

 A Suite of Petri net based Tools for Monitoring and Debugging Distributed
Autonomous Systems

Joaquín López, Diego Pérez, Alejandro Santana-Alonso and Enrique Paz

Dep. Ingeniería de Sistemas y Automática,
University of Vigo, Campus Universitario.

 C/Maxwell s/n 36200 Vigo, Spain
{joaquin, dplosada, asantana, epaz} @uvigo.es

ABSTRACT

This paper describes the use of Petri nets in a suit of tools to
design, analyze, monitor, log and debug the run-time
coordination of distributed control systems. The interaction
between the distributed components is modeled using Petri
nets. Before running the application, different Petri net analysis
tools can be used to analyze the system. While running,
interactions between the different components of the
distributed system can be easily monitored watching the
evolution of the different Petri nets. Besides monitoring, the
system can be instrumented to log state changes with different
levels of detail. Finally, graphical tools can be used for
visualizing the evolution of the system step by step or at the
same running pace. These tools allow also go to a specific point
of the execution and visualize the state of the global system.

Keywords: run-time verification, coordinating distributed
systems, Petri nets, debugging distributed systems.

1. INTRODUCTION

A distributed application is a set of processes executed on
different machines across a network. The improvement in
communication infrastructures has contributed to the
development of more and more distributed systems. Debugging
and verifying distributed control programs is notoriously
difficult because of their distributed nature. Obtaining a
snapshot of a large scale distributed system on an asynchronous
communication infrastructure for complex applications might
be very costly. Still, distributed control programs are becoming
more and more common for complex applications that include
process control [1], robot applications [2] and production plant
control [3], among others.
There are various approaches to debugging distributed systems.
They include: model checking, collecting and analyzing logs,
replay debugging, runtime verification and using virtual
machines. Using model checking, a model of the program is
created and then explored to verify the design specification of
the distributed system and the implementation. Examples of
model checking are MaceMC [4] and CrystalBall [5].
Collecting logs from different processes and analyzing them
off-line to compare with the expected behavior is used in Pip
[6] and [7]. Replay debugging tools log the execution of the
application nodes and replay them deterministically. In order to
be able to replay the execution some tools, such as liblog [8],
need to log every message and application state. Runtime

verification is a technique that combines formal verification
and program execution. Debugging with virtual machines uses
a debugger placed in a virtualization layer above the hardware
but beneath the operating system.
A conventional approach to distributed programming [9]
involves sequential processes that send and receive messages.
In distributed control, these messages are mainly related to
commands and events that coordinate their execution in order
to carry out a defined task. In some applications such as those
used in many production plant controls, one of the modules is
in charge of the global coordination. For these cases, even
though each process works autonomously, they will receive
events and commands from the coordination module. Each
individual process may be analyzed independently. Most of the
existing debugging tools can be used to debug local errors. Our
approach provides Petri net based tools for designing,
analyzing, logging and debugging the coordination between the
different processes. This in turn determines which process is
not working as expected. We propose the use of existing tools
together with a coordination replay simulator to debug each
individual process.
The rest of the paper is organized as follows. The next section
overviews the general structure of the distributed control
system. Section 3 describes the coordination between the
different control units. Section 4 presents the model checking
as a first way of debugging. Section 5 explains the second way
of debugging that consists on monitoring the system during
execution. Section 6 describes the off-line debugging analyzing
the logged data. And finally, section 7 ends the paper with the
results and conclusions.

2. OVERVIEW

In a distributed control system, the controller elements are not
central in location. Rather, they are distributed throughout the
system with each component sub-system controlled by one or
more control units. The entire system of controllers is
connected by networks for communication and monitoring.
In the example on figure 1, an industrial robot picks up boxes
from a conveyor belt and leaves them on top of a mobile robot.
Then, the mobile robot delivers the boxes throughout the
building. There is a computer that controls the conveyor belt
and sends signals to the industrial robot (pick up control unit).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201224 ISSN: 1690-4524

Figure 1. Pick up cell. An industrial arm gets boxes from a
conveyor belt and places it on top of a mobile robot.

