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ABSTRACT 
 

This paper describes the use of Petri nets in a suit of tools to 
design, analyze, monitor, log and debug the run-time 
coordination of distributed control systems. The interaction 
between the distributed components is modeled using Petri 
nets. Before running the application, different Petri net analysis 
tools can be used to analyze the system. While running, 
interactions between the different components of the 
distributed system can be easily monitored watching the 
evolution of the different Petri nets.  Besides monitoring, the 
system can be instrumented to log state changes with different 
levels of detail. Finally, graphical tools can be used for 
visualizing the evolution of the system step by step or at the 
same running pace. These tools allow also go to a specific point 
of the execution and visualize the state of the global system.  
 
Keywords: run-time verification, coordinating distributed 
systems, Petri nets, debugging distributed systems. 
 
 

1. INTRODUCTION 
 
A distributed application is a set of processes executed on 
different machines across a network. The improvement in 
communication infrastructures has contributed to the 
development of more and more distributed systems. Debugging 
and verifying distributed control programs is notoriously 
difficult because of their distributed nature. Obtaining a 
snapshot of a large scale distributed system on an asynchronous 
communication infrastructure for complex applications might 
be very costly. Still, distributed control programs are becoming 
more and more common for complex applications that include 
process control [1], robot applications [2] and production plant 
control [3], among others. 
There are various approaches to debugging distributed systems. 
They include: model checking, collecting and analyzing logs, 
replay debugging, runtime verification and using virtual 
machines. Using model checking, a model of the program is 
created and then explored to verify the design specification of 
the distributed system and the implementation. Examples of 
model checking are MaceMC [4] and CrystalBall [5]. 
Collecting logs from different processes and analyzing them 
off-line to compare with the expected behavior is used in Pip 
[6] and [7]. Replay debugging tools log the execution of the 
application nodes and replay them deterministically. In order to 
be able to replay the execution some tools, such as liblog [8], 
need to log every message and application state. Runtime 

verification is a technique that combines formal verification 
and program execution. Debugging with virtual machines uses 
a debugger placed in a virtualization layer above the hardware 
but beneath the operating system.  
A conventional approach to distributed programming [9] 
involves sequential processes that send and receive messages. 
In distributed control, these messages are mainly related to 
commands and events that coordinate their execution in order 
to carry out a defined task. In some applications such as those 
used in many production plant controls, one of the modules is 
in charge of the global coordination. For these cases, even 
though each process works autonomously, they will receive 
events and commands from the coordination module. Each 
individual process may be analyzed independently. Most of the 
existing debugging tools can be used to debug local errors. Our 
approach provides Petri net based tools for designing, 
analyzing, logging and debugging the coordination between the 
different processes. This in turn determines which process is 
not working as expected. We propose the use of existing tools 
together with a coordination replay simulator to debug each 
individual process. 
The rest of the paper is organized as follows. The next section 
overviews the general structure of the distributed control 
system. Section 3 describes the coordination between the 
different control units. Section 4 presents the model checking 
as a first way of debugging. Section 5 explains the second way 
of debugging that consists on monitoring the system during 
execution. Section 6 describes the off-line debugging analyzing 
the logged data. And finally, section 7 ends the paper with the 
results and conclusions. 
 
 

2. OVERVIEW 
 
In a distributed control system, the controller elements are not 
central in location. Rather, they are distributed throughout the 
system with each component sub-system controlled by one or 
more control units. The entire system of controllers is 
connected by networks for communication and monitoring. 
In the example on figure 1, an industrial robot picks up boxes 
from a conveyor belt and leaves them on top of a mobile robot. 
Then, the mobile robot delivers the boxes throughout the 
building. There is a computer that controls the conveyor belt 
and sends signals to the industrial robot (pick up control unit). 
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Figure 1. Pick up cell. An industrial arm gets boxes from a 
conveyor belt and places it on top of a mobile robot. 
 
