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ABSTRACT

Current active leg prostheses do not integrate the most re-
cent advances in Brain-Computer Interfaces (BCI) and laiped
robotics. Moreover, their actuators are seldom driven kg th
subject’s intention.

This paper aims at showing a summary of our current results in
the field of human gait rehabilitation. In a first prototypket
main focus was on people suffering from foot drop problems,
i.e. people who are unable to lift their feet. However, cotre
work is focusing on a full active ankle orthosis.

The approach is threefold: a BCI system, a gait model and
an orthosis. Thanks to the BCI system, patients are able to
generate high-level commands. Typically, a command could
represent a speed modification. Then, a gait model based on
a programmable central pattern generator is used to generat
the adequate kinematics. Finally, the orthosis is trackimg
kinematics when the foot is in the air, whereas, the orthissis
mimicking a spring when the foot is on the ground.

Keywords: BCI, Eye Movements, Foot Drop, Human Locomo-
tion, PCPG, Phase-resetting, Prosthesis, Stroke.

|. INTRODUCTION

Over the years, different kinds of leg prostheses have
been developed in order to replace the limb that amputees
have lost [[1]. The main objective of these prostheses is to
allow their user to walk as naturally as possible. In fact,
the complexity of human walk is such that most of the
leg prostheses available on the market today use passive
mechanisms. Although these systems are functional, their
performance is really limited compared to a real human leg
as they do not have self-propulsion capability. Unfortehat
amputees using this standard technology have to compensate
for these limitations. Consequently, they generally dapel
various strategies which generate reduced locomotiondspee
a non-natural gait, considerable fatigue and possiblyrreot
pain and injuries at the interface between their residuabli
and the prosthesis.

Active prostheses solve these problems partially: powbseed
battery-operated motor, they move on their own and theeefor
reduce the fatigue of the amputees while improving their
posture. Two main categories of active prostheses exishte: d
firstly, devices controlled according to the motion of other
healthy parts of the body and secondly, devices equippeld wit
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a myoelectric control system. In the first category, sensoes
placed on the healthy leg of the amputee. By analyzing the
motion of the leg with a sophisticated algorithm, the contro
system can identify the phase of the gait cycle and trigger
an actuator to appropriately adjust one or more prostheatic o
orthotic joints [2]-[4]. Instead of exploiting the motiorf the
healthy leg of the amputee, other systems analyze uppsr-bod
motions to trigger and maintain walking pattern$ [5]. Insthi
category, the Ekso Bionics’powered exoskeleton leads a new
class of electromechanical gear that will put paraplegaskb
on their feet and will be available on the market sdan [6]. The
second type of active prostheses (or orthoses) is cordrble
myoelectric signals recorded at the surface of the skint jus
above the muscles. These signals are then used to guide the
movement of the artificial limb[7]£[9].

The improvement brought by the active prosthetic technolog
with respect to conventional prostheses is indisputable.
However, several aspects still need to be improved. For
instance, an intuitive interface from which user’s inteah de
determined is still missing. Additionally, no sensory fbadk

is provided to the user. Active research is being carried out
in these two latter areas, in particular for arm and hand
prostheses. Complex nerve surgery techniques are being
developed as well as new signal processing algorithms and ne
electrodes, in order to connect an amputee to an artificia li
that he can control intuitively with his own residual nerves
and muscles[]10]. Maybe one day amputees will have the
opportunity to fully recover human mobility and perception
but paying the price of an important and risky surgery. Thus
more simple systems taking into account the user's inteat ar
desirable in the meanwhile.

Recent researches in the field of Brain-Computer Interfaces
(BCI) based on EEG signals have considerably increased the
performances of such systenis[11]. By definition, a BCI is
a device that enables communication without movement. For
a few years, research has allowed the integration of such
BCls in games, to augment interactivity of healthy usersl BC
technology has also offered new communication possibliti
to severely disabled people, by enabling them to move their
mouse or type an email just by thought.

The non-invasiveness of EEG signals represents the major
advantage of this technology (in addition to the high terapor
resolution and the relative low-cost). However, EEG signal
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are known to be noisy implying a low Signal-to-Noise Ratio
(SNR) and, consequently, a low Information Transfer Rate
(ITR). It has been recently demonstrated that an ITR of more
than 50 bits/min can be reached by using an SSVEP-based
BCI [12]. Although encouraging, this value is still insuféiat

to send complex commands limiting the users to high-level
commands. Moreover, controlling in a continuous way with
this paradigm will result in an exhausting cognitive ovado

To improve the performance of current standard BCls, Brain-
Neuronal Computer Interfaces (BNCIs) interfaces have been
proposed. Unlike BCl's, BNCI's rely on indirect measures
of brain activity characterized by a better SNR, and thus, a
more reliable and faster interaction. Thereby, sensorsatafly
activity from the eyes (EOG), heart (ECG) or muscles (EMG)
are used as inputd_[13]. These concepts have been widely
used in rehabilitation/assistive technologies. The mastdus
application of EMG signals is the control of a hand prosthesi
using residual arm muscle activity. This concept is inteslgi
used by the Touch Bionics company (Livingston, Scotland,
UK) for hand prostheses. EOG signal has also been widely
used for wheelchair contro[ [14] and was recently proposed
as a potential way of controlling an orthos[s [15]. However,
high-level commands are still required.

