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ABSTRACT 

 

Motivated by the study of the longitudinal development and 
progression of knee osteoarthritis (OA) over a 15-year period, 
this study developed non-parametric mixed-effect models for 
ordinal outcomes. A stochastic mixed-effect model was used to 
evaluate the similarity of trajectories associated with increasing 
disease severity of OA in both knees.  Then, a non-parametric 
mixed-effects model, based on cubic B-splnes, was developed 
to characterize the unknown nonlinear trend of logits as a 
function of time1-order. A Markov Transition Model was 
developed to characterize the transitions among multi-states of 
knee OA. This newly developed approach allows more flexible 
functional dependence of the ordinal outcome, levels of 
increasing knee OA severity, on the covariates. 

 

Keywords: MBHMS, Knee Osteoarthritis (OAK), Aging, 
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1. INTRODUCTION AND MOTIVATION 
 

Longitudinal studies, where individuals are measured 
repeatedly and thus correlated across time, are being developed 
and applied in diverse fields of research, including 
epidemiology, health outcomes research, social studies, 
education and clinical trials, etc. The development and 
utilization of SAS procedures PROC MIXED and NLMIXED 
provide increasing flexibility to implement these analyses.  
 

The use of continuous longitudinal outcomes has been well 
studied, parametrically and non-parametrically [1-6]. However, 
discrete longitudinal outcomes (binary, counts or categorical 
nominal or ordinal) may also play an important role in these 
studies where precise characterization in longitudinal modeling 
is less developed, e.g. osteoarthritis (OA) evaluated using the 5-
level Kellgren and Lawrence (K-L) severity scoring  

 

system as described in the Atlas of Standard Radiographs of 
Arthritis[7]. The OA severity outcome of OA is achieved 
pictorially and it can be classified into five categories: 
normal/no disease (state=0), doubtful OA (state=1), minimal 
OA (state=2), moderate (state=3), and severe (state=4). Further, 
these five categories represent the initiation and progression of 
OA and thus is an ordinal variable. Further, as shown in Figure 
1, the initiation and progression of knee OA (OAK) can be bi-
directional or uni-directional at certain states. This progression 
is chronic with multiple relapses of symptoms separated by 
periods with mild or no symptoms [8, 9], and thus can be 
considered a relapsing-remitting disease [10]. Alternatively, the 
bi-directionality may reflect the quality of the radiograph that is 
being scored or the consistency and standardization of those 
reading the radiographs. 

 

The scientific questions of interest in OA studies may include: 

(Q1) Similarity analysis: whether the knee OA symptoms in 
both sides develop and progress (longitudinally) at the 
same/similar pattern? 
(Q2) Progression analysis: how the knee OA characteristics 
(probability trajectory of each state) progress over time? 
(Q3) Transition analysis: how long and under what conditions 
do the knee OA states transit from one state to other states? 

 

Figure 1 Transition of states of knee OA.  Simultaneous 
transition in both knees (black color); /Right knee only 

transition (Red color); Left knee only transition (blue color) 
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Major approaches can be used to model this type of discrete 
longitudinal outcomes including marginal models, random-
effect models [11-17] and transitional models [10,18-21]. 
Conceptually, marginal models study the effect of covariates 
(e.g., age, time, Body Mass Index) on the marginal distribution 
of the outcome variable and are often called “population-
averaged models". Random-effect models capture individual 
variability by adding random effects as in regression and are 
often called “subject-specific models”. Transitional models can 
be used to evaluate the longitudinal effect of covariates on the 
state transition patterns of categorical outcome. 
Computationally, the these models applied to discrete outcomes 
can implemented using MIXOR[22], BUGS[23], MLwiN[24], 
HLM6[25], R package DRM [26], or SAS procedures or 
macros (GENMOD,NLIMIXED, and GLIMMIX, %GLIMMIX) 
(SAS Institute, Cary, NC).  
 
In the studies and applications, the mean structure of the 
longitudinal ordinal outcome is frequently assumed to depend 
on the covariates (e.g., age, time) parametrically. However, the 
functional forms of covariates may be nonlinear, complex, or 
even unknown. Thus, the parametric mean assumption may be 
inappropriate.  
 
