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ABSTRACT 

 

Current avionics systems specifications, developed after 

conceptual design, have a high degree of uncertainty. Since 

specifications are not sufficiently validated in the early 

development process and no executable specification exists at 

aircraft level, system designers cannot evaluate the impact of 

their design decisions at aircraft or aircraft application level. At 

the end of the development process of complex systems, e. g. 

aircraft, an average of about 65 per cent of all specifications 

have to be changed because they are incorrect, incomplete or 

too vaguely described. In this paper, a model-based design 

methodology together with a virtual test environment is 

described that makes complex high level system specifications 

executable and testable during the very early levels of system 

design. An aircraft communication system and its system 

context is developed to demonstrate the proposed early 

validation methodology. Executable specifications for early 

conceptual system architectures enable system designers to 

couple functions, architecture elements, resources and 

performance parameters, often called non-functional 

parameters. An integrated executable specification at Early 

Conceptual Architecture Level is developed and used to 

determine the impact of different system architecture decisions 

on system behavior and overall performance.  

 

Keywords: Complex systems design, Concept validation, 

Executable specification, Middle-out design, Uncertainty 

reduction, Virtual test bench, Avionics development, Aircraft 

level design, Design space exploration. 

 

 

INTRODUCTION 

 

For many years, the development of complex networked 

systems like aircraft, spacecraft or automobiles has been 

characterized by high risk and product uncertainty [1]. 

Complexity has always been a development challenge, 

especially for aircraft. In the early days of air flight, all 

attempts to develop an airplane failed until the three Lilienthal 

siblings developed validated models of aerodynamics through 

observation of natural systems and rotating airfoil experiments 

[2]. These models were further validated by wind tunnel 

experiments of the Wright brothers. Over time, progress in 

technology enabled engineers to develop more and more 

complex aircraft. When aircraft crossed the sound barrier and 

needed to be equipped with stability augmentation systems, in 

order to enable pilots to fly these aircraft with rapidly changing 

dynamics. The stability augmentation system dynamically 

coupled aerodynamics, aircraft structure and control. Again, 

many approaches failed to overcome the aero–servo–elasticity 

problems. It took some time until Science Applications 

International Corporation (SAIC), developed standardized 

mathematical descriptions for aerodynamics, structures and 

control and a common execution model which describes, 

simulates and analyzes integrated and coupled aircraft 

dynamics [3]. Today, we face the highest increase of new 

functionality and configuration diversity within networked 

systems of aircraft. The complexity and quantity of both, 

functions, components and sub-systems and the complex 

interaction between them are in many cases not well 

understood [4]. Nearly all avionics and cabin related systems 

are affected. For instance Integrated Modular Avionics (IMA), 

in-flight entertainment or cabin service systems to name just a 

few. Short times-to-market, strong competition, and complex 

design tasks realized by different divisions and groups are 

contributing to the overall risk. Different studies indicate that 

most design errors are introduced in the very first levels of 

systems design, during concept and specification phases. 

However, most of these errors are discovered late in the 

development process. Usually during integration or even when 

the product is already in service. Estimates for the amount of 

errors introduced during specification phase range between 

60% and 70%. Figure 1 shows respective values for complex 

software development. It is derived from the National Institute 

of Standards & Technology Planning Report 02-3 in 2002.  

 

Several attempts, such as Requirement-based Engineering 

(RBE) and Concurrent Engineering (CE), have been made to 

handle complexity and reduce development risk. Some model-

based techniques using modeling languages such as SysML or 

UML have been introduced tentatively in order to improve and 

validate the quality of the design. However, all of these 

attempts have failed to deliver on their promise [5]. UML 2.0 is 

common practice for software development [6], but it is also 

capable to provide a base for integrated systems modeling and 

system architecture descriptions [7]. To derive consistent, 

complex and multi domain specifications however, its model 

elements and many different diagram types are often not strict 

enough and less formal than required to specify unambiguous 

and, above all, executable specifications. SysML, a language 

derived from UML, enables modeling of system requirements 

and their evaluation [8]. It was created as a standardized 

expansion of UML to deliver a more specialized language for 

designers of complex systems. But since SysML specifications 

lack the combination of functional, non-functional, resource 

and mission criteria it is, at the moment, not suitable to develop 

executable specifications for large scale or system-of-systems. 
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Figure 1: V-Model including percentages of where errors are likely to be introduced and found together with estimates of relative costs for 

error removal within the systems development lifecycle, adapted from [9] and [10]