The mobile robot has its own onboard control unit. There is a
third controller computer for the Building Automation System
(BAS) that is in charge of opening and closing doors and
controlling the elevators. The mobile robot needs to
communicate with the BAS to request that doors be opened and
closed and to manage the elevators. The pick up control unit
needs to coordinate with the robot in order to wait for the
mobile robot to be ready to leave the boxes.
Figure 2 shows the distributed control units and the
coordination and debugging system presented in this paper.
There are four different control units that autonomously control
different elements of the system: the robot, the building
devices, the user interface and the pick up cell (conveyor belt
and industrial robot). The central server is in charge of the
coordination of the distributed control units for the execution of
different tasks. There are three modules running on the central
server:

• Petri net editor. This module allows the definition
of tasks as Petri nets. These tasks include
commands that might be executed by the four
control units. We use hierarchical Petri nets
where a command in a Petri net can be the
execution of another one. Events can be
produced by any control unit and any other task
(Petri net). Finally, Petri nets can be analyzed
for properties such as safeness, boundedness and
liveness.

• Petri net dispatcher. The tasks are executed by the
dispatcher that loads the Petri nets from the
XML definition file. Then interprets the Petri
net executing the commands according to the
current marking and subscribes to events that
might evolve the loaded Petri nets. The
debugger can also log different information such
as the evolution of the Petri nets, the commands
sent and the events subscribed to at different
levels of detail.

• Petri net debugger. While executing tasks, the
evolution of the associated Petri nets can be
monitored using this debugger. Besides, the
debugger is an almost necessary tool for
analyzing the logs and visualizing the system
evolution at the execution running pace or
jumping to a specific point.

Figure 2. Distributed system architecture. Four distributed
control units are coordinated by the central server.

3. COORDINATING THE CONTROL UNITS OF

THE DISTRIBUTED SYSTEM

Petri nets have been widely used to model, design, execute and
evaluate tasks in manufacturing dynamic systems. In this work
we use hierarchical binary interpreted Petri nets.
As a simple example, figure 3 shows the Petri net that can be
used for the “GET NEW BOX” task. There is only one initial
mark in the place labeled “INIT”, while the “END” place has
been selected as a final place. The task ends when only the
final places are marked. It can also end when there are no
marks on the Petri net if no final places have been defined
First transition (“Connected”) is fired when both control units
are connected. In this case two places become marked: the
“Arm gets box” commands the pick up control unit to get the
next box and the “Robot pick up position” commands the
mobile robot to move towards the pick up position.

Figure 3. RoboGraph GUI editing a Petri net that coordinates
the mobile robot control unit and the pick up control unit to
execute the GET NEW BOX task.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 25ISSN: 1690-4524