Few studies have characterized the longitudinal changes in 
ordinal OAK trajectories, particularly using parametric or non-
parametric functional forms in time (e.g., age). However, there 
is no evidence that the trajectories of knee OA development 
and progression over time (e.g., difference score in both knees, 
probability trajectory of multi-state OA over time) are well 
modeled by imposing parametric assumptions.  
 
Thus, it is desirable to develop nonparametric approaches to 
modeling longitudinal ordinal outcomes both in methodology 
and practice. In this report, we have developed approaches to 
model the longitudinal ordinal measures using semi-parametric 
mixed effect modeling, based on cubic B-splines. The 
methodologies were demonstrated using the longitudinally-
acquired knee OA data collected in the Michigan Bone Health 

and Metabolism Study (MBHMS). 
 
 

2. BIOLOGICAL, CLINICAL AND 

EPIDEMIOLOGICAL IMPORTANCE AND 
RELEVANCE 

 
This approach to modeling longitudinal ordinal outcomes with 
unknown mean structure is of great importance. Without loss of 
generality, the methods can be applied to analyze other 
longitudinal ordinal outcomes apart from knee OA including 
depression, or functional status. Motivated by the increasing 
frequency of knee OA of MBHMS over time, this paper 
develops nonparametric mixed-effects models to study OA 
development and progression over time. 
 
It is known that osteoarthritis (OA) is a major chronic disease 
in adults; more than 10 million Americans have knee 
osteoarthritis (OA), the most commonly studied joint affected 
by OA. Because of its impact on mobility, knee OA is the most 
common cause of disability in the United States. Until very 
recently, knee OA has been considered a disease of the elderly, 
however, investigations now demonstrate that the development 
of knee OA is a slowly evolving disease affecting cartilage and 
bone with notable deterioration in contributing tissues  being 

evident at age 40 with severity increasing over a period of 
years[8-9, 33-34]. 
 
The timing of OA initiation and its progression in the knee and 
hip is of high interest because these joints, and their integrity, 
determine the capacity for ambulation.  OA accounted for 97% 
of the total knee replacements and 83% of the total hip 
replacements in 2004[35]. With national data, the Healthcare 
Cost and Utilization Project showed osteoarthritis accounted for 
$10.5 billion in hospital charges in 2006, making this a more 
expensive condition than pneumonia, stroke, or complications 
from diabetes.  Hospital admissions for arthritis and its 
treatment more than doubled between 1993 and 2006. 
 
Thus, understanding the development and progression of knee 
OA, chronologically, is of critical importance for determining 
when preventive efforts will be most effective and when early 
diagnosis and treatment of knee OA symptoms should be 
initiated to slow progression. However, there are few 
longitudinal studies of knee OA, and there are a dearth of 
studies that address the development and progression of knee 
OA. Not only are there few studies that address the initiation 
and progression of knee OA, the methodologies required to 
characterize the change in ordinal measures over time is 
complex, and the most commonly employed measures  of OA 
and its severity from radiographs generate ordinal measures.  
Further, understanding the relationships of disease initiation 
and development of OA is made more complex because of the 
autocorrelation of the contribution by having two knees or two 
hips contributing to the development of disease. 
 
Due to the complexity in OA data collection, limited data are 
available with the age range and timing where OAK becomes 
established.  Further, the study of the biological progression 
mechanisms the time span and natural history of the initiation, 
progression and transition in knee OA has not been well 
established. MBHMS provides the opportunity to study this 
complexity because of its rich longitudinal data bank.  

 
 

3. METHODS AND MODEL SPECIFICATIONS 
 
In OAK studies, three problems are of interest: similarity of 
both sides OAK progression; longitudinal progression pattern 
of OAK severity; and state transition pattern. 
 
