

 Global Crisis as Enterprise Software Motivator:

from Lifecycle Optimization to Efficient Implementation Series

Dr. Sergey V. ZYKOV, Ph.D.
School of Software Engineering, National Research University Higher School of Economics

33 Kirpichnaya Str., Moscow, 105187, Russia

ABSTRACT

It is generally known that software system development
lifecycle (SSDL) should be managed adequately. The global
economy crisis and subsequent depression have taught us
certain lessons on the subject, which is so vital for enterprises.
The paper presents the adaptive methodology of enterprise
SSDL, which allows to avoid "local crises" while producing
large-scale software. The methodology is based on extracting
common ERP module level patterns and applying them to
series of heterogeneous implementations. The approach
includes a lifecycle model, which extends conventional spiral
model by formal data representation/management models and
DSL-based "low-level" CASE tools supporting the formalisms.
The methodology has been successfully implemented as a
series of portal-based ERP systems in ITERA oil-and-gas
corporation, and in a number of trading/banking enterprise
applications for other enterprises. Semantic network-based
airline dispatch system, and a 6D-model-driven nuclear power
plant construction support system are currently in progress.
Combining various SSDL models is discussed. Terms-and-cost
reduction factors are examined. Correcting SSDL according to
project size and scope is overviewed. The so-called “human
factor errors” resulting from non-systematic SSDL approach,
and their influencing crisis and depression, are analyzed. The
ways to systematic and efficient SSDL are outlined.
Troubleshooting advises are given for the problems concerned.

Keywords: Enterprise Software System, Software Lifecycle
Model, Software Development Methodology.

1. INTRODUCTION

We are going to focus on the reasons for the “crisis” and
“depression” in software development area. The “crisis”
phenomena occurred in software development relatively long
ago, approximately since 1960-s. Let us analyze the reasons for
the current “crisis” and the subsequent “depression”. Software
product lifecycle, which the industry had just started moving
toward, was anarchic in many ways, since a uniform,
systematic approach had been absent. At that time, software
development did not allow precise variation of the “project
triangle” parameters. In fact, the software had been developed
in an “artisan” way, with a build-and-fix approach as the core
“methodology”. Thus, systematic approach to SSDL, and
responsibility for the deliverables should be required.

The following decade revealed that the software development
process started becoming rather a science than an art; however,
it had not become a production yet, due to imperfect
technologies. The era of unique, “hand-made” software
projects from certain gifted programmers had passed away.

Large software R&D centers appeared, one of the most well
known examples of which is the Software Engineering Institute
of the Carnegie-Mellon University (www.sei.cmu.edu/).

The value of software, as compared to hardware, had increased
tremendously. Mission-critical software systems appeared (e.g.,
for military and life-support applications).

However, the software crisis, which started in the 60-s, lasted
much longer and had a deeper nature than that in material
manufacturing industries (construction, automobile production
etc.). Lacking “universal” methodology, the so-called “silver
bullet” for software development, explicitly indicated that the
crisis has not been overcome, and that the “depression” started.

To conquer the crisis, we need to optimize the SSDL by
systematically approaching all of its processes. The methods of
software engineering (SE) methods and tools can help in this
case, since the discipline approaches software development
issues in a systematic way.

The SE approach is chiefly oriented on “serial production” of
large-scale (with terabytes and petabytes of data), complex
(thousands of files, tens of modules, hundreds of components),
high quality, architecturally heterogeneous, interoperable
software systems (online multiuser distributed interaction,
virtualization, data warehousing etc.) [4,6]. Other architectural
aspects include portal-based software systems, remote services,
etc. The system quality is measurable, by the following
“dimensions”: reliability, security, fault tolerance, ergonomics,
usability, reuse, documentation, maintainability. Heterogeneous
software systems imply versatile architectures, data bases and
warehouses, as well as structure degree (“flat” relationships,
scanned documents, multimedia data etc.). Let us focus on
optimizing SSDL on the basis of SE methods and tools.

2. SOFTWARE DEVELOPMENT AND MATERIAL
PRODUCTION: COMPARING THE LIFECYCLES

Let us treat constructing a software system as an “industrial”
production of a large and complex material object (such as an
automobile, a bridge, a skyscraper, etc.). Although there is a
certain similarity, a number of significant differences also take
place. Such a conclusion has been drawn by a NATO Software
Engineering Conference back in 1960-s [7]. The conference
revealed that software cannot be built according to the same
principles as material products, since their lifecycles are
fundamentally different in a number of ways. However, the
major software parameters (project terms, product cost, size,
quality) can be measured formally, and SSDL can be managed
by means of scientifically approved methodologies.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 2012 63ISSN: 1690-4524

On the whole, we recommend following a distinct and logically
sound process of step-by-step software functional specification,
including conceptual modeling, analysis and design (with
software operational parameter monitoring), prototyping,
implementation and maintenance. It is worth to emphasize that
the software quality and reliability are determined by the rate of
residual (rather than that of fixed) errors, and by the total
expenses for restoring the product state after a failure.