Other well proven model driven methodologies like SystemC or 

Verilog operate on a completely different level of abstraction 

and are not intended to be used on complex overall system 

level [11]. Both, the level of abstraction and the combination of 

functional and architecture system components are currently 

hard to find in one of the established software tools. Another 

good example is MATLAB Simulink and similar software suite 

members, which are widely approved but are mainly used for 

control applications and less complex systems [12]. An 

example for a more specific tool used for aircraft and military 

model based software design is SCADE [13]. This tool provides 

formal verification techniques, test coverage and provides 

interfaces to many different tools. SCADE also allows code 

generation that is qualified to be certified according to one of 

the most important software guidance documents for aviation: 

The DO-178B, a default guideline by the Radio Technical 

Commission for Aeronautics (RTCA) in cooperation with the 

European Organization for Civil Aviation Equipment (EASA). 

As mentioned before, SCADE is mainly used for software 

design and can only partly be used to combine software, 

architecture and mission in one comprehensive and executable 

model for avionics systems development. We decided to use 

the integrated system level design platform Mission Level 

Designer (MLDesigner [14]) for the development of early 

conceptual level executable specifications. It provides the 

ability to develop executable specifications with different 

abstraction layers based on a multi-domain concept. These 

different modeling domains include Discrete Event, Finite State 

Machine or Continuous / Synchronous Data Flow domains that 

support the creation of complex mixed systems, e.g. mixed 

analog and digital aircraft systems. 

 

To be successful in the future, it is essential to provide a 

customer with the best solution for the intended application of a 

product. Therefore it is also necessary to be able to optimize a 

complex system on an overall system level. In order to achieve 

a good quality of system specifications we need to increase the 

level of validation early by means of executable concept 

specifications. Currently used design practices lack the ability 

to create and use such executable specifications during early 

design phases. Overall concept architectures and related written 

specifications are typically being developed using office 

applications according to DoDAF [15]. The resulting 

documents are not executable and complex system interactions 

cannot be validated. They cannot fill the gap between concept 

and specification which ultimately leads to component 

realization and integration. An executable concept specification 

must be derived which contains all relevant aspects of systems 

design, i.e. behavior, architecture and performance parameters, 

often related to as non–functional parameter values. In other 

words: combine hardware, software, dynamic coupling, 

operational scenarios and aspects like weight, costs or timing 

constraints. Only then will we achieve early risk and 

uncertainty reduction within specifications and systems 

development. It is also a crucial prerequisite for a successful 

overall architecture optimization. 

 

 

CIVIL AIRCRAFT AVIONIC SYSTEM 

 

Two system models were developed to illustrate how 

executable conceptual design specifications can be created. 

Therefore a simplified aircraft communication system (ACS) 

and its extended system context, including other systems at 

aircraft level as well as a ground facility, were created. These 

two system architectures can be simulated and compared to 

validate each design approach early and to choose the optimal 

system architecture for further development.  

 

Modern civil aircraft are equipped with integrated 

communication systems that perform many different functions. 

While there are dedicated systems for voice communication 

between flight deck and air traffic control, the system 

considered here manages communication between different 

aircraft systems for the purpose of operation and maintenance 

[5]. Figure 2 shows the extended system context of the first 

possible system architecture. This communication system is 

equipped with three main units which perform dedicated 

functions. An Electronic Flight Bag (EFB) is a system element 

that supports the flight crew when performing specific tasks 

related to flight operation such as the Aircraft Operation 

Manual (AOM), calculation of take-off and flight performance 

and weather data processing. Since nearly all modern aircraft 

use IP-based communication for non-critical systems, a router 

system element is required to provide a certain Quality of 

Service (QoS) for all connected systems. 
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Figure 2: System level and extended system context with three 

dedicated system elements 

Civil aircraft use so called Built-in Test equipment (BITE) to 

constantly monitor connected components and report any 

unusual behavior to the Centralized Maintenance System 

(CMS). Most systems also require correlating maintenance data 

and sending part of the information about the state of other 

systems to the ground via the maintenance system element. The 

second system architecture is depicted in Figure 3. In this 

approach, the communication system is equipped with only two 

units. The router system element is unchanged while EFB and 

maintenance system element are realized within one integrated 

unit.   