3.1 Similarity and Comparison of Left and Right 

Trajectories Using Difference Score  
 
To compare the development and progression in both knees, the 
semi-parametric mixed effect model was used [4]: 
 

ijijii

T

ijij

T

ijij tUtfY ε++++= )()( bZβX                   (1) 

 

where: 
ijY  is the response variable (e.g., difference score as a 

continuous variable of right knee and left knee) for the ith (i = 
1,2,…, M, and M is the total number of subjects) subject at 

time point ijt  (
inj ,...,2,1=  and in  are the distinct time 

points for ith subject); β is a 1×p  vector of regression 

coefficients associated with covariates 
ijX of interest. )(tf  is a 

twice-differentiable smooth function of time; ib ’s are 
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independent 1×q  vectors of random effects associated with 

covariates 
ijZ ; )( ijtU  are independent random processes 

used to model serial correlation; ijε  are independent 

measurement errors. The fundamental assumptions for this 

model are: ijε  ~ iid ),0( 2σN , ib  ~ normal (0, D(φ)), D is 

a positive definite matrix depending on a parameter vector φ; 

)( ijtU  is a mean zero Gaussian process with covariance 

function or a non-homogeneous Ornstein-Uhlenbeck (NOU) 

process, cov( )(tU i
, )(tU j

)= γ(ζ, α; t, s) depending on a 

parameter vector ζ and a scalar α, which is used to characterize 
the variance and correlation of the process )(tU i

. 

 
3.2 Semiparametric Mixed Effect Model for Longitudinal 

Ordinal Data 
 
The ordinal logistic regression models (e.g., proportional odds 
model, partial-proportional odds model, non-proportional odds 
model) are widely used for analyzing ordinal outcomes. For 
repeatedly measured ordinal outcomes across time, mixed–
effects models have been developed for ordinal outcome data to 
account for the dependency inherent in the data[13-15].  
 
For an ordinal response with C categories, the proportional 

odds model assumes that the effect of an explanatory variable is 
the same across the 1−C  cumulative logits of the model. This 

assumption of proportionality across the cumulative odds for all 
explanatory variables may be too strict and thus a mixed-effect 
logistic regression model (known as partial-proportional odds): 
for the cumulative probabilities in terms of the cumulative 

logits ijcλ  can be formulated as follows 
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where 

ijY  is the ordinal response for ith subject (i = 1,2,…, M, 

and M is the total number of subjects) measured at jth time point. 

Cc ,...,2,1=  denotes the response categories. 
ijX  is the 1×p  

covariate vector of observation values ij  where proportional 

odds were assumed, and 
ijU  is the 1×q   vector containing 

the observation values ij  on the set of q  covariates where 

proportional odds were not assumed. 
ijZ  is the 1×r  vector of 

random effects for subject i . The Eq. (2) also includes 1−C  

strictly decreasing thresholds cγ . The random effects iv  are 

assumed to follow a multivariate normal distribution 

),( vN Σ0  where 
vΣ  is the variance-covariance matrix of iv . 

The proportionality of a covariate across cumulative odds can 
be tested using likelihood-ratio test and Akaike's information 
criterion (AIC). 
 
Model in Eq. (2) describes the parametric functional form in 

terms of covariates 
ijX  and 

ijU , e.g., if time variable t (e.g., 

age) was believed to be cubic polynomial and further assumed 

non-proportional across cumulative odds, then the “age” term 
as a fixed effect can be expressed as a function: 
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In Eq. (3), the coefficients 
c

kβ  ( 3,2,1,0=k ) depend on 

category c . In this scenario, without loss of generality, model 

in Eq. (2) can be rewritten as: 
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However, in most cases, the functional form of )( ijtf  is 

complex or unknown and Eq. (3) might be not desirable.  
 

