
Giving Devices the Ability to Exercise Reason

Thomas KEELEY
Compsim LLC

Brookfield, WI 53045, US

ABSTRACT

One of the capabilities that separates humans from computers
has been the ability to exercise “reason / judgment”. Computers
and computerized devices have provided excellent platforms for
following rules. Computer programs provide the scripts for
processing the rules. The exercise of reason, however, is more
of an image processing function than a function composed of a
series of rules. The exercise of reason is more right brain than
left brain. It involves the interpretation of information and
balancing inter-related alternatives. This paper will discuss a
new way to define and process information that will give
devices the ability to exercise human-like reasoning and
judgment. The paper will discuss the characteristics of a
“dynamic graphical language” in the context of addressing
judgment, since judgment is often required to adjust rules when
operating in a dynamic environment. The paper will touch on
architecture issues and how judgment is integrated with rule
processing.

Keywords: Artificial Intelligence, Expert Systems, Reasoning,
KEEL Technology, Dynamic Graphical Language

1. INTRODUCTION

The intent of this paper is to introduce a technical approach that
can be used to extend the behavior of devices beyond
conventional rule based systems to systems that can exercise
reason and judgment. We will avoid any psychological
discussions of how human beings exercise reason: explicit
drivers, fight / flight drivers, specific stress related impacts to
decision-making, etc. But we will lay out the capabilities of a
technology called Knowledge Enhanced Electronic Logic1 (or
KEEL®) that can model and execute such behavior.

In this light, we are discussing a new form of mathematics and
what one can do with it, not the specific solution to a particular
problem.

2. REASON & JUDGMENT

Dr. Horst Rittel (UC Berkley) coined the concept of “wicked
problems” in the 1970’s with his definition of Issues Based
Information System (IBIS)[1]. He contrasted wicked problems
with tame problems. With tame problems, you can use
formulas to calculate a “correct” answer. With wicked
problems it would be impossible or inefficient to define a
formula. With wicked problems you are looking for a “best”

1 KEEL Technology is a proprietary technology covered by a
series of granted and pending patents that is licensable from
Compsim LLC.

answer. One uses “judgment” and “reason” to address wicked
problems.

There are two types of problems where reason and judgment
can be utilized. 1. The selection of an option or options, which
is accomplished by balancing alternatives. In some cases the
alternatives are inter-related, so they cannot be addressed in
isolation. For example, the selection of treatment options by a
medical practitioner. 2. The allocation of resources, which can
also be described as the balancing levels of control. This can
be a continuous process. For example, driving a car requires
continuous adjustment to steering, brakes, and accelerator in
response to continuously changing road conditions.

A key factor in any discussion of reason and judgment is the
concept of “adaptation”. Adaptive control systems are common
in batch processing and continuous processing systems, such as
food processing, mixing, rolling mills, distilling. These systems
commonly use PID (proportional, integral, derivative) control
loops for very specific applications. In these industrial
automation systems, the designers have very specific
measurable objectives and can justify the significant effort to
tune the PID control loops to perform exactly the way they
want.

Human reasoning and judgment is often required to address
much more complex problems. Humans are continuously
tasked with addressing problems with many inter-related inputs
and outputs. They balance their decisions and actions by
continuously evaluating risks and rewards.

3. HUMAN EXPERTS

Human “experts” exert reason and judgment as they dispense
their experience. Through training and experience they “learn”
how to interpret information and what to do when they observe
information in their domain. During the learning process they
go through a trial and error process. This allows them to
appropriately interpret the value of different information items.
This valuing of information has been likened to an image
processing function. Discussions of left-brain / right-brain
reasoning suggest that the right brain handles impressions or
feelings that might be termed value judgments.[2] The concept
that the human brain separates rules from reason is the basis for
the model discussed in this paper.

If a human expert “just” followed a set of rules, then computers
would have already exhibited the capabilities of humans for
many years. It is this reasoning and interpretation of
information that has been the differentiator.

When we want to package human-like expertise in devices or
software applications, we do not want these devices to have to
develop the expertise on their own. There may be some cases

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 69ISSN: 1690-4524

where it may be acceptable for devices to learn by trial and
error, but when we potentially mass produce these devices we
would suggest humans must remain in control. We want all of
these devices to perform in the same way. We also want them
to be completely explainable and auditable, in case they need to
be fixed or adjusted.