 

 
 

Figure 3: System level and extended system context with two 

dedicated system elements 

Both system models represent identical functional behavior. All 

double arrowed lines in both pictures represent communication 

and data channels which are used to exchange data between 

connected entities. These communication lines are also 

considered as essential architecture elements of the system and 

its context. Therefore, they are included in the model. In this 

example, all system connections at aircraft level are considered 

as IP-based networks the ground link is established via radio 

link. For more in depth information on aircraft related systems, 

design approaches and principles see references [16] and [17]. 

 

 

EARLY CONCEPTUAL MODEL-BASED DESIGN 

 

In current approaches of complex systems design such as 

aircraft, structured approaches are widely used. The design task 

is decomposed through various design stages until the 

remaining complexity permits to develop buildable solutions. 

All these buildable solutions need to be assembled into a 

complete system to solve the overall design problem. Dividing 

a complex design problem into a number of less complex 

problems and assembling these partial solutions is an approach 

widely accepted [18], [19], [20]. Usually, system and concept 

designers concentrate on operational and functional aspects of a 

system under design. Physical architecture, resource 

dimensioning and performance compliance is left to the 

implementer or an external supplier. However, concentration 

on a purely functional design without any reference to a 

reasonable architecture is not sufficient [21]. Also, a holistic 

design process needs to look at problems that may arise from 

system integration. An overall solution which is assembled 

from operative standalone sub-solutions may not work at all. 

Therefore it is necessary to begin conceptual design at aircraft 

level [22]. 

 

Usually, a conceptual design is generated at the very first levels 

of systems design. Most concepts are derived from top-level 

operational needs and customer inputs. While the concept is 

steadily decomposed into sub-concepts and top-level 

specifications are created, system and function designers assign 

a set of attributes to each derived function. Thus, the designer 

makes assumptions about a possible implementation of the 

function being defined. These assumptions may also be based 

on experience from previous projects and/or similar designs. 

Consequently, a design decision about a functional architecture 

is not based on functional aspects alone, but rather influenced 

by the implicit assumptions about the physical architecture that 

the designer made. The system specification however does not 

explicitly state these assumptions thus making it difficult to 

validate all requirements [5]. To overcome this validation gap, 

executable concept specifications have been created for the two 

different civil aircraft communication system architectures 

using the design tool MLDesigner.  

 

An executable concept specification binds logical behavior 

(Function), architecture components (Elements) and 

performance constraints and requirements as well as specific 

resources in one combined multi-domain model. Resources are 

either allocated to Functions, Elements or (Sub-) Systems 

whereas Functions are allocated to Elements or standalone.  

Simulations are used to validate the system design as early as 

possible and to solve typical integration problems during 

design, not during implementation and test. In a first step, a 

functional model without any reference to any architecture was 

created. Figure 4 shows the ACS module in MLDesigner. This 

model is used as an operational baseline for the overall 

concept. It is also used to show the difference between purely 

functional and architectural executable specifications. General 

aspects of a so called Function model block at conceptual level 

are depicted in Figure 5. A Function is an MLDesigner module 

that does describe logical behavior formed by different coupled 

functional building blocks or C++ code. In other words, logical 

behavior is composed of inputs, processing and outputs.  
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Figure 4: Functional blocks of the communication system on system level in MLDesigner 

Functions can also be coupled with resources that are essential 

for their correct behavior. Each Function also contains a 

generic Finite State Machine (FSM). This generic FSM is 

bound with the behavior of the respective Function block. It is 

used as observe and control mechanism and puts the whole 

Function block into several internal states. For instance a 

Function can be in normal mode, switched off or failed. 

Depending on its internal state, a Function can adjust its 

behavior during simulation, e.g. a Function fails and is 

therefore deactivated or activated. To add long term 

probabilistic behavior and uncertainty, the state machine of 

each Function can be linked to a fault inducing module that 

fails, enables or stimulates a Function in a certain way with 

defined probability and a chosen probability distribution. 