More specifically, the software model and its prototype should
not necessarily be reliable. The software release may contain
errors; however, it does not catastrophic for the product, or its
resign, as in case of a certain automobile model. Even after a
software crash, it is often sufficient to just restart it rather than
reconstruct/ reproduce it. Software errors are accumulated in
time. Error detection is challenging, and building am error-free
software systems requires different methods from the material
object construction. Finally, the “brute force” approach is not
quite applicable to software. For example, doubling data

channel throughput would not guarantee its reliability.
However, making bridge trestle two times wider would result
in a deliberately reliable product.

Analyzing the SSDL, we arrive to a conclusion that
maintenance is its most specific phase, as compared to material
production. Software reuse processes (e.g., for design and
implementation) are essentially iterative and incremental.
Software changes are more serious and radical than the changes
in material objects (e.g., it is known that a building or a bridge
often can be used for many decades at negligible maintenance
costs).

The software on the whole (both on the mass scale, and on the
enterprise scale) also has got a number of fundamental
differences as compared to material production. For example,
the SSDL is often essentially shorter than a material object
lifecycle, since software ages much faster, and its retirement is
economically preferable to maintenance.

Figure 1. Process diagram for SSDL

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 201264 ISSN: 1690-4524

The accumulated individual/team experience in software
development (irrespective of the project role) does not always
result in system quality increase due to rapid changes of
complex platforms.

So, software development has both similarities and essential
differences as compared to material production. However,
industrial production of large and complex software systems
with high quality, reliability, efficiency (due to product artifacts
reuse), usability and other operating parameters is possible
under a rigorous science and technology basis of SE methods
and tools.

3. SOFTWARE DEVELOPMENT: OPTIMIZING THE
LIFECYCLE MODELS

Every SDDL stage can be optimized, including requirement
analysis, product specification, design, implementation,
maintenance and retirement.

The SSDL optimization methodology is based on close
integration of models and supporting enterprise-level methods
and service tools. The models for problem domain and
computing environment are built on rigorous formal theories,
while those for other lifecycle stages are more heuristic and
pragmatic. Therewith, the family of the software service tools
used contains both traditional CASE and “lower” level
instruments, which integrate the model and the software
components in heterogeneous software systems.

The generalized methodology of integrated software system
development (fig.1) provides iterative bidirectional component-
wise development of open, expandable heterogeneous software
systems in global environment, allowing data consistency and
integrity control.
During the SSDL, the transformation of the heterogeneous
information systems are transformed from problem domain
concepts to mathematical model data entities. Further, by
means of original software toolkit (ConceptModeller [14] and
content management system [10,12,13]), the model is
transformed into a complex semantic network and object-
relational warehouses, managed by an abstract machine (and at
the CASE level – by a virtual machine). Finally, we arrive to a
well-formed layout of software system component interfaces
and to an internet portal superstructure. The development levels
are detailed in terms of entities, relationships, content
definition/manipulation languages, and software tools.
Thus, the SSDL methodology is supported by a family of
formal object models for content representation/management.
The models incorporate fundamentals and methods of finite
sequences, variable domains, semantic networks, and other
theories [1-3,5,8].

The approach suggested is the first to provide the following
features:

1) rigorous object modeling of heterogeneous software, their
elements and, families, as well as the environment for system
objects and families;

2) integration of “abstract” formal models and “specific”
industry-standard technologies and CASE tools for

development software systems (due to innovative
“middleware” tools).

Both advantages have been implemented for enterprise content
(i.e. integrated data and metadata) representation and
management.

Thus, the central aspect of mathematical and conceptual
modeling, analysis and design of the software systems is
shifting the SSDL paradigm from object-oriented to pure object
approach, i.e. from IT to computing. Computing is a relatively
new scientific subject, adequately representing complex,
heterogeneous, changeable, and interactive problem domains in
terms of objects and their environment [9].

4. ORGANIZING THE SOFTWARE DEVELOPMENT
LIFECYCLE: SEQUENTIAL ELABORATION

The major purpose of the methodology is the multi-factor
optimization of the SSDL model, which is often critical for
both product quality and project success. Under such an
improved approach to SSDL, the major optimization factors
are, terms, costs, quality and maintainability of the product.

Therewith, the specific features of our understanding of the
term “optimization” are as follows. First, we do not mean
optimization is as a mathematically rigorous as it is commonly
meant (we choose the best variant out of a finite number of
discrete choices rather than a maximum of a continuous
function). Second, the priority of the factors is dependent on
project scale and scope. Third, all of the factors mentioned are
measurable and have certain numeric metrics (number of code
lines, residual faults, etc.). The optimization indicator values
can be calculated for each possible software solution scenario
on the basis of such prioritized metrics. Reasonable project
management decisions could be made on the basis of the
indicative values and preliminary estimates from the projects
plan.