Assuming )( ijtf  is twice-differentiable smooth function, and 

then we can use splines to approximate the form. Splines 
consist of a series of piecewise polynomials constrained to be 
joined in a visually smooth fashion and typically formed as an 
additive combination of locally defined low order polynomials 
(or basis functions). The proprieties of splines and detailed 
discussions are widely available [28-32] Cubic B-splines are 
widely used as a spline basis function and were employed in 
this study: 
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where 4+= nn Kq  and 
nK  is the total number of internal 

knots. {
nk qkB ≤≤1, } are a set of local basis functions (cubic 

polynomials). Then, )(tf  is twice continuously differentiable 

within the time range.. Assuming non-proportionality of 

)( ijk tB  across cumulative odds and replacing )( ijtf  in Eq. (4) 

by )(
~

tf  in Eq. (5), then Eq. (4) becomes: 
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After some arithmetic operations, Eq. (6) can be written as: 
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Note that in Eq. (7), parameters cα ’s  and β ’s have a subject-

specific interpretation. Given the covariates
ijij UX

~
,

~
, the 

probability at category c  for the population, )
~

,
~

( ijijc UXπ , 

can be obtained through: 
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For a random intercept model, i.e., ),0(~ θNvii

T

ij =vZ , 

approximately we have: 
 

)
~~

()346.01( 2/1 βXαU T

ijc

T
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ijc
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+++≈ − γθ

λ
                    (9) 

 

That is, 
cα

2/1)346.01( −+ θ  and β
2/1)346.01( −+ θ  has a 

population-level interpretation that can be expressed in terms of 
the log odds ratio.  
 
 
3.3 Transitional Markov Models of Multi-States of Knee 

OA 

 
The MBHMS knee OA data showed that the transition patterns 
between the six adjacent follow-up visits are very complex. The 
transitions can be stable or bidirectional, i.e., from non-disease 
to doubtful or any disease, from mild disease to severe disease, 
or from mild disease to doubtful or even normal states (see 
Figure 1 and Figure 2). 
 
Transitional Markov models estimate the transition 
probabilities between states and examine the effect of 
covariates on the transition patterns across ordinal responses 
over time. The q-order mixed effect Markov model can be 
specified as below: 
 

i

T

ij

q

l

lijl

T

ijc

T

ijc

iijijqijijijij

iijijqijijijij

ijc

Y

YYYcYP

YYYcYP

vZβXαU

vUX

vUX

++++=















<

≥
=

∑
=

−

−−−

−−−

1

21

21

),,,,,,(

),,,,,,(
log

θγ

λ
L

L

   (10) 

 
In Eq. (10), the regression coefficients can be interpreted as the 
effect of covariates on the probability of an ordinal event 
adjusting for the past history of the process. The estimation 
procedure and subject-level and population level interpretations 
of regression coefficients are found in Eq. (7)~ Eq. (9). 
 
 

4. APPLICATIONS: LONGITUDINAL KNEE OA 

 

4.1 Data Description 

 
Michigan Bone Health and Metabolism Study (MBHMS) is an 
on-going population-based longitudinal study of the natural 
history of reproductive endocrinology. It relates to the initiation 
and development of musculoskeletal and metabolic diseases 
and functional limitations in Caucasian women during young 
and mid-adulthood. It is conducted among women living in and 
around Tecumseh, Michigan and includes 664 age-eligible (24-
44 years in baseline 1992/3) women whose annual assessments 
cover a 15-year period from 1992/3 through 2006/7, excluding 
the 18- and 14-month funding lapses in 1997 and 2003, 
respectively.  Radiographs are acquired every three years to 
assess the status of knee OA initiation and progression.  

However, women did not have radiographs taken during 
pregnancy or breastfeeding. 
 
Evaluation of the knee OA data, as part of longitudinal data 
bank of MBHMS, showed that the initiation and progression 
over time and the transition patterns are complex. Severity 
progression can be stable or go both directions, i.e., from non-
disease to doubtful or any disease, from mild disease to severe 
disease, from mild disease to doubtful or even normal states. 
Figure 2 shows the paths in the K-L severity scores 
progressing across the six time points when radiographs were 
available in MBHMS.  
 

 
 
Figure 2 MBHMS: multi-state transition of OA in both knees 
with time on the horizontal axis and severity scores on the 
vertical axis ranging from zero (no OA) in the tope left hand 
corner to severe OA in the bottom left hand corner. 
 