Because of this restriction, systems have to be developed to
consider all the low-level problems. This approach, wideted
in robotics, is called shared control, which can be consider
as a complementary control of a device from an intelligent
system and a human operatbr][11]. The aim of this system is
to provide assistance to users with limited abilities. Tatly,
with high-level commands only, a lower limb prosthesis can
not be entirely controlled. The prosthesis has to generateca
of standard pattern of walk whose frequency and amplitude
will be driven by the user high-level command. This prosithes
could also manage obstacles and correct loss of balance.
Shared control has been successfully applied in several
applications based on EEG signals: an asynchronous
wheelchair control [[16], a walking robo{_[17] and a hand
grasping system[[18]. To control the wheelchair, the patien
had to modulate his EEG signals by creating three different
mental states (imagination of a left hand movement, word
associations and relaxation) leading to three commands (tu
left, turn right and move forward). To control the walking
robot, a P300 paradigm generated high-level commands and
the robot executed all the low-level needed commands. lginal
hand grasping was made possible thanks to functional elaktr
stimulation and detection of foot movement imagery in the
EEG signal which activate the correct phase of the process (i
grasping and releasing an object).

It is now established, at least for animals, that locomotson
governed by a hierarchical system|[19]. At the lowest level o
this system are found the Central Pattern Generators (CPGSs)
Studies with cats have revealed that their gait is generayed
those CPGs which are located in the spinal cord. A CPG is
composed of motoneurons linked together that can generate
periodic patterns whose frequencies are controlled by tamb
This mechanism has inspired the field of robotics and could
be used for shared control. One of the algorithms developed
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in this framework is called a Programmable Central Pattern
Generator (PCPG) [20]. A PCPG algorithm is able to generate
any periodic pattern after an easy learning step compared to
the vast majority of other approaches [21]. The interest of
such a system lies in the controllable aspect of the learned
parameters. Actually, the pattern magnitude and frequemney
easily adjustable. Moreover, a modification of one of these
parameters will lead to a smooth transition of the PCPG
output in real-time. This is a particularly interesting tig@ for
prosthesis applications and their actuators.

In this review of our work, a first prototype is focused on
the control of a foot lifter orthosis useful for people affedt
by strokes and who are unable to elevate their feet (a brief
description of our current development for a full active lenk
orthosis is also tackled). In Section 2, the bases of BCI/BNC
interfaces and preliminary results are provided. In Sec8p
a gait model based on a PCPG, which is properly defined, is
proposed and results are summarized. In Section 4, thesistho
design is detailed and some phase resetting methods are give
in order to synchronize the orthosis to the actual movement.

I1. BCI/BNCI DESCRIPTION

In this section, the standard BCI approach is exposed as
well as a brief introduction to the different BCI paradignds.
short introduction to BNCls is also provided. Then, prefiary
results of a P300 interface under ambulatory conditions are
given. Finally, future work are mentioned. This section is

inspired from [13], [22], 123].

A. BCI/BNCI Interfaces

As depicted in Figurg]l, several main steps are considered
when using a BCIl: mental event/intention, signal acqusiti
preprocessing, feature extraction, pattern recognitipost-
processing, control of the device and feedback to the user.
First, the subject has to generate the adequate brain
activity corresponding to the used BCI paradigm. Secondly,
ElectroEncephalography (EEG) signal is acquired using dry
or wet electrodes. Wet electrodes are mostly preferred for
a precise analysis because of a lower impedance. But, from
a user point of view, dry electrodes are obviously more
convenient for a daily use. Thirdly, a preprocessing is iappl
to the data in order to magnify at best the brain activity the
system has to detect. Main tools of this step are temporal
and spatial filters, independent/principal component yeisl
and envelope averaging. Fourthly, the feature extractiep s
tries to summarize at best the relevant information in the
preprocessed data. This typically results in a featureovect
used for classification in a next step. From the classifier
decision, and after some post-processing on the decishen, t
high-level command is sent to the device. By applying the
so-called shared control, the device will operate all the lo
level commands corresponding to the detected subjecgntint
which often provides the feedback to the user.

To consider the user’s intent in the mental event/intensiep,

current non-invasive BCls based on EEG have two different
approaches using either evoked potentials or spontaneous
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Fig. 1. This Figure shows the main steps of a BCI application:
mental event/intention, signal acquisition, preprocessifeature
extraction, pattern recognition, postprocessing, cowtrthe device
and feedback to the usér [24].

signal. The former one is generated unconsciously by the
subject when he perceives a specific external stimulus, asich
the P300 and the Steady-State Evoked Potential (SSEP). The
P300 evoked potential is a potential elicited 300 ms after a
rare and relevant stimulus, visual [25] or auditory1[26],ieth
appears, for example, when the traffic lights are turningnfro
the red to the green. The SSEP is a periodic brain potengal th
occurs when the subject is perceiving a periodic stimulh su
as a visual flickering picture (SSVER) [27], a sound modudlate
in amplitude (Auditory SSEP][28], or vibrations providegl b

a tactor (Somatosensory SSEP)I[29].