 

 
 

Figure 5: Function properties in executable conceptual models 

In the second step, an underlying conceptual architecture was 

introduced and Functions were allocated to MLDesigner 

modules called Elements. Figure 7 shows how the system 

structure changed on system level from functional to 

architectural design for variant one of the two proposed system 

architectures. In addition to functional behavior and 

communication links, the introduced architectural layer of the 

system includes concepts of networks, a radio link as well as 

other performance relevant execution components. These 

include CPUs and memories as well as network protocols. 

These concepts introduce additional model parameters, such as 

the average latency and the maximum bandwidth of a network, 

the number of instructions per second that a CPU can process 

and the capacity of involved memories. A so-called Element is 

a container for Functions as well as for model components 

representing architectural system features as mentioned above. 

An Element can also form a complete Electronic Control Unit 

(ECU) which can contain further elements. Just like Functions, 

Elements also contain a set of different features as indicated in 

Figure 6. 

 

 
 

Figure 6: Element properties in executable conceptual models
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Figure 7: Variant 1 of the communication systems conceptual architecture in MLDesigner containing 3 ECUs and 2 network Elements 

Several, often called non-functional or quality parameters, like 

cost and weight are also associated with elements. Each 

Element has a set of non-functional parameters. These are used 

during system simulation to calculate different non-functional 

values for the whole system architecture. In order to be able to 

validate a design and determine the best possible architecture 

from a set of variants, so called Objectives have been 

introduced. Objectives are 4-tuples of weighted parameter 

values and can be used for either system validation or to 

specify non-functional parameters, defining ranges instead of 

single point values. 

 

Objective = (value, lower bound, upper bound, weight) 

  

Objectives have to be met by the overall system or a sub-set of 

its Elements and Functions. Typical objectives given for 

aircraft are weight, cost or timing constraints for the 

completion of an important function or the Mean Time to 

Restore (MTTR).  

 

Quantifiable and adjustable shared resources like power or 

bandwidth are directly coupled with Element and Function 

execution for all conceptual models. Elements and Functions 

specify their individual need or range for certain resources. If a 

global or local resource like power is not available or does not 

fulfill the demand given by an Element objective, the Element 

will stop its execution and therefore the execution of all its 

allocated Functions until all needed resources are available 

again. 

  

Elements also have a generic FSM based internal state control. 

By default, but not limited to, an Element has four top-level 

states: Normal, Failed, Off and Unpowered. In combination 

with Function states it is now possible to let an element behave 

normally, failed or partially failed. It can also be switched off 

through stimulation by other Elements and Functions if 

necessary. All generic states can be extended through 

hierarchical decomposition into sub-states. For instance the 

top-level Normal state could host several sub-states like 

Maintenance or Test Mode, as depicted in Figure 8. If, for 

example, an Element or an entire system is in Test Mode, only 

a sub-set of specific functions are available to be performed. 

Probabilistic fault inducing routines are used to emulate 

failures as they happen in real world electronics like Line 

Replaceable Units (LRUs). 

 

 
Figure 8: Possible slave states of the Normal state of an 

Element FSM 

All Elements communicate through a defined set of 

standardized data structures. This is necessary to guarantee a 

consistent data particle exchange within each model. Since the 

structure for all messages between Elements is known, 

predefined plug-and-play model probes can be deployed for 

data mining during simulation. It is also possible to use specific 

delay routines within each element. These routines delay 

allocated functions and data generated or processed within an 

Element. Possible delay values can depend on available 

bandwidth, cable length, CPU and memory execution delays to 

name just a few. Precise value ranges for delays are determined 

from data available for specific architecture Elements, expert 

knowledge or in form of plausibility values, derived from 

previous development projects or tests. During early design 
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levels, such aspects are often only vaguely known or unknown. 

In this case, system designers can use more abstract Element 

and sub-system execution delay modules in MLDesigner. 