Naturally, in a number of cases (especially for large-scale,
complex, heterogeneous SSDL) it seems reasonable to use the
above models for content representation/management at the
analysis and conceptual design stages.

Therewith, both formal models (content
representation/management) and methodological processes of
the SSDL phases (analysis, design, implementation,
integration, maintenance etc.) are supported by either standard
or specific visual CASE tools. The SSDL processes are
supported not only by CASE tools, but also by workflow
management tools based on document management system.
During each SSDL phase, certain types of documents (e.g.,
project plan, requirements checklist, unit test report, etc.) are
generated and processed depending on the lifecycle model
type, and on the project scale/scope.

Since the paper is not aimed at detailed description of versatile
and complex interrelated SSDL management processes, let us
limit our scope to certain examples and short descriptions of
the methodology (i.e. models, metrics, methods, and tools).
Detailed description of the methodology is given in [11-13].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 2012 65ISSN: 1690-4524

During the requirement analysis phase, optimization often
results in generating requirements checklist, which is a
simplified and less formal document, than the detailed product
specification. However, irrespective of the type of the
specification document, it should contain the chosen SSDL
model as a “global parameter”, which is, essentially, the project
management outline.

Let us note that the entire product development process (and
the project management as well) is a step-by-step elaboration
of the software functional description. In the above case, the
instantiation is directed from conceptual (formal) model to
project specification description with subsequent elaboration of
the lifecycle scheme. Further, we move on to the structures of
databases and information systems, which make up the
software system. Therewith, large-scale, heterogeneous SSDL
is primarily iterative, evolutionary, and incremental: every
iteration contains further elaboration of the product functions
(fig. 1). In essence, the conceptual outline is an improved spiral
SSDL model. However, in a number of cases, the general
outline may be instantiated, depending on the product scale and
scope or on the “project triangle” correction (terms, costs,
functions). For example, such a correction may result in SSDL
model simplification down to waterfall, where the software
development is limited to single pass through all of the
lifecycle phases or even to “build-and-fix” model with
incomplete lifecycle and simplified product documentation.

Further product elaboration and optimization is performed in
terms of system architecture, key technologies, supporting
CASE tools and programming languages. Therewith, we
should consider the existing clients’ software environment. The
product developed should be predictable, reliable,
maintainable, usable, and, ideally, reusable.

Let us note that lifecycle phases influence project economics
differently. Maintenance is the most expensive and challenging
phase: it requires over 60% of project time and budget (as
coding contribution into the product expenses is minimal).
Combining software development methods and tools is
essential for low-cost product development.

For a number of cases (e.g., test termination when approaching
the satisfactory error threshold) the decision is made solely by
the project manager, while for the others (e.g., software
retirement) require multi-side project economy evaluation.

The major approaches for creating state-of-the-art (interactive,
distributed, open, expandable) products are object-based ones:
from classical object-oriented to active objects and “pure”
objects. Under such approaches, SSDL phases are flexible,
with dynamically adaptive, “floating” borderlines. However,
even under state-of-the-art object-based approaches SSDL
management is still possible on the basis of strict quantitative
SE metrics.

To validate software and to satisfy the product specifications,
specific CASE tools should be used (e.g., those which are
based on reliability statistical analysis, higher order logics, and
other mathematical foundations). Such CASE tools require
minimal mathematical training and it is designed for analysts
and developers of middle qualification level.

Essential preconditions of project success are functional
prioritizing and step-by-step, incremental implementation.

Project specifications should be rigorous, logically sound, non-
contradictory, complete in critical functional coverage, they
should provide transparent integrity tracing.

Software development requires rigorous procedures for all
SSDL phases, which should be strictly followed.
Documentation standards should be taken special care of.
Otherwise, developing a huge, complex, heterogeneous,
distributed product is at risk of becoming an unmanageable,
informal anarchy with an unpredictable result. That is why the
paper suggests a set of methodologically interrelated processes,
which provide development of a predictable, requirement-
matching, high quality software, even under such challenges as
changeable requirements, budget/terms correction “on the fly”,
etc.

The suggested methodology is based on a thoroughly selected
and practically tested set of models, SE methods and tools.

The methodology has been practically implemented in a
number of enterprises, including software development for a
large ITERA International Group of Companies (150
companies of over 20 countries, and over 10,000 employees;
www.iteragroup.com). The methodology has been also
implemented in the Institute of Control Problems

of Russian Academy of Science, Russian Ministry for Industry
and Energy, and other enterprise structures.

5. IMPLEMENTATION FEATURES OVERVIEW

Let us overview how the methodology was implemented. First,
let us summarize the specific features of the enterprise-scale
implementations.

Currently, the multinational enterprises possess large,
geographically distributed infrastructures, aimed at the same
business goals. Each of the enterprises has accumulated a
tremendous and rapidly increasing data burden, comparable to
an avalanche. In certain cases, the data bulk exceeds petabyte
size, and it tends to double every five years.