The spontaneous BCls can be spontaneously produced.
Amongst this type of paradigm, motor and sensorimotor
rhythms and slow cortical potentials have been widely used.
Typically, o (8-13 Hz) andg (13-30 Hz) rhythm magnitudes
are related to motor actions, such as foot movements or
motor imagery and can be controlled voluntarily|[30], or by
performing specific tasks[[81]. Increase/Decrease of those
magnitudes are defined as Event-Related Synchronization
(ERS)/Event-Related Desynchronization (ERD), which can b
easily detected by an envelope detection. On the other hand,
Slow Cortical Potentials (SCP) are slow modifications (pesi

or negative) of cortical activity, which can last from hueds

of milliseconds to several seconds[32]. These potentials c
be voluntarily generated after a several-month training.

As an alternative to obtain a fast and reliable interaction,
a BNCI interface based on eye movement detection thanks to
EOG signals was proposed [13]. Actually, in the case of sdyer
disabled people, eye movements are often one of the lastsmean
of communication. This is why researchers have tried topmes
eye movements. Although different methods exist to traek th
eye movements (special contact lenses, infrared lightctedtes
measured with video cameras), electrooculography (EO®) wi
simple electrodes around the eyes, as shown in Figlre 2, is
the most portable and the cheapest technology [33]. Because
the electrodes measure the resting potential generatedheby t
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positive cornea (front of the eye) and negative retina (bafck
the eye), it is possible to detect when, how much and in which
direction the eye rotates.

Given the huge interest of such EOG-based assistive texhnol
gies, some hardware solutions have been proposed. Higure 2
shows the current most close to market hardware systemnster
of design and portability, detailed ih [83]. This self-caimted
wearable device consists of goggles with dry electrodes in-
tegrated into the frame and a small pocket-worn component
with a DSP for real-time EOG signal processing. It has two
accelerometers and one light sensor for compensating EOG
signal artifacts caused by physical activity and changes in
ambient light. It can stream processed EOG signals to a eemot
device over Bluetooth to command other systems.

Fig. 2: There are several components in the EOG-based wearab
eye tracker: the DSP (1), the Goggles (2) and the shielded cor
cable (3). The pictures at the bottom show the Goggles wora by
person with the positions of the two horizontal (h) and aiti(v)

dry electrodes, the light sensor (I) and the accelerometfemith
direction of its axes (ACCY, ACC_2). [33]

In order to control an external device, a succession of quick
and specific eye movements can activate high-level commands
Actually, the direction of eye movements can be provided in
quasi real-time, which can be labeled as left, right, up arrdo
As advised by[[33], the most efficient algorithm to detect eye
movement sequences is to use the edit (or Levenshteinhdésta
The Levenshtein distance between two given strings is d&fine
as the number of deletions, insertions and substitutiomsimed
to transform one of them into the other one. In this case, the
string is built by the concatenation of each labeled statthef
eyes (e.g. a left-right movement would be a LR string).

To avoid interferences with natural eye movements, thefate

can take advantage of the high speed of eye movements and
eyeblinks/winks. By winking or blinking, the user could gkiy
activate or deactivate a high-level command generation- env
ronment in which eye movement sequences would be detected.
After the patient has completed the speed modification, dees|

the command generation environment and eye movements are no
more recognized. Moreover, following this approach, eraecy

stop is easily implementable.
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B. P300 Results

Using a P300 paradigm, the most common application is the
P300 speller[34]. In this text editor, a 6 x 6 matrix, thatlines
all the alphabet letters as well as other symbols, is predent
to the user on a computer screen. In a trial, the detection
of the target letter/symbol is done after several sequentes
intensifications where each row/column is randomly flashed
in such a way that P300 responses can be used to detect the
assumed target.

Based on this approach, it was proposed to control an oghosi
using a four-speed BCI plus a non-control state, i.e. whimdésd
not modify the orthosis speed [22]. As depicted in Fiddreh8, t
screen was composed of two rows and two columns representing
Low- (L), Medium- (M) and High-speeds (H) and the Stop (S)
states that could respectively correspond to 1.5, 3, 4.% lkamd
the standing state.

Because this BCI paradigm needs an external screen, it ifymos
applied in sitting conditions. This solution is not envisagle
under ambulatory conditions. Hopefully, an emerging and-we
designed augmented reality eyewear (Vuzix, Rochester, NY,
USA) could circumvent this problem by displaying stimuli on
a semi-transparent module.

\

S

Fig. 3: P300 visualization is divided into four states: Lepeed,
Medium-speed, High-speed and Stop. A fifth state is detebjed
the system when the user is not looking at the screen.

Providing the standard 32-EEG signals downsampled at 32 Hz
from an ANT acquisition system (Advanced Neuro Technology,
Enschede, The Netherlands) with left ear as reference, the
pipeline is composed of several main components: a temporal
high-pass filter, an xDAWN-based spatial filtér [35], an dpoc
averaging and an LDA classifier using a voting rule for the
final decision sent to a VRPN server [36].

The frequency band of interest was obtained by high-pass
filtering the EEG signals at a 1 Hz cutoff frequency through a
4th order Butterworth filter. Thus, after the downsamplititg
undesired slow drift in the measurement and high-frequency
noise such as power line interference are remolyed [37].
Afterwards, an xDawn-based spatial filter is desigried [85].
linearly combining EEG channels, this algorithm defines @P3
subspace. When projecting EEG signals into this 3-dimensio
subspace, P300 detection is enhanced.

