

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 49ISSN: 1690-4524

Figure 7: Variant 1 of the communication systems conceptual architecture in MLDesigner containing 3 ECUs and 2 network Elements

Several, often called non-functional or quality parameters, like

cost and weight are also associated with elements. Each

Element has a set of non-functional parameters. These are used

during system simulation to calculate different non-functional

values for the whole system architecture. In order to be able to

validate a design and determine the best possible architecture

from a set of variants, so called Objectives have been

introduced. Objectives are 4-tuples of weighted parameter

values and can be used for either system validation or to

specify non-functional parameters, defining ranges instead of

single point values.

Objective = (value, lower bound, upper bound, weight)

Objectives have to be met by the overall system or a sub-set of

its Elements and Functions. Typical objectives given for

aircraft are weight, cost or timing constraints for the

completion of an important function or the Mean Time to

Restore (MTTR).

Quantifiable and adjustable shared resources like power or

bandwidth are directly coupled with Element and Function

execution for all conceptual models. Elements and Functions

specify their individual need or range for certain resources. If a

global or local resource like power is not available or does not

fulfill the demand given by an Element objective, the Element

will stop its execution and therefore the execution of all its

allocated Functions until all needed resources are available

again.

Elements also have a generic FSM based internal state control.

By default, but not limited to, an Element has four top-level

states: Normal, Failed, Off and Unpowered. In combination

with Function states it is now possible to let an element behave

normally, failed or partially failed. It can also be switched off

through stimulation by other Elements and Functions if

necessary. All generic states can be extended through

hierarchical decomposition into sub-states. For instance the

top-level Normal state could host several sub-states like

Maintenance or Test Mode, as depicted in Figure 8. If, for

example, an Element or an entire system is in Test Mode, only

a sub-set of specific functions are available to be performed.

Probabilistic fault inducing routines are used to emulate

failures as they happen in real world electronics like Line

Replaceable Units (LRUs).

Figure 8: Possible slave states of the Normal state of an

Element FSM

All Elements communicate through a defined set of

standardized data structures. This is necessary to guarantee a

consistent data particle exchange within each model. Since the

structure for all messages between Elements is known,

predefined plug-and-play model probes can be deployed for

data mining during simulation. It is also possible to use specific

delay routines within each element. These routines delay

allocated functions and data generated or processed within an

Element. Possible delay values can depend on available

bandwidth, cable length, CPU and memory execution delays to

name just a few. Precise value ranges for delays are determined

from data available for specific architecture Elements, expert

knowledge or in form of plausibility values, derived from

previous development projects or tests. During early design

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201250 ISSN: 1690-4524

levels, such aspects are often only vaguely known or unknown.

In this case, system designers can use more abstract Element

and sub-system execution delay modules in MLDesigner.

These are designed in a way to estimate the maximum amount

of delay which still enables an Element, a sub-system or the

complete system under design to perform all Functions while

simultaneously fulfilling necessary Objectives like time

constraints for the execution of a set of Functions. To do so,

executable conceptual specifications are iterated multiple

times, according to the algorithm shown in Figure 9. The

algorithm stops when a predefined maximum number of

iterations are completed or the calculated delay value for one or

more Elements has the expected accuracy. Accuracy is

determined through the number of decimal places of the

calculated delay value. Before starting a set of simulations,

different parameters can be set for the model and each

designated Element, for example:

 Simulation counter: simc = max

 Counter for the number of aborted simulations: x = 0

 Step size for the add-on delay for each iteration: n = 1

 Initial Element delay: e_delay = 0

 Number of decimal places for the delay value: q = max

 Last stable Element delay: s_delay = 0

Figure 9: Sequence plan for maximum valid Element delay

calculation through iteration with MLDesigner

When the algorithm has finished, delay values are available for

all Elements and/or sub-systems within a system. The

conceptual specification is complemented with these values

and validated through system execution. To validate the design,

Mission, Objectives and scenarios or use-cases are utilized

during system execution. On the one hand, calculated delay

values can be used by system designers to develop or order

fitting electronics for each Element and the respective set of

allocated Functions. On the other hand, different development

teams can also validate their detailed conceptual design for a

certain Element or a sub-system from the system under design.

Let’s say the algorithm determined a maximum delay value of

3.5 ms for the EFB Element and the Network 2 Element in

variant 1, shown in Figure 7. This means, that the complete

communication systems can perform all Functions according to

the given Objectives. It also means, the EFB Element itself can

carry out all its allocated Functions with the requested

performance, although the EFB Element delays the execution

of its Functions and the Network 2 Element delays the

transmission of data to and from the EFB Element by 3.5 ms.