Undoubtedly, management of such data is a serious challenge.
The problem becomes even more complicated due to
heterogeneous nature of the stored data, which varies from
well-structured relational databases to non-normalized trees
and lists, and to weak-structured multimedia data. The
technology presented in the paper is focused at more efficient
heterogeneous enterprise and uniform data management
procedures.

The technology involves a set of novel mathematical models,
methods, and the supporting software engineering tools for
object-based representation and manipulation of heterogeneous
enterprise data.

6. APPLYING THE METHODOLOGY TO SSDL

Brute force application of the so-called “industrial” enterprise
software development methodologies (such as IBM RUP,
Microsoft MSF, Oracle CDM etc.) to heterogeneous enterprise
data management, without an object-based model-level

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 201266 ISSN: 1690-4524

theoretical basis, results either in unreasonably narrow “mono-
vendor” solutions, or in inadequate time-and-cost expenses. On
the other hand, the existing generalized approaches to
information systems modeling and integration (e.g., category
and ontology-based approaches, Cyc and SYNTHESIS projects
– [15-17,20] – do not result in practically applicable (scalable,
robust, ergonomic) implementations since they are separated
from state-of-the-art industrial technologies (CASE, RAD etc.).

Thus, the suggested technology of integrated development and
maintenance of heterogeneous internet-based enterprise
software systems has been created. The approach is based on
rigorous mathematical models and it is supported by software
engineering tools, which provide integration to standard
enterprise-scale CASE tools, commonly used with software
development methodologies. The approach eliminates data
duplication and contradiction within the integrated modules,
thus increasing the robustness of the enterprise software
systems (ESS). The technology integrates a set of ESS
development levels: data models, software applications,
“industrial” methodologies, CASE, architecture, and DB
management. The novel technology elements are:

(i) conceptual framework of ESS development;
(ii) a set of object models for ESS data representation and

management;
(iii) CASE tools for semantic-oriented ESS development

(ConceptModeller) and intelligent content management
(ICMS);

(iv) ESS implementations [11].

For adequate modeling of heterogeneous ESS, a systematic
approach has been developed, which includes object models for
both data representation and data management [11,21]. The
general technological framework of ESS development provides
closed-loop, two-way construction with re-engineering.

The general technological framework of ESS development
contains stages, which correspond to data representation forms
for heterogeneous software system components,
communicating in the global environment.

The object nature of the “class-object-value” model framework
provides compatibility with traditional object-oriented analysis
and design approach (OOAD), as well as with other certain
promising approaches (such as D.S.Scott’s variable domains
[5], V.E.Wolfengagen’s conceptual method [8]) and helps to
extend the mentioned approaches to model the ESS internet-
based environments. The following technological
transformation sequence is suggested: (i) a finite sequence
object (e.g., a lambda calculus term); (ii) a logical predicate
(higher order logic is used); (iii) a frame (as a graphical
representation); (iv) a XML object (class definition generated
by the ConceptModeller engineering tool); (v) an UML
diagram (CASE tool data scheme) in the ESS (meta)data
warehouse [11].

Therewith, the warehouse content representation is based on
semantic network situation model, which provides intuitive
transparency for problem domain analysts when they construct
the problem domain description. The model can be
ergonomically visualized through a frame-based notation.
Warehouse content management is modeled as a state-based
abstract machine and role assignments, which naturally
generalizes the processes of similar engineering tools, such as

(portal page template generation, portal page publication cycle,
role/access management etc. Therewith, the major content
management operations (declaration, evaluation,
personalization etc.) are modeled by the abstract machine
language. The language has a formal syntax and denotation
semantics in terms of variable domains. The transformation
sequence of the model is:

(v) a term of variable domain algebra (D.S. Scott’s

computations theory is used)[5];
(vi) a domain-based function (higher order logic is used) [5];
(vii) a frame (a graphical notation);
(viii)a XML object (a template for a ICMS portal page);
(ix) HTML code (ICMS portal page code) of the ESS portal.

The architecture of the integrated heterogeneous enterprise
content warehouse provides unification due to generalized
object association-based relationships at the data at metadata
levels. Uniform heterogeneous ESS content management is
based on a uniform portal foundation, which serves a meta-
level enhancement over the enterprise data warehouse.
Assignments act as code scripts; they change ICMS machine
states, and provide dynamical, scenario-driven content
management.

The ConceptModeller tool assists in semantically-oriented
visualized development of heterogeneous ESS data warehouse
scheme [21]. A semantic network-based model is suggested,
which works in nearly natural-language terms, intuitively
transparent to problem domain analysts. Model visualization is
based on frame representation of the ESS data scheme.

Deep integration with mathematical models and ESS CASE
tools provide a closed-loop, continuous lifecycle with
reengineering. The ICMS tool is based on an abstract machine,
and it is used for problem-oriented visualized heterogeneous
ESS content management and portal publication. ICMS
features a flexible scenario-oriented management cycle and
role-based mechanisms. ICMS provides a unified portal
representation of heterogeneous (meta)data, flexible content
processing by various user groups, high security, ergonomics
and intuitively transparent complex data object management.