These are designed in a way to estimate the maximum amount 

of delay which still enables an Element, a sub-system or the 

complete system under design to perform all Functions while 

simultaneously fulfilling necessary Objectives like time 

constraints for the execution of a set of Functions. To do so, 

executable conceptual specifications are iterated multiple 

times, according to the algorithm shown in Figure 9. The 

algorithm stops when a predefined maximum number of 

iterations are completed or the calculated delay value for one or 

more Elements has the expected accuracy. Accuracy is 

determined through the number of decimal places of the 

calculated delay value. Before starting a set of simulations, 

different parameters can be set for the model and each 

designated Element, for example: 

 

 Simulation counter: simc = max 

 Counter for the number of aborted simulations: x = 0 

 Step size for the add-on delay for each iteration: n = 1 

 Initial Element delay: e_delay = 0 

 Number of decimal places for the delay value:  q = max 

 Last stable Element delay: s_delay = 0 

 

    
 

Figure 9: Sequence plan for maximum valid Element delay 

calculation through iteration with MLDesigner 

When the algorithm has finished, delay values are available for 

all Elements and/or sub-systems within a system. The 

conceptual specification is complemented with these values 

and validated through system execution. To validate the design, 

Mission, Objectives and scenarios or use-cases are utilized 

during system execution. On the one hand, calculated delay 

values can be used by system designers to develop or order 

fitting electronics for each Element and the respective set of 

allocated Functions. On the other hand, different development 

teams can also validate their detailed conceptual design for a 

certain Element or a sub-system from the system under design. 

Let’s say the algorithm determined a maximum delay value of 

3.5 ms for the EFB Element and the Network 2 Element in 

variant 1, shown in Figure 7. This means, that the complete 

communication systems can perform all Functions according to 

the given Objectives. It also means, the EFB Element itself can 

carry out all its allocated Functions with the requested 

performance, although the EFB Element delays the execution 

of its Functions and the Network 2 Element delays the 

transmission of data to and from the EFB Element by 3.5 ms. 

The system architect of the communication system decides to 

choose variant 1 and gives the executable specification to 

another system designer who develops the EFB. He creates an 

executable specification for the EFB and validates it with the 

executable specification he has been given. His design is valid 

as long as his design provides all necessary EFB Functions, 

meets all Objectives and, among other constraints, provides a 

maximum delay of 3.5 ms for the EFB. The same mechanism 

can be applied for sub-system and network design  

 

Both system architecture variants use a set of identical 

Functions, defined by the functional model. Variant 1 allocates 

EFB and Maintenance Functions to two dedicated elements 

within the communication system, while variant 2 uses one 

element to host all these Functions together. The same Router 

Element is used in both variants to host all Routing Functions. 

Accordingly, variant 1 uses five (internal and external) network 

Elements and a radio link Element whereas variant 2 uses four 

network Elements and a radio link to communicate with other 

systems. In variant 2, network traffic from the combined EFB 

and Maintenance System Element is transmitted using the same 

system internal network, thus increasing the bandwidth 

demand. Additionally, the CPU and memory resources must be 

capable to satisfy the demand of both functions simultaneously. 

 

 

VIRTUAL VALIDATION ENVIRONMENT 

 

 A global system application or mission is used to guarantee 

repeatable simulations for all models and to validate each 

model. To introduce features as depicted in Figure 5 and Figure 

6, it was necessary to: 

 

a) Implement an overall synchronicity method that 

controls and synchronizes all model components. 

b) Develop and use a consistent data base and a 

standardized, coherent data exchange management 

between Elements. 

c) Use ranges instead of point values for parameters 

during simulation to include uncertainty. 

 

Several plug-and-play model components have been created to 

help system designers to form executable conceptual 

specifications with Functions and Elements. These include 

several basic model components such as: 

 

 Delay modules for execution and transmission 

behavior. 

 Probability driven failure generators. 

 Network components and other predefined Elements. 

 Objective test modules. 

 Resource management components. 

 Global and local system, Element and Function 

control modules. 

 Evaluation probes, showing statistics and value 

ranges (min, max, mean graphs). 

 Automation routines for maximum delay estimation 

and state based coverage testing for different model 

components. 

 

On extended system level, a control module is used to 

manipulate system, Element and Function behavior directly 

during simulation. A prototypical graphical user interface 

(GUI) was implemented to show and change the status of each 

system, Element and Function.  
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Figure 10: Automatically created GUI to observe (right hand side) and control (left hand side) the execution of different systems, Elements 

and Functions during simulation of the communication system 

The control GUI is created automatically during simulation and 

according to the systems architecture. Figure 10 depicts the 

GUI generated for variant 1. On the left hand side of Figure 10, 

buttons where formed that can activate or deactivate a (sub-) 

system, Element or Function. On the right hand side, there is an 

indication for the status of each associated system component. 