The mobile robot has its own onboard control unit. There is a 
third controller computer for the Building Automation System 
(BAS) that is in charge of opening and closing doors and 
controlling the elevators. The mobile robot needs to 
communicate with the BAS to request that doors be opened and 
closed and to manage the elevators. The pick up control unit 
needs to coordinate with the robot in order to wait for the 
mobile robot to be ready to leave the boxes.  
Figure 2 shows the distributed control units and the 
coordination and debugging system presented in this paper. 
There are four different control units that autonomously control 
different elements of the system: the robot, the building 
devices, the user interface and the pick up cell (conveyor belt 
and industrial robot). The central server is in charge of the 
coordination of the distributed control units for the execution of 
different tasks. There are three modules running on the central 
server: 

• Petri net editor. This module allows the definition 
of tasks as Petri nets. These tasks include 
commands that might be executed by the four 
control units. We use hierarchical Petri nets 
where a command in a Petri net can be the 
execution of another one. Events can be 
produced by any control unit and any other task 
(Petri net). Finally, Petri nets can be analyzed 
for properties such as safeness, boundedness and 
liveness. 

• Petri net dispatcher. The tasks are executed by the 
dispatcher that loads the Petri nets from the 
XML definition file. Then interprets the Petri 
net executing the commands according to the 
current marking and subscribes to events that 
might evolve the loaded Petri nets. The 
debugger can also log different information such 
as the evolution of the Petri nets, the commands 
sent and the events subscribed to at different 
levels of detail. 

• Petri net debugger. While executing tasks, the 
evolution of the associated Petri nets can be 
monitored using this debugger. Besides, the 
debugger is an almost necessary tool for 
analyzing the logs and visualizing the system 
evolution at the execution running pace or 
jumping to a specific point. 

 
 

 
Figure 2. Distributed system architecture. Four distributed 
control units are coordinated by the central server. 
 

 
3. COORDINATING THE CONTROL UNITS OF 

THE DISTRIBUTED SYSTEM 
 
Petri nets have been widely used to model, design, execute and 
evaluate tasks in manufacturing dynamic systems.  In this work 
we use hierarchical binary interpreted Petri nets. 
As a simple example, figure 3 shows the Petri net that can be 
used for the “GET NEW BOX” task. There is only one initial 
mark in the place labeled “INIT”, while the “END” place has 
been selected as a final place. The task ends when only the 
final places are marked. It can also end when there are no 
marks on the Petri net if no final places have been defined 
First transition (“Connected”) is fired when both control units 
are connected. In this case two places become marked: the 
“Arm gets box” commands the pick up control unit to get the 
next box and the “Robot pick up position” commands the 
mobile robot to move towards the pick up position. 
 

 
 
Figure 3. RoboGraph GUI editing a Petri net that coordinates 
the mobile robot control unit and the pick up control unit to 
execute the GET NEW BOX task. 
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Both actions will be executed at the same time. When the arm 
gets the box and is ready to release it, the corresponding event 
will be published and the “Got box” transition will be fired. On 
the other sequence, when the robot reaches the pick up 
position, it will publish the position reached event and the 
“Robot in position” transition will be fired. Transition T4 has 
no event associated. Therefore, when both incoming places are 
marked, meaning that the arm has the box and the mobile robot 
is in position, T4 will be fired and the arm will proceed to drop 
the box on top of the robot according to the command 
associated to “Arm drops box” place.  When the box is on top 
of the mobile robot, the transition “Box on robot” is fired. 
Firing this transition will remove the mark from “Arm drops 
box” place and sets a mark on “END”. The “END” place is the 
only final place; therefore, the task will finish publishing the 
corresponding “end_task” message. Most of the commands 
associated to most of the places in figure 3 are messages that 
need to be sent to control units. However, the “robot pick up 
position” place executes another Petri net that needs to 
coordinate the robot and the building control unit to navigate 
the robot from the current position to the pick up position. 
Even though they are not included in figure 3, different Petri 
net mechanisms such as timers can be added to deal with some 
common problems. 
In editor mode, the user can create new tasks using a simple 
and intuitive Petri net graphical editor. Figure 3 shows the GUI 
while editing a task. The Petri net structure is created by 
selecting and dragging the different elements: places, 
transitions, arcs and marks. Then the actions (associated to 
places and transitions) and conditions (associated to transitions) 
must be defined. 
Actions can be commands implemented in any control unit in 
the distributed control architecture of figure 2. These 
commands can be selected from a menu list automatically 
generated by the GUI. Each command is a message and the 
user must define the command parameters that will 
automatically appear in a new dialog window when that 
command is selected in the editor.  
When dispatcher executes the Petri net, the messages assigned 
to places and transitions will be published as the net evolves. 
Some special commands are also available, such as start and 
stop another task (Petri net) or start a timer. 
Conditions can be events produced by any module in figure 2. 
These events are also selected from the menu list generated 
automatically by the GUI. An event can be the simple arrival of 
a message, a condition on some message parameter or any 
logical expression on several parameters over the same or 
different messages. RoboGraph GUI allows any logical 
expression to be defined over the message fields. However, 
complex conditions over message fields are sometimes more 
naturally expressed using other programming languages. For 
these cases, a Java-like editor is also integrated in the Petri net 
editor to program conditions and actions associated to places 
and transitions.  
Timers are a tool widely used in automation that comes in very 
handy here. In addition, in our applications, we have also used 
them as an error detection mechanism in order to time some 
actions of different modules.  Actions can start a timer while 
conditions can test the value of a timer. 
Global variables are used to get starting data and store 
information to share conditions and events in different places 
and/or transitions. 