Then, the resulting signal is epoched using a time window of
600 ms starting immediately after the stimulus. Groups af tw
epochs corresponding to a specific row/column were averaged
The flash, no flash and inter-repetition duration are resmdygt
0.2s,01sand1ls.
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Finally, a 12-fold Linear Discriminant Analysis classifier is
applied to each two-grouped averaged time windows giving a
value which represents the distance to an hyperplane sigara
at best the target/non-target classes. For a given triala in
voting classifier, the row/column, which has been activated
is determined by summing six consecutive LDA outputs
(12 repetitions) and by choosing the maximum value. The
decision is sent to a VRPN server to be exploited outside of
OpenVibe [36].

To compare the impact on the results due to gait, the
experiment was divided into two sessions each correspgndin
to a specific condition: sitting and walking at 3 km/h, whigh i
a convenient speed for subjects. To train classifiers anelsass
the entire system for each condition separately, eachasessi
was composed of one training set and one test set of 25 trials
each (around 12 minutes each).

To allow the detection of the non-control state, two addio
databases were recorded. During these recordings, thecsubj
did not look at the screen. The first one with 10 trials comine
with the training set aims at determining the threshold (by a
Receiver Operating Characteristic analysis (ROC) [38ymfr
which the voting rule result is significant. The second onthwi

25 trials allows to assess the non-control state detection.
Actually, the non-control state is very important for theigat's
comfort and needs a specific design. When the patient is not
looking at the screen because he does not want to modify
the speed, the system should detect this non-control state
quite precisely to avoid continuous re-adjustments of ti@ B
system. Therefore, a threshold on the classifier confidence
indicator was determined by a ROC analysis with a very low
False Positive Rate (FPR=1%), i.e. the number of non-target
elements classified as target ones divided by the total numbe
of non-target. Then, the system was assessed on the test set
and on the second non-control set.

Four male subjects participated in this experiment with
age between 24 and 33 years old (274711). During the
experiment, a 20-inch screen was placed at about 1.5 meter in
front of the subject. Subjects were healthy and did not have
any known locomotion-related or P300 disturbing diseases o
handicap. Moreover, for this proof of concept, the orthogs
not attached to the subject but the entire chain was suectlyssf
tested by playing offline the experiment thanks to the OpkaVi
software.

As exposed in[[22], preliminary results show that the system
is working as desired. It was shown that the system is agtuall
performing a very low number of errors, i.e. when the user
wants to modify the speed, the system does not provide a bad
speed decision, and recognizes quite perfectly the notraion
state. However, the price to pay is sometimes a relativeif hi
non-decision rate, i.e. when the decision is not enoughbiglj
the system does not make a decision to avoid potential errors
and laborious re-adjustments. Obviously, this leads toesom
perturbations when the speed has to be changed and thetpatien
has to focus again on the BCI interface.
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Although interesting, this approach has some limitations.
Firstly, the decision time is quite slow for real-time apglions
even if it can be improved by implementing better and more
complex pipelines as well as a better management of flash, no-
flash and inter-repetition duration, of the number of trialsl
of the classifier choice. As reported [n[39], a P300 systeth wi
a dozen of items can reach an accuracy of 95 % for a time
of decision between 10-20 seconds in sitting condition. ésnd
ambulatory conditions, although priori, it is assumed that
results can be improved by applying specific gait-relatéifeat
removal techniques, artifacts seem to be non-problematia i
low-speed and/or low complexity embedded framewarkl [23],
[4Q).

Secondly, the current implementation of the pipeline does n
allow to work in an asynchronous way, which is an important
feature for the patient's comfort and safety and should be
investigated for future work [41][142].

Finally, the impact of a kind of VUZIX augmented reality
eyewear has to be assessed for a real application.

C. Future Work

The feedback will be the main point of BCI/BNCI future
work. Actually, we are currently able to control the speed of
the treadmill according to the detected high-level command
What we intend to do is to study the subjective feedback of the
user using this commendable treadmill thanks to questicema
Usability and cognitive workload can be assessed by theeByst
Usability Scale and NASA Task Load questionnailies [43].
Another future work will be to assess other BCI/BNCI pipebn
Typically, SSVEP and EOG based systems will be compared to
the P300 approach using the subjectivity of subjects/pistito
determine the most suitable option.

I1l. SHARED CONTROL BY A PCPG

This section describes the PCPG itself and its abilities.
A special focus is on the coupling between several PCPGs,
e.g. between foot, shank and thigh angles of elevation. ,;Then
results of gait modeling on seven healthy subjects are tipic
Finally, some future works are pointed out.