If any Function, Element or sub-system failure is detected it is 

shown automatically. Identifiers within the GUI are created 

according to the following expression: 

 

<(S) System identifier # (E) Element identifier # (F) Function 

identifier> 

 

If for instance a whole subsystem is deactivated, all of its 

functionalities fail and Elements will stop providing resources 

they normally would produce. Figure 11 depicts how the 

manipulation of one of the maintenance Functions and the 

complete deactivation of the EFB Element dynamically affect 

several systems and Elements (LRUs, networks) as well as 

Functions within other areas of the conceptual system during 

simulation. Small red boxes represent the number of impacted 

Functions within other Elements and systems. Red network 

connections indicate that the performances of nearly all 

networks within the overall system are affected. 

 

In addition, an auto execution mode is available, which will 

automatically generate different state permutations during 

simulation. This encloses all generic FSMs for sub-systems, 

Functions and Elements. Using the possibilities of the GUI and 

the possibility to control and change the state of each Function 

for the example system, an over-sized periodic maintenance 

Function could be determined immediately monitoring the 

systems networks. The respective Function was sending data 

via the radio link network too frequent, thus generating a 

constant over utilization. Because of this, the performance of 

other Functions and Elements of the system under design and 

its interfaced systems was reduced to a non-acceptable degree. 

The periodic Function was modified slightly to adjust to given 

system architecture parameters thus resolving the problem at a 

very early stage of design. Another important applications for 

the features described are safety and reliability critical aircraft 

systems. By activation / deactivation of Functions, Elements or 

systems one can determine the robustness of a given system 

architecture. Questions like “Will the system still work as 

required if one particular Function or Element or a coupled 

system fails?” or “Will all redundancy mechanisms work?” can 

now be checked during simulation before system integration 

has even started. 

 

 

 
 

Figure 11: Impact of Function / Element deactivation on other 

systems, Elements and Functions during simulation 

 

SIMULATION AND RESULTS 

 

Since all concept specifications are executable, it is possible to 

draw conclusions from every model. The functional model 

alone however, can only be used to validate, if logical 
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operational and functional aspects of the concept were 

implemented correctly. Figure 12 shows the results for data 

transmission from the cockpit to the EFB. Each dot represents a 

datagram that is sent or received. This result is not very 

realistic as each datagram is immediately received upon 

transmission. Usually a delay would occur which is generated 

by the time for data transmission through several networks, 

data calculation and access operations by the EFB. This shows 

that a purely functional model of a system is not sufficient for 

validating system architectures. 

 

 
Figure 12: Cockpit/EFB data exchange of the Functional model 

The same simulation statistic used for variant 1 of the 

conceptual specification produces a more realistic data 

exchange diagram, shown in Figure 13. 

 

 
 

Figure 13: Cockpit/EFB data exchange of the conceptual model 

After both conceptual architecture simulations are completed, a 

table with all Objective values is created and used to compare 

the results for the different architectures. Table 1 lists the 

results of the simulation for the two conceptual architectures. 

The left row specifies all given objectives for the architecture. 

Objectives beginning with a capital T mark timing objectives. 

A timing Objective like T Flight Performance for instance 

specifies a range from 0 ms to 4 ms. This means, that all 

operations executed by different Functions to calculate data for 

an aircraft function that constantly monitors the current 

performance for flight shall never take longer than the upper 

bound of 4 ms. 

 

Objective Variant 1 Variant 2 

T Maintenance (ms) 1,1036 1,1131 

T Flight Performance (ms) 3,6616 3,6142 

T AOM (ms) 5,1281 5,4920 

T Weather Data (ms) 4,1515 3,7379 

MTTR (h) 9,9107 9,8737 

Total System Cost ($) 49500 43000 

Total System Weight (kg) 101 86 

Total Power Consumption (W) 2090 1810 

Total System Size (MCU) 13 10 

Total Heat Dissipation (units) 40,6999 31,8999 

All Objectives Attainable Yes Yes 

 

Table 1: Comparison of performance values of the two 

conceptual system architectures 

Other Objectives like Total System Cost are self-explanatory. 