 
 
 
 

4. ANALYZING THE COORDINATION MODEL 
 
Petri nets have an origin dating back to 1962, when Carl Adam 
Petri wrote his PhD on the subject.  Since that time, Petri nets 
have been accepted as a powerful formal specification tool for 
a variety of systems, including concurrent, distributed, 
asynchronous, parallel, deterministic and non-deterministic.   
The ability to analyze Petri nets is generally considered to be 
the most important activity. Through the analysis of a Petri net, 
the designer can gain insight into the behavior and properties of 
the modeled system.  There are two major types of analysis that 
may be performed on Petri nets.  The first involves the creation 
of a reachability tree, and second involves matrix equations. 
There are tradeoffs involved with selecting a particular analysis 
technique, but the reachability tree method was first chosen for 
this project because it can effectively solve the safeness and 
boundedness properties.  
A Petri net is declared safe if all of the places in the net are 
safe. A place is said to be safe if, for all possible markings, the 
number of tokens in that place never exceeds one.  
A Petri net is k-bounded if, for all possible markings, the 
number of tokens in any individual place in the net never 
exceeds k. Since we use binary Petri nets, we want them to be 
1-bounded which is equivalent to safe. 
One interesting property regarding control systems is liveness, 
which is related to the complete absence of deadlocks. Liveness 
indicates the capability of transitions to be fired for all the 
possible reachable states. The concept of liveness is closely 
related to the absence of deadlocks. This means that a live Petri 
net guarantees deadlock-free operation, no matter what firing 
sequence is chosen. However, liveness is a more restrictive 
condition than deadlock-free. 
There are a significant number of Petri net tools that do provide 
analysis of the reachability tree, some of which address the 
properties of liveness and boundedness. Roméo [10] and CPN-
AMI [11] are a couple of Petri net design and analysis 
applications of the many that can be found in tool databases 
such as [12].  
We are more interested in behavioral than structural analysis 
because, even though it depends on the initial marking, the 
structural analysis is too restrictive for this application. The 
analysis modules implemented include: 

• State space analysis: The Petri net is analyzed by 
building a tree of all the reachable markings. 
The reachability tree can then be analyzed to 
determine properties of the Petri net such as 
reachability, boundedness, deadlock, and 
safeness.  

• Invariant Analysis: The Petri net is analyzed to 
determine both, the P-Invariant and T-Invariant 
vectors. 
 

The structure of the Petri nets designed with RoboGraph can be 
stored in a Petri Net Markup Language (PNML) so that they 
can be analyzed by a wide set of available tools that handle this 
format. PNML is a proposal of an XML-based interchange 
format for Petri nets developed by the Petri net community as a 
mean to exchange models unambiguously. 
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Figure 4. Petri net debugger main window. 
 

