

A Grid-based Cyber infrastructure for High Performance
Chemical Dynamics Simulations

Khadka Prashant and Yu Zhuang

Department of Computer Science, Texas Tech University
Lubbock, Texas 79409-3104, USA

and

Upakarasamy Lourderaj and William L. Hase

Department of Chemistry and Biochemistry, Texas Tech University
Lubbock, Texas 79409-1061, USA

ABSTRACT

Chemical dynamics simulation is an effective means to study
atomic level motions of molecules, collections of molecules,
liquids, surfaces, interfaces of materials, and chemical reactions.
To make chemical dynamics simulations globally accessible to
a broad range of users, recently a cyber infrastructure was
developed that provides an online portal to VENUS, a popular
chemical dynamics simulation program package, to allow
people to submit simulation jobs that will be executed on the
web server machine. In this paper, we report new developments
of the cyber infrastructure for the improvement of its quality of
service by dispatching the submitted simulations jobs from the
web server machine onto a cluster of workstations for
execution, and by adding an animation tool, which is optimized
for animating the simulation results. The separation of the
server machine from the simulation-running machine improves
the service quality by increasing the capacity to serve more
requests simultaneously with even reduced web response time,
and allows the execution of large scale, time-consuming
simulation jobs on the powerful workstation cluster. With the
addition of an animation tool, the cyber infrastructure
automatically converts, upon the selection of the user, some
simulation results into an animation file that can be viewed on
usual web browsers without requiring installation of any special
software on the user computer. Since animation is essential for
understanding the results of chemical dynamics simulations, this
animation capacity provides a better way for understanding
simulation details of the chemical dynamics. By combining
computing resources at locations under different administrative
controls, this cyber infrastructure constitutes a grid environment
providing physically and administratively distributed
functionalities through a single easy-to-use online portal

Keywords: cyber infrastructure, chemical dynamics
simulations, grid computing, seamless integration, online
animation

1. INTRODUCTION

Chemical dynamics simulation is a powerful computing tool to
study atomic level motions of molecules, collection of
molecules, liquids, surfaces, interfaces of materials, and
chemical reactions. These simulations have important
applications in many research fields, including nanoscience,

material and environmental sciences, molecular biology, and
biochemistry. The Hase research group has developed the VENUS
chemical dynamics computer program [1] for performing such
simulations, which they use for their research as well as distribute to
others. In an effort to make VENUS globally accessible to a broad
range of users, a cyber infrastructure [2] was developed for accessing
VENUS, which, through a website, allows a user to run a chemical
dynamics simulation by selecting or building a simulation model and
submitting the simulation execution job, and the modified or selected
model gets executed on server machine, and users can download the
output file. This web portal has been proven to be a valuable
resource for research and education, as evidenced by visits of the
website from researchers, educators, and students within the US and
abroad.

In the original implementation of the VENUS-accessing cyber
infrastructure, the simulation jobs were executed in web server
machine. Computational time for a simulation varies from a few
seconds to hours, sometimes even to days. For medium and large
simulation jobs, the server machine is obviously not powerful
enough — a more powerful cluster is needed to cut days-long jobs
into hours-long and hours-long to minutes-long by running these
time-consuming simulations on the cluster in parallel. Another
drawback of doing everything on the server machine is that, as the
number of user requests increases, response time gets poorer even if
the requested simulation jobs take only several seconds for each.
Thus, for a better response time, web application is interfaced with a
cluster and the simulation work is sent to the cluster for execution.
This enables VENUS cyber infrastructure to serve more users
simultaneously with better response time.

The original version of the VENUS-accessing cyber infrastructure
also lacks tools for animating a chemical dynamics simulation,
which is very important for understanding the complex atomic
motions of the simulation. In a chemical dynamics simulation, the
positions (i.e. the Cartesian coordinates) of all the atoms of the
molecular system are calculated for a sequence of time steps by
some numerical integration. Such a sequence of atom positions as a
function of time is a classical trajectory that gives a detailed
“picture” of the complex, often correlated motions of the atoms.
And animation of the trajectories is an effective way for helping
understand these atomic-level motions. One of the motivations
behind the work presented in this paper is to provide an easy-to-use
online tool for animating chemical dynamics simulations. Steps
involved in a chemical dynamics simulation and animation can be
summarized as below:

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 510 ISSN: 1690-4524

• A simulation with a selected simulation model is
run through simulation software to get trajectories
(simulation results).

• Scene description files are obtained from a selected
trajectory of the simulation results.

• Scene description files are run through ray tracer
program to get individual frames (images).

• Finally all images are combined to get an animated
file.

Currently there are numerous tools for performing above steps
and whole processes usually involve integration of two or more
software packages, and users need to install all required
software and hence need to have working knowledge of these
software packages. To make our online animation tool of
chemical dynamics simulations widely accessible to users,
including animation software experts and non-experts, the
animation tool is incorporated into the cyber infrastructure in
such a way that multiple software packages for animation are
integrated, and provide user a single access portal requiring only
mouse-clicking for data selection or upload for animation, and
the ensuing animation-creation processes are automated by the
our system, thus hiding the complexity of creating an animation
for non-expert users and freeing users from the worries to install
in their computers and also to obtain working knowledge of
animation software.