4. CHARACTERISTICS OF
JUDGMENT/REASONING

Judgment requires the fusion of multiple data sources. One
could say that judgment and reason are all information fusion
problems.

Any data source can impact different parts of a problem domain
with different levels of importance. For example: a human’s
body temperature could have different impacts to different
bodily functions.

Data sources must be measurable. In some cases it may be
more important to understand how information is perceived
(trust, fear, frustration…). In these cases, other inputs might be
used to qualify specific data sources if one desires a
“reasonable” result. In this manner, judgment itself evolves as
information becomes more or less validated.

Some data sources are only used to validate or invalidate other
data sources, or to eventually establish a value of another data
source.

In many cases, judgment has a time or distance value. Tactical
decisions and actions are often real-time activities, or just need
to happen “now”. Strategic decisions often have a broader view
and take into consideration future desires or expectations. Both
tactical and strategic decisions can benefit from the application
of judgment.

5. DEMAND FOR PACKAGED
EXPERTISE

There are several reasons that one might want to package
human-like expertise into devices or software applications:

Avoid human error
Humans make errors because of lack of attention, failure to
perceive or recognize a situation, limited short term memory or
the inability to handle complex situations, and poor judgment.
In many cases, when humans make errors they cannot explain
why they made the errors. This is especially true when the
errors are errors in judgment. To support this demand, it is
mandatory that judgmental decisions and actions are explicitly
auditable when they are packaged in an “expert system”.

Autonomous devices
There is a demand for more devices that can take on more
complex responsibilities. In some cases this is to keep humans
out of harm’s way while still performing complex tasks
(military, disaster recovery). In other cases the objective is to
replicate human expertise (security, health care of the aged). In
still other cases it may be for size reasons (in-vivo medical
equipment, robotic equipment required to operate in small
spaces, light weight UAVs). These devices cannot perform the

duties that are expected of them without the ability to exercise
human-like judgment and reasoning. [3]

Human support
The market for business intelligence services is growing
rapidly. Businesses and organizations that can make better
decisions faster will gain market share and be more competitive.
Augmenting existing systems with more intelligence (reasoning
and judgment) will increase their flexibility and value. [4]

6. INTRODUCTION TO KEEL®
TECHNOLOGY[5]

We call KEEL (Knowledge Enhanced Electronic Logic) a
technology, because it is a new way to process information. It
is supported with a set of tools, including a “dynamic graphical
language” that is used to define the policies that are executed in
KEEL cognitive engines. In this context a technology is a
methodology to solve a problem, and a tool is something used to
facilitate the implementation of the technology. The KEEL
“Engine” is the result of deploying the technology to provide a
specific service.

Pros and Cons
In order to introduce the technology, one needs to think in terms
of pros and cons. This is a common process used when
evaluating decisions and actions. The concept was utilized by
Dr. Rittel in his IBIS definition [1]. He used the terms “Issues”,
“Positions” and “Arguments. One responds to “Issues” with
some number of “Positions” (or options). One argues the
validity of “Positions” with “Supporting” and “Objecting”
Arguments (pros and cons). We retain the terminology of
Positions, Supporting Arguments, and Objecting Arguments in
our definition of KEEL Technology.

The fundamental KEEL algorithm for accumulating the pros
and cons of any position uses normalized values (between 0 and
100) for each supporting and objecting argument. Each position
has a “potential” value that is an indication of its importance
with a maximum value of 100. Supporting arguments are
accumulated first. The maximum support that can be
accumulated is 100 (absolute support). Objecting arguments
detract from accumulated support. The maximum rejection is
100 (absolute rejection). Supporting arguments cannot
accumulate more then the position “potential” value. Any
completely blocking objecting argument can completely block a
position. This accumulation methodology has the following
characteristics. A position with no support is the same as a
position with any amount of support, but is completely blocked,
because a single objecting argument indicates impossibility
(absolute objecting argument). The resultant accumulation will
be somewhere between 0 and the position’s “potential” value.
The potential (importance) value is significant when integrating
multiple information items in a broader problem domain.