5. MONITORING 
 
Even if a program is based on a fault-free algorithm, its 
implementation can contain errors arising, among other 
possible sources, from coding errors. Similar situations arise in 
distributed system coordination. This is, we might use safe and 
live Petri nets but still debugging tools are needed.   
Dispatcher schedules the different control unit actions and 
executive actions (other Petri nets), as well as the 
synchronization with the events produced. The interaction with 
other control units in the architecture is performed by 
publishing and subscribing to messages. This way, local 
problems in a control unit, such as a deadlock problem, do not 
block dispatcher. Also, simple mechanisms to detect and 
recover from a failure or exception situation can be established.  
When starting, dispatcher subscribes to the task execution or 
cancellation requests. Execution requests that cannot be 
executed at the reception time are stored in different queues 
according to their priority. A task execution request can come 
from different modules (figure 2), such as user interface 
modules (user requests) and dispatcher itself (command 
associated to other Petri net). 
The execution of a new task starts loading the interpreted Petri 
net from a PNML file. Then dispatcher subscribes to all the 
messages referenced in the events. Finally the initial marking is 
set and the actions associated to the marked places are 
executed. The Petri net can only evolve with the arrival of 
messages or the end of a timer.  
Each time a change in the status of a Petri net (start, stop, 
evolve) or in the waiting queues (new requests added or 
removed) is produced, a new message reporting that change is 
issued for monitoring (debugger module in figure 2) and stored 
in the log file for off-line debugging. 
 
Online monitoring 
Debugger module in monitor mode subscribes to different 
dispatcher messages that show the status of the different 
running or waiting Petri nets. Every running Petri net is shown 
in a different tab with the current marking as in figure 4. When 
dispatcher evolves a Petri net marking, a new message is issued 
and the debugger will update the monitor tabs. Therefore, using 
the monitor we can see the status of the system in a snapshot, 
since the marking of the running Petri nets represents its status. 
This is a very helpful tool when debugging an application. An 

information window with the queued tasks (Petri nets) and 
messages can also be displayed on the left tabbed pane shown 
in figure 4. 
 
 

6. LOGGING AND DEBUGGING 
 
A general approach to debugging a distributed system is to 
create logs while the system is running and analyze them off-
line to reduce interference with the execution. In the 
coordination system proposed here, the evolution of the 
coordination Petri nets, together with the messages received 
and published to the different control units, can be logged at 
different levels of detail: 

• Level 1. Logging the status (marking) of a Petri net 
each time a transition is fired. 

• Level 2. Logging data on level 1 and messages 
exchanged with the control units without the 
parameters. 

• Level 3. Logging data on level 2 and messages 
including all the parameters. 
 

 When the amount of logging data is significant, then the 
debugging takes place in an offline manner. The search for a 
bug must employ effective strategies for choosing what is 
relevant and what is not. 
The system administrator can then run the debugger in the 
play-logger mode, open the log file and play it at the same pace 
as in the real execution. Different tabs with the running Petri 
nets will be shown as in monitor mode. Besides the regular 
play option, the user can monitor the log file step by step. It can 
also jump to a defined place in “execution” as do many 
commercial programming development environments (C, Java, 
C++, etc.). Finally, the user can see different details about the 
IPC (Inter Process Communication) [13] messages including 
the information contained in the fields of the message. 
Figure 4 shows the main debugger while replaying a logged 
execution. The panel on the left-hand side of figure 4 includes a 
couple of tabs: the Petri nets info in one tab and the messages 
info in another tab. The panel on the right-hand side shows two 
tabs corresponding to the two Petri nets that are active at that 
execution point shown in the figure. 
Debugging the system directly from the logging data can be 
quite difficult. However, using the Petri net debugger is a very 
easy way to find the execution point where the evolution of the 
system does not correspond with the one for which it was 
designed. Besides, a great number of bugs end up with the Petri 
nets stuck with a fixed marking. It is quite easy to find this 
point and from it debug the application.  
For example, when executing the Petri net of figure 3, the Petri 
net debugger can freeze with the marking of figure 4. With a 
simple look at the Petri net marking we can see that the 
problem is that the “GET NEW BOX” Petri net is waiting for 
the “mobile robot in pick up position” event. And this should 
be issued by the “ROBOT TO POS” Petri net. The next step is 
to check why the “ROBOT TO POS” Petri net is not reporting 
the event and we can find one of the following: the building 
control unit is not working properly, the mobile robot control 
unit is not working properly or there is some design problem in 
the “ROBOT TO POS” Petri net. 
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Figure 5. Surveillance application robot (WatchBot). 
 