7. PATTERN-BASED DEVELOPMENT FOR SSDL

The general ESS development framework [5] potentially
allows the following benefits:

(i) applying a “spiral-like” lifecycle to the general ESS

development framework;
(ii) ESS “tuning” by applying a “spiral-like” lifecycle and

subsequent verification;
(iii) requirement “tracing”;
(iv) building a repository of ESS “meta-snapshots”, with

which the system and/or warehouse could be
“reincarnated” to virtually any previous state using
component-wise strategy;

(v) building a “pattern catalogue” [19] for heterogeneous
ESS, based on the integrated repository of various ESS
state “meta-snapshots”;

(vi) developing a repository of “branches” for “cloning” slight
ESS variations for the “basis;

(vii) developing a formal language specification (e.g, a DSL
technology-based one) [18];

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 2012 67ISSN: 1690-4524

(viii)”adjusting” the existing ESS “meta-snapshot” repository
components to match requirements;

(ix) reuse of the desired components.

The preferable ESS development framework tends to be
iterative; in certain cases waterfall is an option.

An essential feature of the general ESS development
framework is its two-way organization. The approach provides
reverse engineering possibility both for ESS in general, and
their components in particular. The practical value of the
approach is provided by the verifiability of heterogeneous ESS
components at the uniform level of the problem domain model,
which is practically independent upon the hardware and
software environment of the particular component. Therewith,
a major theoretical generalization is a possibility of
mathematically rigorous verification of the heterogeneous ESS
components by a function-based model [5,2]. The ESS
engineering models are oriented at a promising “pure” objects
approach, which is a strategy of .NET and Java technologies,
where any program entity is an object.

An essential benefit of the approach suggested is a possibility
of adaptive, sequential “fine tuning” of ESS heterogeneous
component management schemes in order to match the rapidly
changing business requirements. Such benefit is possible due to
the reverse engineering feature of the integrated general
iterative framework of ESS development. The reverse
engineering is possible down to model level, which allows
rigorous component-wise ESS verification. Thus, conventional
reengineering and verification can be enhanced by flexible
correction and “optimization” of the target ESS in strict
accordance with the specified business requirements. This is
possible due to the suggested model-level generalization of the
iterative, evolutionary ESS development framework.

Another benefit of the suggested ESS development framework
is a possibility of building a “catalogue of templates for
heterogeneous ESS”, which is based on an integrated metadata
warehouse, i.e., a “meta-snapshot” repository. Thus, the
software development companies get a solution for storing
relatively stable or frequently used configurations of
heterogeneous enterprise software systems.

The solution potentially allows avoiding the integration
problems of “standard” ESS components and/or combinations,
which have been obtained previously. The approach allows
serious software engineering project savings for clients,
provided the ESS developer’s “meta-snapshot” repository
already stores a similar or an analogous integrated solution to
the system required. The above consideration clears the way for
“meta-snapshot” repository development, which stores the
chronological sequence of ESS solutions as a tree with the
“baseline” and slight variations of ESS “branches”.

This is similar to version control CASE tools. The approach
allows a reasonable selection of most valuable deliverables of
the ESS lifecycle phases, and organization of similar solution
“cloning”. Therewith, the “clones” may be created both for
different client enterprises, and for different companies of a
single enterprise.

Further discussion could cover the prospective areas of “meta-
snapshot” repository development. First of all, to describe the
metadata warehouses and the related enterprise-level business

requirements it seems reasonable to develop new DSL-type
problem-oriented meta-languages. Let us call them the
MetaWarehouse Description Language (MWDL) and the
Requirement Specification Language (RSL) respectively.
Further, the formal models, outlined in the paper and given a
more detailed coverage [11], allow interrelation of the RSL and
MWDL entities.

Semantic-oriented search mechanisms assist in revealing ESS
“meta-snapshot” repository components, which provide the
closest matching to the new requirements. The approach
potentially allows terms-and-cost-effective and adequate
transforming of the existing ESS components in order to match
the new requirements with minimum corrections effort and,
consequently, with minimum labor expenses.

Therewith, the global perspective it becomes possible to reuse
certain ESS components for current or new clients. Selection
criteria for such “basic” components may be percentage of
reuse, ease of maintenance, client satisfaction, degree of
matching business requirements etc.

8. IMPLEMENTATION SUMMARIES

ITERA Oil-and-Gas Group: a Portal-Based Solution
The suggested methodology has been practically approved by
development of Internet and Intranet portals in ITERA
International Group of Companies. During the design stage,
problem domain model specifications are transformed by the
innovative ConceptModeller SDK to UML diagrams, then by
Oracle Developer/2000 integrated CASE tool – to ER diagrams
and, finally, into target IS and enterprise content warehouse
storage schemes.