Complexity
Dr. Rittel focused on tree structured problems, where one starts
out with a top level “Issue”, that is addressed with “Positions”,
that are supported or rejected with “Arguments”, that can spawn
new “Issues”, that can be addressed with “Positions”… This
works where humans have the opportunity to work on one
problem at a time. When we began applying this kind of
reasoning into autonomous devices we realized that these

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 570 ISSN: 1690-4524

devices and applications may not have the luxury of working on
well-structured (decision tree structured) problems. We
observed that these devices need to solve problems that have
webs of inter-related data items. An autonomous device cannot
address problems in isolation as it balances (sometimes
conflicting) goals.

Graphical Context
Given that reasoning and judgment are more image processing
functions than mathematical rules, we decided that, in many
cases, numeric values are secondary to graphical values.
Numbers can still exist, behind the scene, but humans assigning
judgmental values to data items can be more effective using
graphical techniques. When they compare multiple values they
can look at graphical items and see (visually) how they compare
without translating to and from specific numeric values. It is
the right-brain interpreting the relationships. The concept of
“significance” can be observed by the “size” of a bar in a bar
chart. It is easy to see that one bar is larger than another.

Mathematics and Language
“Mathematics” has been defined as a way to describe
measurement.

One might suggest that a characteristic of most mathematical
representations is that mathematics has been effectively
“written” on a plane surface with a “number system” and a set
of “symbols”. Mathematicians have developed techniques to
describe non-linear, dynamic functional relationships by writing
formulas using “paper and pencil”.

Representing “mathematics” on a computer screen has primarily
been accomplished to present formulas on a new media for
display purposes.

Another characteristic of mathematics is that it needs context to
have value. 1+2=3 has little value, when one doesn’t know
what 1 represents, what 2 represents, and what 3 represents.

Judgment has more to do with “enough” or “too much” or “not
enough”. Fuzzy logic was developed to address “linguistic
uncertainty” which is part of the problem, especially when
dealing with the description of problems in human terms. But
“devices” do not normally communicate in human language
terms.

If two “devices” need to communicate, and both understand the
context of the problem and share a particular protocol, then they
can effectively communicate just by exchanging structured data.
There is no need to translate between human terms to numbers
and back to human terms in this case, by either device.

With KEEL, we use graphics to display “measurement”. In this
case, we use graphics to show the measurement of the
importance of information and the measurement of the impact
of supporting and objecting arguments. We use wires between
connection points define functionality, rather than symbols.
The dynamic capabilities of the computer screen are used in
place of “pencil and paper” to describe dynamic behavior. The
ability to interact with the functional relationships is key to the
development of KEEL models.

Targeting Devices
The KEEL “dynamic graphical language” was developed to
address dynamic, non-linear, inter-related, multi-dimensional

problem sets, without resorting to complex mathematics. It was
derived from a model of how humans integrate supporting and
objecting factors when making judgmental decisions. The
KEEL dynamic graphical language evolved as web-structured
problems were addressed, while taking advantage of
dynamically available graphics on a computer screen.

Graphical Computer Languages
Graphical computer languages have been around for a long
time. A common trait of these languages has been to suggest
data “flow”. Boxes indicate collections of functionality and
wires show how data moves from box to box. These languages
map to the structure of computers with sequential processing of
instructions. As these graphical languages map closer to the
instruction set of the computer it is common to see graphical
elements that equate to IF | THEN | ELSE logic of the hardware.

The KEEL Dynamic Graphical Language
The KEEL “dynamic graphical language”, unlike data flow
graphical languages, has no concept of data flow. It more
closely equates to a “formula”. It provides a method of
describing functional relationships graphically. While KEEL
Engines cannot ADD two numbers together (i.e. 1+2=3, they
can ACCUMULATE the impact of an unlimited number of
supporting and blocking inputs. The KEEL “dynamic graphical
language” is used to create KEEL Engines that can be deployed
into conventional programming structures. KEEL Engines are
functions or class methods that are integrated into conventional
programming languages. They are processed during what we
term a “cognitive cycle”.

In the broader overall system context, conventional
programming languages perform the general processing of the
system; the left-brain, scripted part of the system. When
appropriate, the judgmental portions (implemented as the KEEL
Engines) are called. The judgmental processing could be
triggered by an event; periodically scheduled, polled, or run
continuously as a separate task. However it is triggered, a
snapshot of real-world information is supplied to the KEEL
Engine at the beginning of the cognitive cycle. Within the
cognitive cycle it is iteratively processed until complete. The
results are then available to the calling application.