The system architect of the communication system decides to

choose variant 1 and gives the executable specification to

another system designer who develops the EFB. He creates an

executable specification for the EFB and validates it with the

executable specification he has been given. His design is valid

as long as his design provides all necessary EFB Functions,

meets all Objectives and, among other constraints, provides a

maximum delay of 3.5 ms for the EFB. The same mechanism

can be applied for sub-system and network design

Both system architecture variants use a set of identical

Functions, defined by the functional model. Variant 1 allocates

EFB and Maintenance Functions to two dedicated elements

within the communication system, while variant 2 uses one

element to host all these Functions together. The same Router

Element is used in both variants to host all Routing Functions.

Accordingly, variant 1 uses five (internal and external) network

Elements and a radio link Element whereas variant 2 uses four

network Elements and a radio link to communicate with other

systems. In variant 2, network traffic from the combined EFB

and Maintenance System Element is transmitted using the same

system internal network, thus increasing the bandwidth

demand. Additionally, the CPU and memory resources must be

capable to satisfy the demand of both functions simultaneously.

VIRTUAL VALIDATION ENVIRONMENT

 A global system application or mission is used to guarantee

repeatable simulations for all models and to validate each

model. To introduce features as depicted in Figure 5 and Figure

6, it was necessary to:

a) Implement an overall synchronicity method that

controls and synchronizes all model components.

b) Develop and use a consistent data base and a

standardized, coherent data exchange management

between Elements.

c) Use ranges instead of point values for parameters

during simulation to include uncertainty.

Several plug-and-play model components have been created to

help system designers to form executable conceptual

specifications with Functions and Elements. These include

several basic model components such as:

 Delay modules for execution and transmission

behavior.

 Probability driven failure generators.

 Network components and other predefined Elements.

 Objective test modules.

 Resource management components.

 Global and local system, Element and Function

control modules.

 Evaluation probes, showing statistics and value

ranges (min, max, mean graphs).

 Automation routines for maximum delay estimation

and state based coverage testing for different model

components.

On extended system level, a control module is used to

manipulate system, Element and Function behavior directly

during simulation. A prototypical graphical user interface

(GUI) was implemented to show and change the status of each

system, Element and Function.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 51ISSN: 1690-4524

Figure 10: Automatically created GUI to observe (right hand side) and control (left hand side) the execution of different systems, Elements

and Functions during simulation of the communication system

The control GUI is created automatically during simulation and

according to the systems architecture. Figure 10 depicts the

GUI generated for variant 1. On the left hand side of Figure 10,

buttons where formed that can activate or deactivate a (sub-)

system, Element or Function. On the right hand side, there is an

indication for the status of each associated system component.

If any Function, Element or sub-system failure is detected it is

shown automatically. Identifiers within the GUI are created

according to the following expression:

<(S) System identifier # (E) Element identifier # (F) Function

identifier>

If for instance a whole subsystem is deactivated, all of its

functionalities fail and Elements will stop providing resources

they normally would produce. Figure 11 depicts how the

manipulation of one of the maintenance Functions and the

complete deactivation of the EFB Element dynamically affect

several systems and Elements (LRUs, networks) as well as

Functions within other areas of the conceptual system during

simulation. Small red boxes represent the number of impacted

Functions within other Elements and systems. Red network

connections indicate that the performances of nearly all

networks within the overall system are affected.

In addition, an auto execution mode is available, which will

automatically generate different state permutations during

simulation. This encloses all generic FSMs for sub-systems,

Functions and Elements. Using the possibilities of the GUI and

the possibility to control and change the state of each Function

for the example system, an over-sized periodic maintenance

Function could be determined immediately monitoring the

systems networks. The respective Function was sending data

via the radio link network too frequent, thus generating a

constant over utilization. Because of this, the performance of

other Functions and Elements of the system under design and

its interfaced systems was reduced to a non-acceptable degree.

The periodic Function was modified slightly to adjust to given

system architecture parameters thus resolving the problem at a

very early stage of design. Another important applications for

the features described are safety and reliability critical aircraft

systems. By activation / deactivation of Functions, Elements or

systems one can determine the robustness of a given system

architecture. Questions like “Will the system still work as

required if one particular Function or Element or a coupled

system fails?” or “Will all redundancy mechanisms work?” can

now be checked during simulation before system integration

has even started.

Figure 11: Impact of Function / Element deactivation on other

systems, Elements and Functions during simulation

SIMULATION AND RESULTS

Since all concept specifications are executable, it is possible to

draw conclusions from every model. The functional model

alone however, can only be used to validate, if logical

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201252 ISSN: 1690-4524

operational and functional aspects of the concept were

implemented correctly. Figure 12 shows the results for data

transmission from the cockpit to the EFB. Each dot represents a

datagram that is sent or received. This result is not very

realistic as each datagram is immediately received upon

transmission. Usually a delay would occur which is generated

by the time for data transmission through several networks,

data calculation and access operations by the EFB. This shows

that a purely functional model of a system is not sufficient for

validating system architectures.