Using the suggested data model, the architectural and interface
solution has been customized for enterprise resource
management IS with content personalization for a wide
spectrum of user and administrator types.

To provide the required industrial scalability and fault tolerance
level, the integrated Oracle design and implementation toolkit
has been chosen to support UML and business process
reengineering.

A set of models have been constructed including problem
domain conceptual model for enterprise content dynamics and
statics as well as a model for development tools and
computational environment in terms of state-based abstract
machines, which provide integrated object-based content
management in heterogeneous enterprise portals. For the model
set, a generalized development toolkit choice criteria set has
been suggested for information system prototyping, design and
implementation. A set of SDKs has been implemented
including ConceptModeller visual problem oriented CASE-tool
and the CMS. According to the approach, a generalized
interface solution has been designed for Internet-portal, which
is based on content-oriented architecture with explicit division
into front-end and back-end sides. Portal design scheme is
based on a set of data models integrating object-oriented
methods of management of data and metadata (or
knowledge).The major implementations of portals in ITERA
Group were: CMS for network information resources, official
Internet site, and enterprise Intranet portal.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 201268 ISSN: 1690-4524

Distributed Trading Company: a Domain-Driven
Messaging System
A trading corporation used to commercially operate a
proprietary Microsoft .NET-based message delivery system for
information exchange between the headquarters and the local
shops.

The system was client-server based. The client included a local
database and a Windows-based messaging service, while the

server side consisted of a Web service and central database.
The operation/maintenance challenges were: complicated
client-side code refactoring (with recompiling and
reinstallation); difficult error localization/reduction (due to high
coupling, non-flexible and non-transparent architecture);
inadequate documentation (due to frequent code updates); and
decentralized configuration monitoring/management for remote
shops (due to distributed and non-transparent system
administration).

Figure 2. MES configuration development

To solve the problems mentioned, an approach based on
domain-driven development [18] and Domain Specific
Languages (DSL) has been suggested. The approach included
problem domain modeling and DSL development for managing
objects of the problem domain.

The DSL-based model helped to conquer problem domain
complexity, to filter and to structure the problem-specific
information. It also provided a uniform approach to data
representation and manipulation. We used an external XML-
based DSL, which extended the scope of the enterprise
application programming language. The methodology instance
included the following steps: DSL scope detection, problem
domain modeling, DSL notation development, DSL restrictions
development, and DSL testing.

The approach was client-side focused, since this is the most
changeable and challenging task. The lifecycle model is
iterative, and it the solution is based on a redesigned
architecture pattern (see Figure 2). The Windows service is a
constant part of the application (i.e. a host), which contains a
DSL parser. The DSL parser input is a current message transfer
map.

The DSL scope (i.e. the “flexible” area of the problem domain)
included message transfer rules/parameters, and adding new
types of messages. Different shops may have different
configuration instances, which make the client-side message
processing/transfer structure (and which are included into the
semantic model).

The next methodology stage was building semantic model of
the objects handled by DSL. We got three types of the objects:
messages, message transfer channels and message transfer
templates. DSL describes object metadata, i.e., configurations
and manipulation rules. Templates were core elements of the
model, and channels were links between template instances.
Templates and channels together make message maps. DSL
described the maps, i.e. the static part of the model, while
messages referred to its system dynamics and store the state.

Templates define actions with messages, i.e. transform or route
them. Templates were grouped into the
IMessageProcessingPattern interface. Standard routing
templates were: content-based router, filter, receiver list,
aggregator, splitter, and sorter. We also produced a number of
domain-specific templates for system reconfiguration, server
interaction, etc.

Channels were used for message management. In the graph of
map messaging, templates are represented as nodes, while
channels are arcs between certain templates. In our case, two
types of channels were implemented: “peer-to-peer” channel
and error messages channel.

Based on DSL class model and implementation, messaging
maps were built, which were later used by parser to generate
system configuration. At this stage, DSL syntax and semantics
were built. Each messaging map, generally, a script, was
instantiated by a file. Messaging map was built as an XML
document, which defined system configuration and contained
templates for routing, message processing, transfer channels
and their relationships.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 2012 69ISSN: 1690-4524

While parsing messaging map, the parser creates channel
objects based on DSL channel descriptions. Then it configures
the messaging system by creating message processing objects
in a similar way. Finally, the parser instantiates the I/O
channels, and creates the required relationships between
channels and message processor. The resulting DSL-based
system configuration was functionally identical to the initial,
С#-based one.

Thus, the DSL-based refactoring resulted in an enterprise trade
management system with transparent configuration and a
standard object-based model (routing templates, channels, etc.).
The DSL developed solved the problem of messaging
management. Since changes are chiefly localized within the
transfer configuration /map, the change management has been
dramatically simplified.

The DSL-based methodology instantiation assisted in
conquering complexity, made the proprietary system an open,
scalable, and maintainable solution. The approach can easily be
customized to fit a broad class of similar proprietary systems.