A. PCPG Definition and Properties

A PCPG is a kind of Fourier series decomposition and is
composed of several adaptive oscillators. This algoritlem i
governed by the following equation system:

by =~ (u— 1)z — wiys + eF(t) + msin(Ri — ¢;) (1)
i = (1 — 1)y + wiws @)
) = —cF(H) L 3)
v, = nxi F(t) Z (4)
o =0 5)
p: = sin(R; — sgn(m)cosfl(—%) —¢i),Vi#£0 (6)
with _
R; = i—;sgn(xo)cosfl(—zﬁ,{—g) )
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and

N
F(t) = Picach (t) — Z Qg (: Qlearned(t)) (8)

=0

As depicted in Figur€l4, oscillators are coupled betweerh eac
other compared to an origin phase based on Rhecoupling
parameters derived from the phase information They are
composed of adaptive magnitude coefficientsand frequency
parametersv; (r; = (22 +y2)2). 1 has a role of normalization

of the learned pattern. The other parameterse, = aim at
accelerating the convergence while limiting stability feams.
The Qicarned(t) signal resulting from the sum of oscillator
outputs is compared to th&....»(t) walking pattern target
and the error valué’(t) is computed. Throughout the learning
step, all the parameters of the PCPG are modified in order to
minimize F'(t). When this learning step is finished;(¢) is
close to zero and the system is generating the right pattern a
the Qiecarned(t) output.

Preacn(t) - |Qrearnea(t)
— —

Fig. 4: The PCPG is able to learn the frequency components of a
periodic signal as well as the various phases and magnitUdhes
main interest of PCPGs is the possibility to modify a learpattern

in amplitude or frequency in a smooth way. This Figure is iresp
from [20].

Properties of PCPGs make them suitable for trajectory
generation in robotics and also for prosthesis application
fact, the pattern learned by a PCPG can be easily contrailed i
magnitude and in frequency thanks to a simple linear change
of the & and & vectors representing thB”Y PCPG states\
is the number of oscillators). This linearity leads to a sthoo
change of the global system behavior. For instance, if the
@ vector is divided by two, the underlying frequency of the
standard temporal pattern is divided by two. The same effect
occurs for thea vector.

Finally, as proposed il [44], it is possible to couple selera
PCPGs to model different angles of elevation. This is pentat
thanks to equations of coupling between the fundamental osc
lators of each PCPG and by learning the phase difference:

. 2
20,k :’Y(M - To,k)ivo,k — Wo,kY0,k

. 9
+ 7sin(Ro,k—1 — do,k)
bo.r. = sin(Ro k-1 — Rok — dok) (10)

where (0, k) denotes the first oscillator of théth PCPG
(frequencies of different angles are the same).
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B. Human gait modeled by a PCPG

In order to train the PCPG, one standard (average) walking
pattern over a gait cycle was used. This temporal pattern
consists of the angle of elevation of the foot of seven hgalth
subjects walking on a treadmill at 3 km/h, a typically medium
speed for humans. Actually, this angle was studied for two
reasons: this is the most complicated angle variation ofdmum
gait and the focus in this paper is on the development of
an active foot lifter. The elevation angles were computed
using the positions of 23 passive markers disposed on the
subject, determined thanks to six Infrared Bonita Vicon egas.

This standard walking pattern was obtained by averaging
about 50 walking cycles, determined and synchronized by
a peak detection algorithm able to locate all the relevant
maxima and minima angle values of the kinematics recordings
as depicted in Figur€l6. Here, the gait cycle patterns were
synchronized with the maxima due to clearer peaks and to
their proximity with the heel strike, when the heel is touhi
the ground (which is often considered as the gait cycle
beginning). The kinematics data were recorded for each leg
during 60 seconds at 100 Hz. This standard pattern is thus a
kind of average pattern along the 60-second recordingsn,The
the PCPG was trained using the procedure described_in [20].
Figure[® shows how well the PCPG is able to reproduce the
standard pattern of the foot elevation angle using 7 osoila

—+— PCPG output
- - — Repeated standard pattern

Normalized angle
)
Ul

1001 1001.5 1002 1002.5 1003 1003.5 1004 1004.5
Time (seconds)

Fig. 5: The PCPG is able to learn perfectly a standard pattérn
walk by means of 7 oscillators.

What is proposed is to generate walking patterns with the
PCPG in a way differing from the bipedal robots described
in the literature which consists in walking as far as possibl
without taking into account the potential patient itsetfdéed,
one of the main goals in prosthetics is to provide the user
with the most comfortable walk possible. Therefore, at each
step, the pattern should be adapted in terms of frequency
and magnitude, i.e. respectively the stepping frequenay an
stride-related length between two heel strikes whatever th
walking speed. Kinematics data were thus recorded withrseve
healthy subjects for 10 different speeds, from 1.5 to 6 km/h,
by step of 0.5 km/h. The normalized and centered patterns
learned by the PCPG for the speed of 3 km/h and generated
for all the other speeds were manually calibrated (by tuning
the magnitude and frequency parameters) in order to fit the
standard walking patterns of all speeds.
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Foot elevation angle (°)
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Fig. 6: Local maxima and minima allow synchronization while
averaging walking cycle. In this study, the maxima are usszhbse
of a clearer peak and due to its proximity with the heel strike

Obviously, this procedure cannot be directly used with aies

or a paraplegics. As mentioned in_[45], a series of standard
patterns ranked by age, weight, height, etc. can be used for
the amputee depending on these parameters. Another simple
approach is to record as soon as possible kinematics data for
population at risk such as soldiers.