Both actions will be executed at the same time. When the arm
gets the box and is ready to release it, the corresponding event
will be published and the “Got box” transition will be fired. On
the other sequence, when the robot reaches the pick up
position, it will publish the position reached event and the
“Robot in position” transition will be fired. Transition T4 has
no event associated. Therefore, when both incoming places are
marked, meaning that the arm has the box and the mobile robot
is in position, T4 will be fired and the arm will proceed to drop
the box on top of the robot according to the command
associated to “Arm drops box” place. When the box is on top
of the mobile robot, the transition “Box on robot” is fired.
Firing this transition will remove the mark from “Arm drops
box” place and sets a mark on “END”. The “END” place is the
only final place; therefore, the task will finish publishing the
corresponding “end_task” message. Most of the commands
associated to most of the places in figure 3 are messages that
need to be sent to control units. However, the “robot pick up
position” place executes another Petri net that needs to
coordinate the robot and the building control unit to navigate
the robot from the current position to the pick up position.
Even though they are not included in figure 3, different Petri
net mechanisms such as timers can be added to deal with some
common problems.
In editor mode, the user can create new tasks using a simple
and intuitive Petri net graphical editor. Figure 3 shows the GUI
while editing a task. The Petri net structure is created by
selecting and dragging the different elements: places,
transitions, arcs and marks. Then the actions (associated to
places and transitions) and conditions (associated to transitions)
must be defined.
Actions can be commands implemented in any control unit in
the distributed control architecture of figure 2. These
commands can be selected from a menu list automatically
generated by the GUI. Each command is a message and the
user must define the command parameters that will
automatically appear in a new dialog window when that
command is selected in the editor.
When dispatcher executes the Petri net, the messages assigned
to places and transitions will be published as the net evolves.
Some special commands are also available, such as start and
stop another task (Petri net) or start a timer.
Conditions can be events produced by any module in figure 2.
These events are also selected from the menu list generated
automatically by the GUI. An event can be the simple arrival of
a message, a condition on some message parameter or any
logical expression on several parameters over the same or
different messages. RoboGraph GUI allows any logical
expression to be defined over the message fields. However,
complex conditions over message fields are sometimes more
naturally expressed using other programming languages. For
these cases, a Java-like editor is also integrated in the Petri net
editor to program conditions and actions associated to places
and transitions.
Timers are a tool widely used in automation that comes in very
handy here. In addition, in our applications, we have also used
them as an error detection mechanism in order to time some
actions of different modules. Actions can start a timer while
conditions can test the value of a timer.
Global variables are used to get starting data and store
information to share conditions and events in different places
and/or transitions.

4. ANALYZING THE COORDINATION MODEL

Petri nets have an origin dating back to 1962, when Carl Adam
Petri wrote his PhD on the subject. Since that time, Petri nets
have been accepted as a powerful formal specification tool for
a variety of systems, including concurrent, distributed,
asynchronous, parallel, deterministic and non-deterministic.
The ability to analyze Petri nets is generally considered to be
the most important activity. Through the analysis of a Petri net,
the designer can gain insight into the behavior and properties of
the modeled system. There are two major types of analysis that
may be performed on Petri nets. The first involves the creation
of a reachability tree, and second involves matrix equations.
There are tradeoffs involved with selecting a particular analysis
technique, but the reachability tree method was first chosen for
this project because it can effectively solve the safeness and
boundedness properties.
A Petri net is declared safe if all of the places in the net are
safe. A place is said to be safe if, for all possible markings, the
number of tokens in that place never exceeds one.
A Petri net is k-bounded if, for all possible markings, the
number of tokens in any individual place in the net never
exceeds k. Since we use binary Petri nets, we want them to be
1-bounded which is equivalent to safe.
One interesting property regarding control systems is liveness,
which is related to the complete absence of deadlocks. Liveness
indicates the capability of transitions to be fired for all the
possible reachable states. The concept of liveness is closely
related to the absence of deadlocks. This means that a live Petri
net guarantees deadlock-free operation, no matter what firing
sequence is chosen. However, liveness is a more restrictive
condition than deadlock-free.
There are a significant number of Petri net tools that do provide
analysis of the reachability tree, some of which address the
properties of liveness and boundedness. Roméo [10] and CPN-
AMI [11] are a couple of Petri net design and analysis
applications of the many that can be found in tool databases
such as [12].
We are more interested in behavioral than structural analysis
because, even though it depends on the initial marking, the
structural analysis is too restrictive for this application. The
analysis modules implemented include:

• State space analysis: The Petri net is analyzed by
building a tree of all the reachable markings.
The reachability tree can then be analyzed to
determine properties of the Petri net such as
reachability, boundedness, deadlock, and
safeness.

• Invariant Analysis: The Petri net is analyzed to
determine both, the P-Invariant and T-Invariant
vectors.

The structure of the Petri nets designed with RoboGraph can be
stored in a Petri Net Markup Language (PNML) so that they
can be analyzed by a wide set of available tools that handle this
format. PNML is a proposal of an XML-based interchange
format for Petri nets developed by the Petri net community as a
mean to exchange models unambiguously.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201226 ISSN: 1690-4524

Figure 4. Petri net debugger main window.