 

7. RESULTS AND CONCLUSIONS 
 
The main contribution of this paper is to show the debugging 
advantages of using Petri nets in the design and implementation 
of the distributed system coordination.  
First, they can be used for model checking to gain insight into 
the behavior and properties of the modeled system. Research 
on Petri net analysis has produced a number of algorithms that 
can be used.  
Second, monitoring the system using Petri nets is very helpful, 
since we can observe the status of the system in a snapshot 
because the marking of the running Petri nets represents its 
status.  
The third possibility is to analyze the data logged during 
execution. A visual interface is used to present the evolution of 
the Petri nets. It is also possible to jump to a specific point in 
the execution and see the data of each message, if necessary. 
The fourth possibility is to use the log to replay the 
coordination system while we debug one of the units without 
the need to run all the others. This can be done only in the case 
that all the messages exchanged between the control units go 
through the coordination unit. 
All these possibilities have been implemented in the Robotics 
Integrated Development Environment (RIDE) [14]. Developers 
use the same task programming IDE (RoboGraph) on two 
different levels. The first is to program tasks that must be 
executed autonomously by one robot and the second is to 
program tasks that can include several robots and building 
elements. This second level includes different distributed 
devices that might include autonomous robots and building 
devices such as elevators, automatic doors and sensors.  
The system has been tested in a security and surveillance 
application recently finished and presented [15], even though a 
former version was already presented in [16]. The building 
surveillance application is a Multirobot system monitored 
through Internet. Each robot (figure 5) can handle some daily 
surveillance routine tasks. Sensor information, such as real-
time images captured by a camera on the robot with 
pan/tilt/zoom functions, can be transmitted back to the central 
management office via a local area network.  
 

 
Figure 6. One Modbus module used to test the transactions 
between building devices and the central control system. 
 
In this distributed application three different type of control 
units have been used: 

• The mobile robot control unit manages mobile robot 
navigation and surveillance autonomous tasks. It 
is connected to the intranet via Wi-Fi. 

• The building control unit manages the building 
devices including security sensors and alarms. 
We developed a scale model for the building 
sensors and actuators network. For the model, a 
few Modbus modules (Schneider OTB 
1E0DM9LP) with some leds and buttons, 
connected to each Modbus interface, as shown 
in figure 6, were installed.  

• The user interfaces manage the interactions with 
users allowing them to monitor the mobile 
robots activities and command new surveillance 
tasks. The main window of a user GUI is shown 
in figure 7. 

 
Another application developed using RIDE was a tour guide 
robot that participated in the “Xuventude Galicia Net” public 
event for the 2007 and 2008 editions with different robots. In 
the 2007 edition, a Peoplebot base worked for three days in the 
“Palacio de Congresos y Exposiciones de Galicia”, Santiago de 
Compostela (Spain). In the 2008 edition, a B21 base with a 
robotic head (figure 8) was used. Even though only one robot 
was used in both cases, they were connected via WiFi to a 
central server as in figure 2.  
 
 

 
 
Figure 7. Surveillance users GUI 
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For the robot tour guide application, users can access the 
system from any terminal connected to the web using a GUI. In 
that GUI, users can see a map with the position of the robot 
connected to the central unit. Different icons in the toolbar will 
show the relevant points where the robot has to play several 
multimedia files. Clicking on the robot will show its status, 
running and waiting tasks and a little window with the camera. 
Finally, the menu includes options to tele-operate the robot, 
camera pan-tilt and other camera functions including the zoom.  

 
Figure 8. Mechatronic robot head for the tour guide 
application. 
 
Videos showing the applications together with examples using 
RIDE tools can be seen at [17]. 
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