A KEEL Engine has a very small memory footprint. It is
usually smaller than 3K words in size, no matter how large the
problem set. The problem structure is defined as structured data
(tables). The size of the structured data area is determined by
the complexity of the problem domain (the number of data
items being processed and the number of functional
relationships defined).

Defining Policies
The process of defining policies for the execution of judgment
and reasoning is somewhat different than writing formulas using
conventional paper and pencil techniques. One might say that
writing formulas is accomplished by defining an answer and
explaining how to arrive at that answer. (X = A + B + C) Policy
definition is accomplished by (1) identifying the potential
decisions and actions, (2) defining the information items that
contribute to the decisions and actions, and (3) describing how
the information items are inter-related. This is done in the
KEEL language by using graphical icons to represent the
outputs and the inputs and then using wires between connection
points to describe functionality. Using the dynamic
characteristic of the language, one then observes how the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 71ISSN: 1690-4524

system will respond as inputs are stimulated. Since one is often
dealing with complex, non-linear relationships the developer is
“thinking in curves”. The developer is considering how
different pieces of information are interacting. This is a subtle
difference in the mindset of the domain expert that is
developing the policy from a more conventional mathematical
approach. Since the modeling can be done completely without
resorting to complex (conventional) mathematics, the models
can often be created directly by the domain expert; not the
mathematician or the software engineer.

Figure 1.

The KEEL Language Structure
Figure 1 shows the KEEL dynamic graphical language “source
code”. The four vertical bars in the top half of the window are
termed “Positions” and represent outputs. The importance of
each Position is shown graphically by its size, and numerically
by holding the mouse over the icon at the top of the Position.
The vertical scroll bars at the bottom half of the window are
termed “Supporting Arguments” and “Objecting Arguments”
and represent inputs that drive or block the positions. A green
triangle above a vertical scroll bar pointing up indicates a
“Supporting Argument”. A red triangle above a vertical scroll
bar pointing down indicates an “Objecting Argument”. The
dark area (blue) in the vertical bars (Positions) at the top shows
the results of the accumulation of the driving and blocking
signals associated with each position. This is called the
“Modified Value” in the language. The numeric value for the
Modified Value is shown in the small window to the lower right
of each position.

Wires define functional relationships between information items
(inputs and outputs). More specifically, connection points
acting as the source of the wire and connection points acting as
the sink (end) of the wire together define specific functional
relationships. The most common “source connection point” is
represented by the (blue) arrow in a circle below each position

bar. This is the Modified Value connection point. Wiring this
point to a sink connection point defines a specific functional
relationship. Some of the more common functional
relationships driven from the Modified Value connection point
(expressed in human terms) are “controls the importance of”,
“contributes to”, “controls the threshold position of”. Expressed
in more stand-alone terms, the accumulation of the arguments of
one position can control the importance of another (or other)
position(s). The accumulation of the arguments of one position
can contribute to the inputs to another (or other) position(s).
The accumulation of the arguments of one position can control
the position of a threshold on another (or other) position(s).
Thresholds (as indicated graphically by the small triangle in a
circle to the right of the Position bars) are used to detect
Modified Values above or below the Threshold point. Wires
from the Threshold can be used to turn on / off Arguments
(inputs) to other Positions.

Programming is accomplished by dropping Positions on the
screen and assigning Supporting and Objecting inputs that will
drive them. As soon as they are dropped on the screen, they are
active. By manipulating the inputs represented by the scroll
bars, the entire model is updated. This is why we call this a
“dynamic” graphical language. Using common drag and drop
techniques, the information items are wired together creating
the desired functional relationships. As soon as they are wired
on the screen, the entire model is updated. Again stimulating
any of the inputs causes all of the functional relationships to be
exercised.

Other icons (connection points), not described in this document,
allow sub-ranges to be defined and manipulated within the scale
of the Position importance. This allows complex curves to be
created from multiple curve segments. These features allow the
definition of models with time and distance characteristics. For
example, there may be optimal instants to make decisions. It is
easy to integrate time utility functions (TUFs) into the decision
making model. Figure 2 below shows an example of one TUF
with characteristics that can be modified in real-time. One
example of this is a UAV making a time and distance decision
about the optimal instant to take a picture while balancing risk
and reward.