As shown in Figure 2, MBHMS knee radiographs were taken in 
1992/3, 1995/6, 1998/9, 1999/2000, 2002/3 and 2006/2008. All 
knee radiographs were taken weight bearing with anterio-
posterior positioning.  For this particular evaluation, 625 
women contributed knee OA scores at one or more time points 
permitting longitudinal data analyses longitudinal data analyses. 
Radiographs of the right and left knee were evaluated using the 
Kellgren and Lawrence (K-L) scoring system described in the 
Atlas of Standard Radiographs of Arthritis (0=normal/no 

disease, 1=doubtful OA, 2=minimal OA, 3=moderate OA, and 

4=severe OA) pictorially and editorially. This severity score is 
based on the degree of osteophyte formation, joint space 
narrowing, sclerosis, and joint deformity. Knee OA was defined 
as the presence of at least 1 knee with a K-L grade of 2 or 
higher. There was an extensive quality assurance program in 
MBHMS to evaluate interrater reproducibility (reliability) as 
well as standardization in reading films across time to address 
shifts across time. For the detailed descriptions of osteoarthritis 
measures, please see references [8-9, 27]. 
 
In the analysis, the categories of “moderate OA” and “severe 

OA” are combined into one category “moderate or severe OA” 
considering the cell size of “severe OA”, i.e., OA state space is 
{0 = normal or non-diseased, 1 = doubtful, 2=minimal OA, 
3=moderate / severe OA}. 
 
 

4.2 Results 

 
The mean difference (95% CI) in scores from 28~60 years old 
between the right knee and left knee is presented in Figure 3. 
The data were adjusted for covariates including baseline body 
mass index (BMI), physical activity, fat mass, skeletal muscle 
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mass and smoking behavior. The significant differences 
observed between ages 46~53 indicates that OA in the right 
knee progressively worsened in comparison to OA of the left 
knee OA. Two knees were used to define the presence OA in 
[27]. For illustration purpose, this report used right knee as a 
representative of OA severity. 
 

 
Figure 3 population difference score 

 

In the MBHMS OAK data, there are about 20% of participants 
(n=121) contributing 3 or less data points from radiographs. 
Therefore, we used a 1-order (i.e., q = 1) mixed effect Markov 
model to estimate the probability of observing the transition 
from an OA state (defined by K-L scores) at a time to the same 
or different state. Figure 4a-4d showed the selected population 
transition probability surfaces as a function of age and BMI 
adjusted for physical activity. The banded gradient surface is 
the collection transition probabilities given age and BMI. The 
contour lines connect points on the age and BMI plane that 
have the same value for transition probability. 

 

Essentially, this evidence-based study showed that the 
transition probability from a specific state to a better state (e.g., 
1�0, 2�1, 2�0, 3�0, 3�1, 3�2) is monotonically 
decreasing as women age and/or increase in body size. The 
probability remaining at the same state (e.g., 0�0,1�1, 2�2, 
3�3) or to a worse state (e.g, 0�1, 0�2,0�3, 1�2, 1�3, 
2�3) is monotonically increased as women aged and/or 
increased in body size. 

 

 
Figure 4a: Transition probability from 0�0 

 

 
Figure 4b: Transition probability from 0�1 

 
 

 

 
 

Figure 4c: Transition probability from 1�0 

 

 
Figure 4d: Transition probability from 1�2 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 10 - NUMBER 4 - YEAR 2012 91ISSN: 1690-4524



5. CONCLUSIONS AND FUTURE WORK 

Motivated by the study of longitudinal development and 
progression of knee osteoarthritis (OA), this study developed 
non-parametric mixed-effects models for ordinal outcomes. A 
stochastic mixed-effect model was used to evaluate the 
similarity of longitudinal progressive trajectories in both sides 
of knee OA; A non-parametric mixed-effect model based on 
cubic B-splne was developed to model the unknown nonlinear 
trend of logits as a function of time; 1-order Markov Transition 
model was developed to characterize the transitions among 
multi-states of knee OA. The developed method allows more 
flexible functional dependence of the ordinal outcome on the 
covariates. The future works include: (1) comparison of knots 
selection stratigies (number and positions, or methods) for 
cubic B-spline; (2) extension to generalized additive mixed-
effects models for more than one covariates with unknow 
nonlinear functional forms. 
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