5. MONITORING

Even if a program is based on a fault-free algorithm, its
implementation can contain errors arising, among other
possible sources, from coding errors. Similar situations arise in
distributed system coordination. This is, we might use safe and
live Petri nets but still debugging tools are needed.
Dispatcher schedules the different control unit actions and
executive actions (other Petri nets), as well as the
synchronization with the events produced. The interaction with
other control units in the architecture is performed by
publishing and subscribing to messages. This way, local
problems in a control unit, such as a deadlock problem, do not
block dispatcher. Also, simple mechanisms to detect and
recover from a failure or exception situation can be established.
When starting, dispatcher subscribes to the task execution or
cancellation requests. Execution requests that cannot be
executed at the reception time are stored in different queues
according to their priority. A task execution request can come
from different modules (figure 2), such as user interface
modules (user requests) and dispatcher itself (command
associated to other Petri net).
The execution of a new task starts loading the interpreted Petri
net from a PNML file. Then dispatcher subscribes to all the
messages referenced in the events. Finally the initial marking is
set and the actions associated to the marked places are
executed. The Petri net can only evolve with the arrival of
messages or the end of a timer.
Each time a change in the status of a Petri net (start, stop,
evolve) or in the waiting queues (new requests added or
removed) is produced, a new message reporting that change is
issued for monitoring (debugger module in figure 2) and stored
in the log file for off-line debugging.

Online monitoring
Debugger module in monitor mode subscribes to different
dispatcher messages that show the status of the different
running or waiting Petri nets. Every running Petri net is shown
in a different tab with the current marking as in figure 4. When
dispatcher evolves a Petri net marking, a new message is issued
and the debugger will update the monitor tabs. Therefore, using
the monitor we can see the status of the system in a snapshot,
since the marking of the running Petri nets represents its status.
This is a very helpful tool when debugging an application. An

information window with the queued tasks (Petri nets) and
messages can also be displayed on the left tabbed pane shown
in figure 4.

6. LOGGING AND DEBUGGING

A general approach to debugging a distributed system is to
create logs while the system is running and analyze them off-
line to reduce interference with the execution. In the
coordination system proposed here, the evolution of the
coordination Petri nets, together with the messages received
and published to the different control units, can be logged at
different levels of detail:

• Level 1. Logging the status (marking) of a Petri net
each time a transition is fired.

• Level 2. Logging data on level 1 and messages
exchanged with the control units without the
parameters.

• Level 3. Logging data on level 2 and messages
including all the parameters.

 When the amount of logging data is significant, then the
debugging takes place in an offline manner. The search for a
bug must employ effective strategies for choosing what is
relevant and what is not.
The system administrator can then run the debugger in the
play-logger mode, open the log file and play it at the same pace
as in the real execution. Different tabs with the running Petri
nets will be shown as in monitor mode. Besides the regular
play option, the user can monitor the log file step by step. It can
also jump to a defined place in “execution” as do many
commercial programming development environments (C, Java,
C++, etc.). Finally, the user can see different details about the
IPC (Inter Process Communication) [13] messages including
the information contained in the fields of the message.
Figure 4 shows the main debugger while replaying a logged
execution. The panel on the left-hand side of figure 4 includes a
couple of tabs: the Petri nets info in one tab and the messages
info in another tab. The panel on the right-hand side shows two
tabs corresponding to the two Petri nets that are active at that
execution point shown in the figure.
Debugging the system directly from the logging data can be
quite difficult. However, using the Petri net debugger is a very
easy way to find the execution point where the evolution of the
system does not correspond with the one for which it was
designed. Besides, a great number of bugs end up with the Petri
nets stuck with a fixed marking. It is quite easy to find this
point and from it debug the application.
For example, when executing the Petri net of figure 3, the Petri
net debugger can freeze with the marking of figure 4. With a
simple look at the Petri net marking we can see that the
problem is that the “GET NEW BOX” Petri net is waiting for
the “mobile robot in pick up position” event. And this should
be issued by the “ROBOT TO POS” Petri net. The next step is
to check why the “ROBOT TO POS” Petri net is not reporting
the event and we can find one of the following: the building
control unit is not working properly, the mobile robot control
unit is not working properly or there is some design problem in
the “ROBOT TO POS” Petri net.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 27ISSN: 1690-4524

Figure 5. Surveillance application robot (WatchBot).