They represent non-functional parameters of the system under 

design that have a huge impact on the development process. 

The last line of Table 1 shows if all Objectives are attainable 

for the respective design. Therefore, all table values are 

compared with the given Objectives during simulation. Based 

on all data, a design decision can be made. Of course, this 

decision is strongly affected by the individual weights of each 

Objective. However, a simple comparison is not enough when 

validating system architectures. Specific properties of system 

architectures, such as scalability and extensibility may also be 

used to find a decision. Furthermore, the resource utilization 

linked to a specific state of the system must be examined in 

order to validate the dynamic behavior of the system. Different 

MLDesigner modules are available to interfere with the 

executable conceptual specification during simulation. A 

simple slider, as depicted in Figure 14, can be used for instance 

to change quantities of a certain resource like power to see the 

direct impact on the system under design.  

 

 
 

Figure 14: Slider to adjust the resource power within variant 1 

Figure 15 compares the results of the simulations for data 

transmission to the ground via radio link for both variants. This 

result shows that the integration of several Functions into a 

single Element incurs a burden on the resources that are 

required to operate the system. The graph also shows that 

additional delays are introduced when using the same set of 

resources in one Element and that using one shared network 

between different Elements increases delay for overall data 

transmission. 

 

 
 

Figure 15: Simulation results for air to ground data 

transmission of variants B1 and B2 

Network statistics of variant 1 and 2 for example can also be 

used to determine the impact of reducing the number of internal 
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networks for the communication system by combining EFB 

and maintenance Functions in one Element. Figure 16 shows 

the strongly utilized internal network of variant 2. 

 

 
Figure 16: Internal network utilization of the communication 

system of variant 2 

Total power consumption and other Objectives were shown in 

Table 1. Other simulation probes and statistics are used to get a 

more detailed look at the range of values of an Objective. 

Figure 17 for example depicts the progress over time for the 

timing Objective Flight Performance of variant 2. It can be 

seen that at the beginning the values are much higher than in 

the end. This can be explained by the higher utilization of 

different elements at the beginning of a simulation, according 

to the given mission. 

 

 
 

Figure 17: Timing Objective Flight Performance of variant 2 

Power management, power usage and power-up behavior are 

important factors of nearly all electronic systems, especially in 

spacecraft and aircraft. Resource Objectives like power could 

be calculated from all given element parameters without 

simulation. Nevertheless, this static calculation does not 

include parameter and model uncertainties as well as dynamic 

processes which occur during system operation. Figure 18 

shows how power usage changes over time during simulation 

of variant 1.  

 

 
Figure 18: Power usage over time of variant B1 

Such investigations can also contribute to find a design 

decision as well as to show and include uncertainties in design 

parameters at an early design stage. Once the design is 

elaborated, uncertainties are expected to decrease. 

 

 

CONCLUSION 

 

This paper identifies current challenges of complex systems 

design, especially for aircraft development. A set of model 

based tools and methodologies were considered to solve the 

demand for holistic and executable specifications for early 

system design levels. Executable models of two aircraft 

communication system variants were developed using the 

system design tool MLDesigner. These models include upper 

system context (aircraft, ground entities) as well as coupled 

functional, architecture and performance components. A virtual 

test environment was created to survey and manipulate the 

operational status of each model component. Since 

MLDesigner already uses Monte-Carlo-Simulation it is also 

possible to simulate over different parameter value ranges and 

therefore include model uncertainty. FSM based control 

structures embedded in Functions, Elements and sub-systems 

are used to simulate several different states which affect the 

overall system behavior and performance. These control 

structures also allow automated coverage analyses for all parts 

of a system model. Executions of several test scenarios or pre-

defined tests are possible via configuration files. It was shown 

how modeling and simulation of logical behavior, architecture 

and performance aspects permits the creation of executable 

concept specifications for complex, dynamically coupled 

systems. These virtual prototypes can be used in early design 

stages to perform architecture comparison and validation of 

system requirements and thus significantly reducing the design 

space and product uncertainty. Different architecture 

alternatives can be used to optimize systems before 

implementation and integration has started.  
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