Figure 2.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 572 ISSN: 1690-4524

By allowing external factors to control the shape of the curves
very complex relationships can be defined. From a judgmental
aspect, this means that we can create policies that can adapt to
change.

2-D and 3-D graphs allow the user to incrementally adjust
inputs and observe the continuous outputs. Figure 3 shows the
impact of stepping two Arguments through their range and
observing the impact on two of the Positions in the abstract
problem space defined in Figure 1.

Figure 3.

Satisfying Complexity
Complex systems have a large number of inputs and outputs.
Different “views” of a design can be exposed to simplify what
is displayed on the screen at any one time. Features like “Child
View” allows the selection of a particular Position in order to
display all parts of the model that are impacted by that Position.
“Parent View” allows the selection of a Position in order to
display all of the other Positions that impact it. Custom views
are also available.

To accelerate developments of complex models, the KEEL
Toolkit provides a library of static and dynamic structures that
can be merged into existing designs. The KEEL structure that
defines the curve shown in Figure 2 is an example. All
structures are defined with the simple components described
above. All functional relationships are visible.

Another common practice, when addressing any complex
problem, is to decompose it into smaller, more manageable sub-
sets. This is supported with a Function Block Diagram (FBD)
configuration tool.

The FBD application allows each KEEL Engine to be exposed
as a box representing a function block with inputs on the left
side and outputs on the right. Good I/O naming conventions
allow all connections between KEEL Engines to be created

automatically. The primary value of this tool is to eliminate
coding errors by automatically generating the conventional code
(C, C++, Java…) to move data values between engines and
control the processing order for the scripted (left-brain) portion
of the design.

7. A REASONING ARCHITECTURE

We have already discussed separating the rule sets (left-brain)
from the interpretive, judgmental (right-brain) portions.
Additionally, there are reasons to segment the judgmental
functions into different levels of service. [6]

The scripted left-brain functionality includes the operating
system and conventional run time rule sets that are triggered to
run in different situations. The right-brain cognitive segments
are triggered to interpret new information (situations where
judgment is required).

When one considers an autonomous device, there will probably
be (at least) two levels where judgment might be required. The
first level will be used in the pursuit of specific goals that are
actively being pursued. This is likely to be continuous, or at
least tightly coupled with an activity. In this case, judgment is
causing the right-brain scripted rules to adapt. An example of
this is an autonomous aircraft attempting to avoid another
aircraft in a shared airspace. The lower level(s) will be
interpreting outside influences. This is implemented as a stack
of judgmental observations. In a human, this might be a
subconscious observation of surrounding activity that, at any
instant, may not have any relationship with an action that is
being performed. An example of this might be recognizing a
dog near the side of a highway. In these cases, this stack or
queue of observations is periodically updated because of a
change of status (the dog jumps into the road). Judgment again
is used to determine the significance of the action and what
should be done about it. Judgment is used to select a course of
action from a set of options. In some cases it can disrupt the
original run-time goal and replace it with another. An example
of this would be a UAV encountering a new target of
opportunity. In this case a single KEEL engine might be used to
process multiple secondary observations.

Interpretation of situations is likely to include a hierarchy of
judgmental (information fusion) engines operating
asynchronously. At the lowest level, information from multiple
sensors will be integrated to form information items. At this
level “judgmental functions” can be used to integrate features
supporting and rejecting different observations. As they are
transferred up the hierarchy they can carry a confidence factor.
When those observations are integrated with other observations
the confidence factors can be used to control the importance of
the integrated information items. The result is a completely
traceable / auditable, judgmental model.

8. REQUIREMENTS

A number of requirements drove the development of KEEL
Technology. This section identifies the requirements and
describes the response.

• A methodology must be provided that allows a domain

expert to define the policy with sufficient granularity so

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 73ISSN: 1690-4524

that it can be exactly translated into a form that can be
explicitly executed by a device or software application.