7. RESULTS AND CONCLUSIONS

The main contribution of this paper is to show the debugging
advantages of using Petri nets in the design and implementation
of the distributed system coordination.
First, they can be used for model checking to gain insight into
the behavior and properties of the modeled system. Research
on Petri net analysis has produced a number of algorithms that
can be used.
Second, monitoring the system using Petri nets is very helpful,
since we can observe the status of the system in a snapshot
because the marking of the running Petri nets represents its
status.
The third possibility is to analyze the data logged during
execution. A visual interface is used to present the evolution of
the Petri nets. It is also possible to jump to a specific point in
the execution and see the data of each message, if necessary.
The fourth possibility is to use the log to replay the
coordination system while we debug one of the units without
the need to run all the others. This can be done only in the case
that all the messages exchanged between the control units go
through the coordination unit.
All these possibilities have been implemented in the Robotics
Integrated Development Environment (RIDE) [14]. Developers
use the same task programming IDE (RoboGraph) on two
different levels. The first is to program tasks that must be
executed autonomously by one robot and the second is to
program tasks that can include several robots and building
elements. This second level includes different distributed
devices that might include autonomous robots and building
devices such as elevators, automatic doors and sensors.
The system has been tested in a security and surveillance
application recently finished and presented [15], even though a
former version was already presented in [16]. The building
surveillance application is a Multirobot system monitored
through Internet. Each robot (figure 5) can handle some daily
surveillance routine tasks. Sensor information, such as real-
time images captured by a camera on the robot with
pan/tilt/zoom functions, can be transmitted back to the central
management office via a local area network.

Figure 6. One Modbus module used to test the transactions
between building devices and the central control system.

In this distributed application three different type of control
units have been used:

• The mobile robot control unit manages mobile robot
navigation and surveillance autonomous tasks. It
is connected to the intranet via Wi-Fi.

• The building control unit manages the building
devices including security sensors and alarms.
We developed a scale model for the building
sensors and actuators network. For the model, a
few Modbus modules (Schneider OTB
1E0DM9LP) with some leds and buttons,
connected to each Modbus interface, as shown
in figure 6, were installed.

• The user interfaces manage the interactions with
users allowing them to monitor the mobile
robots activities and command new surveillance
tasks. The main window of a user GUI is shown
in figure 7.

Another application developed using RIDE was a tour guide
robot that participated in the “Xuventude Galicia Net” public
event for the 2007 and 2008 editions with different robots. In
the 2007 edition, a Peoplebot base worked for three days in the
“Palacio de Congresos y Exposiciones de Galicia”, Santiago de
Compostela (Spain). In the 2008 edition, a B21 base with a
robotic head (figure 8) was used. Even though only one robot
was used in both cases, they were connected via WiFi to a
central server as in figure 2.

Figure 7. Surveillance users GUI

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 201228 ISSN: 1690-4524

For the robot tour guide application, users can access the
system from any terminal connected to the web using a GUI. In
that GUI, users can see a map with the position of the robot
connected to the central unit. Different icons in the toolbar will
show the relevant points where the robot has to play several
multimedia files. Clicking on the robot will show its status,
running and waiting tasks and a little window with the camera.
Finally, the menu includes options to tele-operate the robot,
camera pan-tilt and other camera functions including the zoom.

Figure 8. Mechatronic robot head for the tour guide
application.