Air Transportation Planning System
Air traffic planning system is an area of work-in-progress.

The problem is to develop remote access to the planning data.
An operating solution currently exists. However, it is based on
an outdated TAXXI-Baikonur technology, which is no longer
evolving after early 2000s. The technology involves
component-based visualized assembling of the server
application. The ready-made VCL library components from
Borland had been integrated with proprietary TAXXI
components. The client side is TAXXI Communicator, i.e. an
XML browser, which is a "thin" client.

Figure 3. The TAXXI application GUI

The TAXXI technology is limited Microsoft Windows
framework, which is the only possible basis for both client and
server-side applications. According to the State Program of
Planning System Updates, the Main Air Traffic Management
Centre is going to create the new remote access solution. The
internet-based architecture is to be implemented in Java
technology and to operate on the Apache web server platform.
The solution is to query Oracle-based data centre, process the
query output and retrieve the results of the air traffic planned
capacities to an intuitive and user-friendly GUI.

The practical application of the solution is (building a
prototype of) the global enterprise-scale integrated system,
which is providing a uniform and equal information access to
all of the international air traffic participants (see Figure 3).

The similar globalization processes are underway in Europe
and the U.S.A.
The suggested pattern-based and component-wise approach is
going to unify the issues of the architecture-level update and
application migration in Russia. The methodology will also
simplify the integration challenges of the global air traffic
management software solution. It is advisable to keep all the
given values.

Nuclear Power Plant: Approaching a 6D-Model Based
Implementation
Another challenging aspect of the methodology implementation
is related to high-level template-based software re-engineering
for nuclear power plants (NPP).

To provide worldwide competitive level on the nuclear power
plant production, it is necessary to meet the following
requirements:

(i) • meeting quality standards throughout the lifecycle;
(ii) • high security under long-term operation;
(iii) • term-and-cost reduction for new generation facilities

development.
(iv) The above conditions could be satisfied only under a

systematic approach, which combines
(v) • state-of-the-art production potential,
(vi) • advanced control methods, and
(vii) • software engineering tools.

Each stage of the NPP lifecycle (such as: technical proposal,
project draft, technical project, design documentation etc.) is
mapped into a set of business processes, where not only people,
but also enterprise systems (CRM, SCM, ERP, PLM etc.) are
interacting.

Identifying operation sequences, the systems form business
process automation standards. For example, workflow

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 201270 ISSN: 1690-4524

mechanisms can assist in building enterprise standards on
electronic documents validation and approval. During a certain
NPP lifecycle, the enterprise systems acquire information on it.
Finally, each of the enterprise systems reveals certain NPP
aspects: design, technology, economics etc. Thus, various
objects (3D-units, technological data, bank accounts etc.), the
systems together describe NPP as a huge object. Heterogeneous
nature of the data objects, and a huge number of units
(measured in million), make NPP a high complexity
information object.

A major competitiveness criterion in nuclear power industry is
a set of electronic manuals, which helps to assemble,
troubleshoot, repair NPP etc. Such manual set provides
transparent information models of NPP (units), which allow
getting information on the object without directly contacting it.

Such a versatile description, combined in a single data model is
often referred to as a 6D model, which includes 3D-geometry,
time and resources for operating the plant. Since mechanisms
for information searching, scaling, filtering and linking, should
provide complete and non-contradictory results, the
information models should have well-defined semantics. The
uniqueness of data entry assumes information model data
acquisition by the enterprise systems throughout the lifecycle.

While a single information model can be derived out of a single
system (and a 3D model – out of a CAD system), the 6D model
should combine information models of a number of systems.
The methodology for building a 6D model suggests portal-
based system integration, which can be based on a “platform”
capable of entire lifecycle support (such as Siemens
Teamcenter or DS V6).

The further information model development assumes
monitoring system state changes and their influence to the
other parts of the system. This helps to immediately react on
critical issues in NPP construction (terms growth due to late
unit delivery etc.), which can be used for decision making. (A
wrong decision would be made otherwise under incomplete or
incorrect information).

Among major nuclear industry challenges, there is a concept of
a typical optimized nuclear reactor. The idea is in selecting
typical invariant units for rapid “template-based” development
of a set of slightly varying versions (meeting local conditions
etc.). Applying the suggested methodology to the 6D
information model of the nuclear reactor, is a promising
approach to pattern-based component-wise development of
NPP series.

9. CONCLUSIONS

SSDL management is a challenge in case of large-scale
distributed heterogeneous applications. To solve the challenge,
a uniform SSDL management methodology is suggested, which
includes models, methods and supporting CASE-level tools.

The methodology implementations in a number of large-scale
governmental and commercial enterprises have proved
essential project terms-and-costs reduction, and industrial
quality level of the heterogeneous applications.