Figure 12: Cockpit/EFB data exchange of the Functional model

The same simulation statistic used for variant 1 of the

conceptual specification produces a more realistic data

exchange diagram, shown in Figure 13.

Figure 13: Cockpit/EFB data exchange of the conceptual model

After both conceptual architecture simulations are completed, a

table with all Objective values is created and used to compare

the results for the different architectures. Table 1 lists the

results of the simulation for the two conceptual architectures.

The left row specifies all given objectives for the architecture.

Objectives beginning with a capital T mark timing objectives.

A timing Objective like T Flight Performance for instance

specifies a range from 0 ms to 4 ms. This means, that all

operations executed by different Functions to calculate data for

an aircraft function that constantly monitors the current

performance for flight shall never take longer than the upper

bound of 4 ms.

Objective Variant 1 Variant 2

T Maintenance (ms) 1,1036 1,1131

T Flight Performance (ms) 3,6616 3,6142

T AOM (ms) 5,1281 5,4920

T Weather Data (ms) 4,1515 3,7379

MTTR (h) 9,9107 9,8737

Total System Cost ($) 49500 43000

Total System Weight (kg) 101 86

Total Power Consumption (W) 2090 1810

Total System Size (MCU) 13 10

Total Heat Dissipation (units) 40,6999 31,8999

All Objectives Attainable Yes Yes

Table 1: Comparison of performance values of the two

conceptual system architectures

Other Objectives like Total System Cost are self-explanatory.

They represent non-functional parameters of the system under

design that have a huge impact on the development process.

The last line of Table 1 shows if all Objectives are attainable

for the respective design. Therefore, all table values are

compared with the given Objectives during simulation. Based

on all data, a design decision can be made. Of course, this

decision is strongly affected by the individual weights of each

Objective. However, a simple comparison is not enough when

validating system architectures. Specific properties of system

architectures, such as scalability and extensibility may also be

used to find a decision. Furthermore, the resource utilization

linked to a specific state of the system must be examined in

order to validate the dynamic behavior of the system. Different

MLDesigner modules are available to interfere with the

executable conceptual specification during simulation. A

simple slider, as depicted in Figure 14, can be used for instance

to change quantities of a certain resource like power to see the

direct impact on the system under design.

Figure 14: Slider to adjust the resource power within variant 1

Figure 15 compares the results of the simulations for data

transmission to the ground via radio link for both variants. This

result shows that the integration of several Functions into a

single Element incurs a burden on the resources that are

required to operate the system. The graph also shows that

additional delays are introduced when using the same set of

resources in one Element and that using one shared network

between different Elements increases delay for overall data

transmission.

Figure 15: Simulation results for air to ground data

transmission of variants B1 and B2

Network statistics of variant 1 and 2 for example can also be

used to determine the impact of reducing the number of internal

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 53ISSN: 1690-4524

networks for the communication system by combining EFB

and maintenance Functions in one Element. Figure 16 shows

the strongly utilized internal network of variant 2.

Figure 16: Internal network utilization of the communication

system of variant 2

Total power consumption and other Objectives were shown in

Table 1. Other simulation probes and statistics are used to get a

more detailed look at the range of values of an Objective.

Figure 17 for example depicts the progress over time for the

timing Objective Flight Performance of variant 2. It can be

seen that at the beginning the values are much higher than in

the end. This can be explained by the higher utilization of

different elements at the beginning of a simulation, according

to the given mission.

Figure 17: Timing Objective Flight Performance of variant 2

Power management, power usage and power-up behavior are

important factors of nearly all electronic systems, especially in

spacecraft and aircraft. Resource Objectives like power could

be calculated from all given element parameters without

simulation. Nevertheless, this static calculation does not

include parameter and model uncertainties as well as dynamic

processes which occur during system operation. Figure 18

shows how power usage changes over time during simulation

of variant 1.

Figure 18: Power usage over time of variant B1

Such investigations can also contribute to find a design

decision as well as to show and include uncertainties in design

parameters at an early design stage. Once the design is

elaborated, uncertainties are expected to decrease.