By doing this, we found a simple mathematical link between
the PCPG amplitude and frequency parameters (respegtively
the @ and & vectors) as a function of the walking speed.
This link was established by computing a relatively low-ard
polynomial interpolation function at the least mean squsamse
as indicated in Tablg I. Figuig 7 shows results obtained fer o
specific subject. One can notice that the subject increases h
walking speed at first by extending his stride length, anch the
by increasing his stepping frequency. Globally, this comfir
results described in_[46]. It has to be emphasized that this
interpolation can be computed specifically for any subject,
increasing therefore the precision and adequacy of thetmsis
control at each step.

Moreover, as BCI is far from working perfectly, a confidence
level of the command could be derived and integrated in
the speed parameter change. Considering thabaelerate
command increases the actual speed of 0.5 km/h by default,
if the decision is uncertain, e.g. reliable at 75 %, 75 % of the
speed increase can be actually performed thanks to the peaam
interpolation. In fact, this interpolation can be consateras
reliable given the relatively low-order polynomials ande th
smoothed transitions between parameters of successieelspe

TABLE I: The orders of the polynomial interpolation are euibw
except for subject 2. For this subject, a strange behaviftequency
was observed, i.e. the frequency first decreases and thezas®s
while speed is increasing.

Order Magnitude | Frequency
Subject 1 4 3
Subject 2 4 8
Subject 3 4 5
Subject 4 5 3
Subject 5 4 3
Subject 6 4 4
Subject 7 3 3
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The interpolation is performed for 10 walking speeds withtla- 4
order polynomial function. Error bars in amplitude show tiigh

magnitude variability of each gait cycle. Similar resulte derived
from the other subjects.

To prove the relevancy of this approach in an objective way,
a Similarity Index (Sl) was assessed between the PCPG output
f1(t) at the right speed with the exact parameters and the
standard walking patterifi (¢) at each speed to show the true
potential of this method. This index is defined as:

T
J2z f1(@) f2(2) dt
SI=— 2 - 1
(J2p fi()2dt [2, fo(t)2dE)?
2 2
whereT is the period of the limit cyclefi(t) and f2(t) being

synchronized at the origin. Note that if both functions are
identical, ST = 1.

(11

For the seven subjects, similarity indices were computed
with and without interpolation. Globally, S| values withou
interpolation are very good but show a logical degradatian f
speeds differing more and more from the PCPG learned speed
as shown in Figur€]8. Regarding the interpolation, the irhpac
of the dissimilarity increase is clearly negligible.

An alternative to improve this procedure which relies onrgla
PCPG could be to manage a multi-PCPG system at a multi-
interpolation level; each PCPG will model a typical range of
speeds with its own interpolation, e.g. 0.5-2 km/h wherer8I a

76 SYSTEMICS, CYBERNETICS AND INFORMATICS

sufficiently high compared to the level of requirements. The
merging of those PCPGs would be used to model as perfectly
as possible real walk while making the change of PCPG as
smoothed as possible.

/,
/
0.95 B
(%]
Q
o
2
£
2 09r B
5
=
(7]
0.851 B
—A— Similarity Indices without interpolation
- ¥ - Similarity Indices with interpolation
08 L L L L L
1 2 5 6
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Fig. 8: The difference between Sl values obtained with arthauit
the interpolation is not significant. Error bars are staddarors.

C. Future work

The main future work about the gait modeling will be to
refine it while considering relative angle, i.e. the angledex
to control the orthosis. Although the proposed scheme seems
to be efficient on a large range of speeds, it is not possible
to achieve the best comfort as possible without changing the
standard pattern from low speeds to high speeds. Indeed, as
shown in [47], across speeds, relative angle patterns igtelgl
modified, which is consistent with the exposed results is thi
study. If this phenomenon is not considered, this couldlrésu
some inconvenience.
To enhance this model, a non-linear filter could be used at the
output of the PCPG. This filter would allow to modify the PCPG
output waveform to fit at best standard patterns at each speed
This filter would also be required to allow smooth transition
Another aspect is the use of feedback. Given that this work
aims at improving the patients’ comfort, it is needed to geirt
opinion to compare different solutions.

IV. ORTHOSIS

In this section, the specific case of a foot lifter orthosis
is exposed. Firstly, some considerations about the oghosi
control strategy and design in our framework are given. Then
some encountered practical problems and some contrilsution
resolve them are detailed. For further details, [48].

A. Orthosis control strategy

In gait, there are mainly two events: the Heel Strike (HS)
and the Toe Off (TO) for each foot. The heel strike is the time
when the heel is touching the ground for the first time in the
gait cycle and the toe off is the time when the foot is leaving
the ground. These events divide gait into two gait phases: th
stance phase, i.e. when the foot is on the ground, and theyswin
phase, i.e. when the foot is in the air.
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Actually, people have two highly different control schemes
depending on the gait phase. In the stance phase, the foot
is force-controlled while during the swing phase, the fo®t i
controlled in position. For people suffering from foot drop
problems, the control in position is deficient. Thereforee t
orthosis also comprises two different control modes, orre fo
the stance phase when the subject entirely drives the @sthos
and another one for the swing phase when the PCPG output
governs the system.

The first passive mode, during the stance phase, allows the
free motion of the foot around an equilibrium point while, at
the same time, it provides a certain level of stability thylowa
virtual stiffness element by mimicking a spring.