Implementation of the methodology allowed to developing a
unified ESS, which integrates a number of heterogeneous
components: state-of-the-art Oracle-based ERP modules for
financial planning and management, a legacy HR management
system and a weak-structured multimedia archive. The
implementation of internet and intranet portals, which manage
the heterogeneous ESS warehouse content, provided a number
of successful implementations in diversified ITERA
International Group of companies (approximately 10,000
employees in over 20 countries). The systematic approach to
ESS framework development provides integration with a wide
range of state-of-the-art CASE tools and standards of ESS
development.

Other implementations and work-in-progress areas include: air
transportation planning system, messaging system for a trading
enterprise, a nuclear power plant and banking solutions. Each
of the implementations is a domain-specific one, so the system
cloning process is not straightforward, and it requires certain
analytical and CASE re-engineering efforts.

However, in most cases the approach reveals patterns for
building similar implementation in series, which results in
substantial term-and-cost reduction of 30% and more. The
series can be applied both to subsidiaries and to different
enterprises.

The author is going to continue his studies of enterprise
software systems, their lifecycle optimization and pattern-based
development.

10. REFERENCES

[1] Barendregt H.P., The lambda calculus (revised edition),

Studies in Logic, 103, North Holland, Amsterdam, 1984
[2] Curry H.B., Feys R., Combinatory logic, Vol.1, North

Holland, Amsterdam, 1958
[3] Roussopulos N.D., A semantic network model of

databases. Toronto Univ., 1976
[4] Schach S.R., Object-Oriented and Classical Software

Engineering (5 ed.) McGraw-Hill, 2001, 744 pp.
[5] Scott D.S., Lectures on a mathematical theory of

computations. Oxford University Computing Laboratory
Technical Monograph. PRG-19, 1981, 148 pp.

[6] Sommerville I,. Software Engineering (8 ed.), Addison-
Wesley, 2006, 864 pp.

[7] Tomaiko J.E., Twenty-year Retrospective: The Nato
Software Engineering Conferences. The 11th
International Conference on Software Engineering,
May 15-18, 1989, Vol.I, p.96

[8] Wolfengagen V.E., Event Driven Objects. Proc. CSIT'99.
Moscow, Russia, 1999, p.p.88-96

[9] Wolfengagen V.E., Applicative Computing. Its quarks,
atoms and molecules. Moscow: JurInfoR, 2010. 62 pp.

[10] Zykov S.V., Enterprise Content Management: Bridging
the Academia and Industry Gap Proc. i-Society 2007,
Merrillville, Indiana, USA, Oct. 7-11, 2007, Vol.I,
p.p.145-152

[11] Zykov S.V., Integrated Methodology for Internet-Based
Enterprise Information Systems Development, Proc.
WEBIST2005, Miami, FL, USA, May 2005, p.p.168-175

[12] Zykov S.V., An Integral Approach to Enterprise Content
Management, Callaos N., Lesso W., Zinn C.D.,
Zmazek B. (Eds.), Proc. of 11th International World
Multi-Conference on Systemics, Cybernetics and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 2012 71ISSN: 1690-4524

Informatics (WMSCI 2007), Orlando, FL, U.S.A., July
8-11, 2007, Vol. I, p.p. 212-216

[13] Zykov S.V., The Integrated Methodology for Enterprise
Content Management, WMSCI 2009, July 10-13, 2009 –
Orlando, FL, USA , p.p.259-264

[14] Zykov S.V., ConceptModeller: A Frame-Based Toolkit
for Modeling Complex Software Applications. J.Baralt,
N.Callaos, H.-W.Chu, M.J.Savoie, and C.D.Zinn
(Eds.): Proceedings of the International Multi-
Conferences on Complexity, Informatics and
Cybernetics (IMCIC 2010), Orlando, FL, U.S.A., April
6-9, 2010, Vol.I, pp.468-473

[15] Guha R., Lenat D., Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc
Project. Addison-Wesley, 1990

[16] Lenat D., Reed S., Mapping Ontologies into Cyc, AAAI
2002 Conference Workshop on Ontologies for the
Semantic Web, Edmonton, Canada, 2002

[17] Birnbaum L., Forbus K., et al., Combining analogy,
intelligent information retrieval, and knowledge
integration for analysis: A preliminary report. In: ICIA
2005, McLean, USA, 2005

[18] Evans E., Domain-Driven Design: Tackling Complexity
in the Heart of Software. Addison Wesley, 2003, 560 pp.

[19] Fowler M., Analysis Patterns: Reusable Object Models,
Addison Wesley, 1997, 223 pp.

[20] Kalinichenko L., Stupnikov S., Heterogeneous
information model unification as a pre-requisite to
resource schema mapping. In: ITAIS 2009, Springer,
2009, pp. 373-380

[21] Zykov S., Pattern Development Technology for
Heterogeneous Enterprise Software Systems. Journal of
Communication and Computer, 7 (4), 2010, pp.56-61

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 2 - YEAR 201272 ISSN: 1690-4524