CONCLUSION

This paper identifies current challenges of complex systems

design, especially for aircraft development. A set of model

based tools and methodologies were considered to solve the

demand for holistic and executable specifications for early

system design levels. Executable models of two aircraft

communication system variants were developed using the

system design tool MLDesigner. These models include upper

system context (aircraft, ground entities) as well as coupled

functional, architecture and performance components. A virtual

test environment was created to survey and manipulate the

operational status of each model component. Since

MLDesigner already uses Monte-Carlo-Simulation it is also

possible to simulate over different parameter value ranges and

therefore include model uncertainty. FSM based control

structures embedded in Functions, Elements and sub-systems

are used to simulate several different states which affect the

overall system behavior and performance. These control

structures also allow automated coverage analyses for all parts

of a system model. Executions of several test scenarios or pre-

defined tests are possible via configuration files. It was shown

how modeling and simulation of logical behavior, architecture

and performance aspects permits the creation of executable

concept specifications for complex, dynamically coupled

systems. These virtual prototypes can be used in early design

stages to perform architecture comparison and validation of

system requirements and thus significantly reducing the design

space and product uncertainty. Different architecture

alternatives can be used to optimize systems before

implementation and integration has started.

REFERENCES

[1] H. Salzwedel, „Complex system design automation in the

presence of bounded and statistical uncertainties,“ in 52.

Internationales Wissenschaftliches Kolloquium -

IWK’2007, Ilmenau, Germany, 2007.

[2] O. Lilienthal, Der Vogelflug als Grundlage der

Fliegekunst, Otto Lilienthal, 1889.

[3] H. Salzwedel und J. Vincent, „Modeling, identification,

and control of flexible aircraft,“ in Air Force Wright

Aeronautical Laboratories report no. AFWAL-TR-84-

3032, Air Force Wright Aeronautical Laboratories, 1984.

[4] W. Crossley, „Systems of Systems: An Introduction of

Purdue University Schools of Engineering’s Signature

Area,“ in Engineering Systems Symposium, Cambridge,

USA, 2004.

[5] S. Marwedel, N. Fischer und H. Salzwedel, „Improving

the design quality of complex networked systems using a

model–based approach,“ in 3rd International Conference

on Model–based Systems Engineering, International

Council on Systems Engineering, Fairfax, USA, 2010.

[6] M. Jeckle, C. Rupp, J. Hahn, B. Zengler und S. Queins,

UML 2 glasklar, Carl Hanser Verlag GmbH & CO. KG,

2003.

[7] S. Queins, „UML für die Systemarchitektur,“ in

Computerwoche, IDG Business Media GmbH, 2011.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201254 ISSN: 1690-4524

[8] J. Holt und S. Perry, SysML for Systems Engineering

(Professional Applications of Computing), Institution of

Engineering and Technology, 2007.

[9] National Institute of Standards & Technology (NIST),

„The Economic Impacts of Inadequate Infrastructure for

Software Testing, pp.91 ff.,“ in Planning Report 02-3,

2002.

[10] P. H. Feiler, Model-based Engineering of Software-reliant

Systems with AADL, Pittsburgh, PA, USA: Software

Engineering Institute, Carnegie Mellon University , 2010.

[11] C. Grimm, Languages for System Specification: Selected

Contributions on UML, SystemC, System Verilog, Mixed-

Signal Systems, and Property Specifications from FDL'03,

Springer Netherlands, 2004.

[12] A. Angermann, M. Beuschel, M. Rau und U. Wohlfarth,

MATLAB - Simulink - Stateflow: Grundlagen,

Toolboxen, Beispiele, Oldenbourg Wissenschaftsverlag,

2009.

[13] [Online]. Available: http://www.esterel-technologies.com.

[Zugriff am May 2011].

[14] [Online]. Available: http://www.mldesigner.com. [Zugriff

am January 2012].

[15] Department of Defense, DOD Architecture Framework

(DoDAF) V1.5, Vols I, II, and III, Version 1.5 ed., USA,

2007.

[16] I. Moir und A. G. Seabridge, Civil Avionics Systems,

John Wiley & Sons, Ltd., 2006.

[17] I. Moir und A. G. Seabridge, Aircraft Systems:

Mechanical, Electrical and Avionics Subsystems

Integration, 3rd Edition, John Wiley & Sons, Ltd., 2008.

[18] B. S. Blanchard und W. B. Fabrycky, Systems

Engineering and Analysis 4th ed., Prentice Hall, 2005.

[19] D. Buede, The Engineering Design of Systems: Models

and Methods, John Wiley & Sons, 2000.

[20] A. P. Sage und J. E. Armstrong, Introduction to Systems

Engineering, John Wiley & Sons, 2000.

[21] N. Fischer, Design of a Plug-and-Play Development

Environment for Optimizing Avionics Systems

Architectures, Thesis: Ilmenau University of Technology,

2007.

[22] H. Salzwedel, N. Fischer und T. Baumann, „Aircraft level

optimization of avionics architectures,“ in 27th Digital

Avionics Conference – DASC 2008, St. Paul, USA.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 55ISSN: 1690-4524