The second active mode is associated to the swing phase and is
intended to help the patient to achieve enough foot clearanc
to initiate the next gait cycle. This mode can basically be
considered as a trajectory tracking scheme to follow the ®CP
position pattern similar to that developed by a healthy foot
during the swing phase.

B. Orthosis design

In a first prototype described irf_[48], the orthosis is made of
several components: two custom-fit plastic shells, two fiexu
joints, a linear actuator, a ball-link transmission, a lazadl to
measure the actuator force, and two force sensors installed
the orthosis sole, under the heel and the toes (not depinted i
the Figure). The plastic shells were designed using a 3D scan
of the right foot and leg of a healthy subject, adding mougtin
surfaces for the actuator, the flexure joints, and the mecalkan
transmission. The actuator includes a position controlt uni
based on a PID controller that can be driven by an external
analog signal in the range 6fto 10 V.

One of the main challenges that is encountered in the
development of active orthoses is the commercial actuator
weight. To satisfy the mechanical requirements for devatpp

a complete gait cycle, this weight was aba¥é kg. For the
particular case of a foot lifter orthosis, the weight is abou
1.6 kg and its maximum power is aroundll7 W, which
corresponds to a third of the peak power developed by a
healthy ankle[[49]. In a second prototype shown in Fiddre 9,
a lightweight custom-fit actuator with passive energyager
elements was developed, powerful enough for the stanceephas
as well. Control strategies specific to an active stance ephas
are explored in parallel implied by the torque-angle law of a
healthy ankle during the heel strike, the flat foot and the toe
off. This mainly consists in three different but similar ¢ais
mimicking a spring with different parameters.

The control and the PCPG algorithms reside in a DsPIC
30F4013 microcontroller running 420 MHz. Both algorithms
are calculated at each time step at a sampling frequency of
500 Hz but the output of one or the other is chosen according
to the orthosis state, as detailed in the next section. The
differential equations of the PCPG are solved by a simple
explicit Euler integration method. The microcontroller mages
three analog (two sole force sensors and one load cell) Snput
for the signals coming from the force sensors.

ISSN: 1690-4524
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Fig. 9: The orthosis prototype is composed of several mampms
nents. The spring is used to stock energy during specifipbases.
A homemade ultra-compact actuator of around 3 kg is comgpll
the orthosis in a way depending on the current gait phasee®er,
this system is suitable for an active stance phase as well.

C. Phase-resetting

As mentioned in [[50] and reported iri_[48], at a given
speed, gait cycles are not perfectly identical due to isicin
properties of human gait and potential external pertuobati
Those problems result in phase mismatch between the ggrfect
periodic PCPG output and the real gait pattern in addition
to change in frequency. If this mismatch is too important,
the subject has to compensate for it leading to a non-natural
gait. Therefore, phase-resetting techniques aim at matkiag
orthosis to adapt to the patient as quickly and smoothly as
possible for the subject comfort.

Technically, as reported in_[48], the phase-resetting ist;is
in resynchronizing the PCPG state according to specialtgven
such as heel strikes.
As proposed in[[48], two approaches are availablehaad
and asoft phase-resetting. The hard phase-resetting relies on
a direct modification of the integrated values: in each ttoit
i, v; and y; are put to standard values corresponding to the
heel strike event. The main advantage of this approach is
the quick phase-locking whereas the disadvantages are (1) a
more sensitive reaction to noise in the frequency estimatio
due to small variations in gait cycles at constant speeds or i
the measurement itself and (2) important modification of the
actuator state, although mitigated by the low-pass filterthe
case of a foot lifter orthosis, during the stance phase,¢hetor
is not commanding the system and thus, the latter disadyanta
vanishes. However, it could be a real problem when a full
position control, which is not advised in prosthesis/osihpis
envisaged.
In the soft phase-resetting, in order to control the phasevery,
the first oscillator of the PCPG is coupled to an external
oscillator. This oscillator is used as a reference osoillatt
instantaneous phas®y,,. This allows to modify the phase
difference ¢o,. between the reference oscillator and the first
oscillator of the PCPG.
Formally, the reference oscillator is as follows:
12)

do,r = y(p— Tg,r-)l"o,r- — wo,rYo,r + Tsin(Ro,r)
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whereas the coupling with the PCPG (subscripteg)ig shown
in:

Z0p = Y(— 78 ) T0.p — wo.pYo.p + Tsin(Ro.rk — po.r) (13)

where k = % The coupling with the other oscillators of
the PCPG is identical to the previous description. Becahse t
phase of higher order oscillators had more difficulties oo

a phase change in experiments, coupling constant was defined
ast; = T::)—’; In our experiments, we chose= 1. Figure[10
shows how this modification can produce a smooth and robust
kinematics output when a phase reset is applied.

The main advantage is the possibility to recover the phase in
a smooth and thus more comfortable way if a fully-position
control system is used. On the other hand, the main drawback
is the difficult control of the phase recovery speed, whichldo
potentially create some uncomfort for the patient.