The functionality described with the KEEL dynamic
graphical language is explicit. The resulting functional
relationships are executed as if they were conventional
mathematical formulas. The functionality can be traced by
observing values and relationships. Specific values can be
viewed and graphed. A built in dashboard allows the
domain expert to manipulate inputs as floating point
numbers, if needed.

• The methodology for describing the policy must support
the efficient development of policies when addressing
complex, non-linear scenarios.

The dynamic graphical language allows models to be
created and tested by the domain expert before handing the
design to a software engineer for integration in a complete
system. By allowing the model to be tested during
development, the time to market is reduced. By
automatically generating the code (C, C#, C++, VB, Java,
Flash, PLC Structured Text…) coding errors are avoided.

• The execution engine for the device or software application
that will execute the policies must be suitable for
embedded real-time operation.

KEEL Engines are small, high performance functions.
Two processing approaches are provided: One that is
optimized for size and another that is optimized for speed.
Capabilities of the language that are not utilized are
optimized out of the conventional source code. KEEL
Engines can also be implemented as analog circuits when
even higher performance is required

.
• The methodology must be completely understandable so it

can be efficiently tested before deployment.

The ability to visually trace the impact of different
variables allows one to see how complex judgmental
reasoning situations are resolved. 2-D and 3-D graphs
support the analysis. The development environment can
also be used to animate external applications during the
development environment to facilitate the analysis.

• Device or software application performance needs to be

audited after deployment.

Capabilities are built into the KEEL Toolkit that allow the
language to be animated by models that have been
deployed into devices or simulations. Black box
information recording techniques can be used to audit
judgmental performance in an off-line mode when exact
details need to be reviewed. One can watch a rendering of
the actual devices interpreting information.

• The efficiency of the entire policy life cycle must be

considered (design, test, deploy, audit, extend).

The dynamic graphical language supports the rapid
development, test and deployment. The ability to animate
the language from external sources supports the auditing
and reverse engineering of specific situations. Extending
existing designs can be accomplished by just dropping new

positions and arguments into the design and wiring them
into the system. System engineering features are also
integrated into the language, which allow extended designs
to be integrated into broader systems with little impact.

• The methodology must be architecture independent so it

can be deployed on a variety of platforms and in a variety
of situations.

KEEL Engines are platform and architecture independent.
The same cognitive model can be deployed in a variety of
situations without re-engineering. The system engineer is
responsible for the system architecture.

9. SUMMARY

Adding the ability for devices to exercise human-like reasoning
will be mandatory to achieve the performance goals expected of
the devices in the near future. Judgment and reasoning are
information interpretation / information fusion problems that
can be displayed and manipulated with graphical techniques
characterized by the KEEL dynamic graphical language. The
ability to visualize the importance of information and functional
relationships is a significant advantage, as is the ability to
interact with the model as it is being developed.

Since we are asking devices to take on more critical duties, it is
absolutely mandatory that they be auditable. The KEEL
graphical language allows policy-based decisions and actions to
be visually traced through the models so one can see exactly
what drove the specific decision or action.

KEEL technology is an “expert system” technology driven by
the understanding of humans and completely under their
control.

10. REFERENCES

[1] Rittel, Horst and Melvin Webber. “Dilemmas in general
Theory of Planning” Report, University of
California, Berkeley 1973

[2] McCrone, John, “’Right Brain’ or ‘Left Brain’ Myth Or
Reality?” The New Scientist;
 http://www.rense.com/general2/rb.htm

[3] Clark, Admiral Vern; “Sea Power 21” Proceedings, October
2002; http://www.navy.mil/navydata/cno/proceedings.html

[4] Andrus, D. Calvin “The Wiki and the Blog – Toward a
Complex Adaptive Intelligence Community”,
https://www.cia.gov/csi/studies/vol49no3/html_files/Wik_and_
%20Blog_7.htm

[5] Compsim paper; “Knowledge Enhanced Electronic Logic
for Embedded Intelligence”
 http://www.compsim.com/papers/About_KEEL.pdf

[6] Albus, James S. “A Reference Model Architecture for
Intelligent Unmanned Ground Vehicles”, Proceedings of the
SPIE 16th Annual International Symposium on
Aerospace/Defense Sensing, Simulation and Controls,
Orlando, FL, April 1-5, 2002

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 574 ISSN: 1690-4524

	I413DM