Videos showing the applications together with examples using
RIDE tools can be seen at [17].

8. REFERENCES

[1] Bonasso, R.P., Kortenkamp, D., and Thronesbery, C.: Intelligent

control of a water recovery system. AI Magazine, Vol. 24, No. 1,
Spring 2003.

[2] Simmons, R., Singh, S., Hershberger, D., Ramos, J. and Smith,
T.: First results in the coordination of heterogeneous robots for
large-scale assembly. Proc. of International Symposium on
Experimental Robotics, Honolulu Hawaii, Dec. 2000.

[3] Musliner, D.J. and Krebsbach, K.D.: Applying a procedural and
reactive approach to abnormal situations in refinery control. in
Proc. of Conference on Foundations of Computer-Aided
Process Operations (FOCAPO), Snowbird, Utah, July 1998.

[4] Killian, C., Anderson, J. W., Jhala, R. and Vahdat, A.: Life,
Death, and the Critical Transition: Finding Liveness Bugs in
Systems Code. In 4th USENIX Symposium on Networked
Systems Design and Implementation, pages 243-256, April
2007.

[5] Yabandeh, M., Knezevic, N., Kostic, D., and Kuncak V.:
CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems. Technical report, EPFL, 2008.
LARA-REPORT-2008-06.

[6] Reynolds, P., Killian, C., Wiener, J. L., Mogul, J. C., Shah, M.
A., and Vahdat A.: Pip: Detecting the Unexpected in Distributed
Systems. In 3rd USENIX Symposium on Networked Systems
Design and Implementation, pages 115-128, 2006.

[7] Kortenkamp, D., Simmons, R., Milam T., and Fernández J.: A
Suite of Tools for Debugging Distributed Autonomous Systems.
Formal Methods in System Design, Volume 24 , Issue 2
(March 2004), pp:157-188.

[8] Geels, D., Altekar, G., Shenker, S. and Stoica I.: Replay
Debugging for Distributed Applications. In USENIX Annual
Technical Conference, pages 289-300, May 2006.

[9] Armstrong, J.: Making Reliable Distributed Systems in the
Presence of Software Errors. PhD thesis, Royal Institute of
Technology, Stocholm, Sweeden, November 27 2003.

[10] Gardey, G., Lime, D., Magnin, M. and Roux, O.: Roméo: A tool
for analyzing time Petri nets. In 17th International Conference
on Computer Aided Verification (CAV’05), Lecture Notes in
Computer Science, Edinburgh, Scotland, UK, July 2005.

[11] Kordon, F. and Paviot-Adet, E.: Using CPN-AMI to validate a
safe channel protocol. in the proceedings of the International
Conference on Theory and Applications of Petri Nets - Tool
presentation part, Williamsburg, USA, June 21-25, 1999.

[12] Petri net world web page. Petri Nets Tools Database.
(http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/quick.html).

[13] R.Simmons, The interprocess communications system (IPC).
http://www.cs.cmu.edu/afs/cs/project/TCA/www/ipc/ipc.html.
Accessed: 8 february 2012.

[14] Lopez, J., P´erez, D., Zalama, E.: A framework for building
mobile single and multi-robot applications. Robotics and
Autonomous Systems 59(3-4), 151 – 162 (2011). DOI
10.1016/j.robot.2011.01.004.

[15] J. L. Fernández, D. P. Losada, R. Sanz, E. Paz, Sistema de
vigilancia de edificios basado en robots móviles, Workshop
Robot’2009. Barcelona, Spain 2009.

[16] J. L. Fernández, D. P. Losada, R. Sanz. Enhancing Building
Security Systems with Autonomous Robots. Proceedings of The
2008 IEEE International Conference on Technologies for
Practical Robot Applications. November 9-10, 2008, Boston,
USA. pp:19-25.

[17] Robotics Integrated Development Environment (RIDE).
http:/webs.uvigo.es/vigobot.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 4 - YEAR 2012 29ISSN: 1690-4524