D. Future Work

Future work will be dedicated to control the speed of phase
recovery in the soft phase resetting in a better way whil@ikee
the smooth aspect. A better phase resetting procedure beuld
to use other gait events or sensors or by combining the twastyp
of phase-resetting. Indeed, although a force control dutire
stance phase allows a hard phase resetting to be used wathpout
problems (the PCPG output is not used), this feature could be
interesting for smoothly resynchronize the system in [siewi
of the next heel strike, just after the toe off.
From experimental data, the evaluation of metrics such as
the settling time, i.e. the time the system needs to recover
the phase given a certain error band, could be interesting to
precisely characterize the recovery speed of soft phasttimy.
When combining both phase-resettings, the determinafitimeo
hard phase reset step distribution with and without sofispha
resetting in realistic application will make it possible jtalge
the relevancy of this combination to reduce the magnitude of
the hard phase-resetting step.
Finally, the feedback from the patients will drive our tsidb
enhance the orthosis design.

V. CONCLUSION AND FUTURE WORK
A. Conclusion

Given the huge development of Brain-Computer Interfaces,
a lot of different applications devoted to handicapped f®op
have popped up. From communication to motor substitution
through wheelchair control, brain control capabilitiesvda
been enhanced for a certain type of disabled people. However
until now, lower limb prostheses have not been equipped with
this technology yet due to the relatively low bitrate of such
interfaces.
In this paper, a global review of our current research on how
to control an orthosis based on a Brain-Computer Interface
(BCI) or on a Brain-Neuronal Computer Interface (BNCI) is
proposed. Contrary to most current active prostheses, @ kin
of direct user’s intent is here considered. This paper é@xpla
the three main parts of this biologically-inspired apptuathe
BCI/BNCI definition, the gait modeling and the orthosis desi
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The BCI/BNCI is detecting some high-level commands that
the patient wants such as modifying the current speed. It has
been shown on four healthy subjects that a P300 interface is
feasible using four different speed states and a non-dostaite,

i.e. a state which represents that the subject does not want t
modify the current speed. Although this approach is workisg
desired, some limitations are still strong. Firstly, theadion to
modify the speed is too long (around 20 seconds). Secormy, t
system has to be used considering augmented reality eyewear
for real applications. Thirdly, this approach is synchrnesm@nd

the subject can not decide when to change the speed.

Then, by shared control, all the low-level operations araedo
by the orthosis design using a kinematics-based model. $t wa
demonstrated that a Programmable Central Pattern Generato
is able to learn quite well average human walk patterns at a
given speed using angle of elevations. Then, it was shown tha
a low-order polynomial function can model the evolution loé t
PCPG parameters as a function of the walking speed in order
to adapt the orthosis to the patient’s kinematics in a laegge

of speeds. Given that this interpolation was quite smodiis, t
enables the integration of a confidence level of the higktlev
command. If the command is uncertain, a smaller gap in speed
is actually performed than in the certain case.

Finally, by integrating a spring, a more compact orthossigte

has been proposed. People suffering from foot drop problems
are completely able to control the foot when it is on the gtbun
(stance phase), but they are unable to lift it when the foot
is in the air (swing phase). Therefore, the orthosis cornisol
mimicking a spring during the stance phase and is trackieg th
PCPG model during the swing phase. This approach can be
easily extended to a complete active prosthesis given that i
force-controlled during the stance phase. On top of thaiabse

gait is not totally periodic and that some external perttidos

can occur, two phase resetting techniques were proposed to
resynchronize the PCPG output and the actual movements. The
soft-phase resetting is able to phase reset in a smooth way bu
with a difficult control of the recovery speed, whereas thelha
phase resetting is able to recover immediately the cortease

at the price of uncomfortabilities for the patient that &min

our dual-control approach.

B. Future Work

Short-term future work will be devoted to study the system
usability with an online application from a large populatio
of patients with a series of different BCI and BNCI pipelines
Typically, SSVEP- and EOG-based interfaces will be studied
from a user point of view. System Usability Scale questidmasa
will be used to compare user’s feedback amongst the differen
BCI/BNCI approaches. In order to increase the comfort of the
patients, a refinement of the PCPG gait model will be proposed
to fit at best slight modifications of gait patterns acrosedpe
For middle-term future work, to increase the comfort of the
patients, we will search for a much more natural command
generation system. Indeed, as reviewed[in [51], recentiestud
showed that EEG signals could detect specific periodical
gait activations and deactivations in Event-Related-Ra@k
analyses and Event-Related-Spectral-Perturbationpuath a
lot of suspicions about the potential spurious conclusidns
to a lack of artifact cleaning. This would undoubtedly be a
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Fig. 10: On the left: without enhancements, the soft phasetting leads to an important and long transient. On the:rgis problem is strongly

mitigated.

great step in non-invasive neuroprostheses if such a fregue
information or, even more important, a phase informationlado

be extracted to directly command the PCPG either in frequenc
or in phasel[[48].

For long-term work, two main achievements could be realized
First, the frequency/phase information could be derivesinfr
invasive technique to increase responsiveness and Signal-
Noise Ratio. Regarding the prosthesis, if the patient hifls st
his limb, functional electrical stimulation could be useis
studied in [[52], the PCPG output could be shaped by specific
neural network to generate Electro-Myographic signals.

In any case, balance control by the system for tetraplegia
is highly challenging. Robotics research has not provided a
complete solution yet. To reach the market, the product bas t
consider this aspect. Shared control has also to be inctease
for gait pattern adaptation when specific situations arisehs
as climbing stairs, slope, etc.
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