In addition to ease-of-use, we also optimized the animation tool
to achieve high processing speed by choosing only a calculated
subset of simulation data from the entire set of data of a selected
trajectory, where the subset of data is calculated based on our
empirical rules to minimize the amount of data for animation
while also attain a good visual quality of the animation. By
using only the minimum amount data for adequately good
visual quality, we not only achieve high processing speed for
the creation of animation file, but also reduce data transmission
time over the internet, an essential factor in the quality of
service for any online animation tools since data transmission
over any network — internet, grid network, or inter-processor
connection network — is far slower per unit amount of data
than data processing speed inside a computer.

To provide the flexibility to serve different users with different
needs, the cyber infrastructure is designed to have three access
modes for users: 1. users perform dynamics simulation and
animation on our computing resources; 2. users run the
dynamics simulations on our computing resources and
download simulation results onto their machine which they can
perform their own post-simulation analyses like animation if the
users have such software installed on their machines; 3. users
run dynamics simulations on their own machines and use our
online animation tool to run the animation.

By combining hardware and software computing resources at
two locations under different administrative controls, this cyber
infrastructure constitutes a grid environment providing
physically and administratively distributed functionalities
through a single, easy-to-use online portal for chemical
dynamics simulations, and post-simulation analyses including
animation of calculated trajectories. While there exist many
chemical dynamics simulation software packages nowadays, to
the best of our knowledge, our cyber infrastructure is the only
online portal to grid environment for chemical dynamics

simulations and its animation-included post-simulation analyses.
And this infrastructure is designed to achieve both ease-of-use and
high performance in terms of utilizing parallel computing power for
simulations and minimizing data amount for animation and file
transferring.

The remaining of the paper is organized as follows. Section 2 gives
the overviews of the cyber infrastructure, Section 3 contains the
description of the interface to the cluster for simulation execution
for the web server machine, Section 4 is the description of the
integration and optimization of animation software, and the
conclusion is given in Section 5.

2. THE STRUCTURAL OVERVIEWS OF THE CYBER
INFRASTRUCTURE

This online tool has a three tiered architecture. In the Figure 1, which
shows the physical architecture, Client is a web browser running in
any platform, and Web Server is responsible for handling requests
that come from Client. Application that includes Servlet, JSP pages,
and Java class files resides in Web Server. Cluster is for running
simulation model.

Figure 1: Physical Architecture

This online tool has been developed using JavaServer Pages (JSP)
and Java Servlet technology. Figure 2 below shows the Software
Structure. Only authenticated users will be able to access the system.
Login module provides functionality for user registration and
authentication. Users can choose between two programs
VENUS96C, VENUS05. For each of these program types, there are
three ways to provide input. Users can use already available
simulation model as it is; they can modify the already available
model; and they can upload their simulation model or trajectory file.
Model/Program Type Selection Module provides functionality for
choosing the program and input method type. Model Modify Module
provides functionality for modifying the simulation model. Existing
Model Module provides functionality for selecting the simulation
model. File Upload Module allows users to upload the simulation
model and trajectory file. Execute Module handles the execution of
simulation model in cluster. Animation Setup Module allows users
to change different parameters of animation like coloring method,
the drawing method used for coloring atoms, etc. Animation Maker
Module provides functionality for generating an animated file.
Animation Viewer Module allows users to view and download the
animated file.

Client

Cluster

Web Server

HTTP

SCP

INTERNET

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 11ISSN: 1690-4524

Figure 2: Software Structure

3. CLUSTER INTERFACE

When users connect to a web server, a session is created. Object
“ClusterSession,” which implements “HttpSessionListener”
interface, gets notified when a session is created. Object
“ClusterSession” has two methods: “sessionCreated” and
“sessionDestroyed”.

Method “sessionCreated” is called at the startup of a session,
and method “sessionDestroyed” is called at the end of a session.
Method “sessionCreated” creates object “ClusterExecutable”,
calls its “connect” method, and saves this object as a session
object. “Connect” method of object “ClusterExecutable”
connects to the cluster and creates a connection session with the
cluster. Other methods of “clusterexeectuble” object include
“execute,” “put,” and “get”. The “execute” executes the
command in cluster; “put” copies files from web server to
cluster; and “get” copies files from cluster to web server.

Method “sessionDestroyed” calls “closesession” and
“closeconncetion” method of “clusterexecutable” object, which
closes the session and connection with the cluster. Figure 3
below shows Cluster Connection Sequence Diagram.

Existing Model Module, File upload Module, and Model
Modify produce a simulation model and transfer it to the cluster
for execution. In the execution of simulation model, two objects
are involved, viz. “SimulationScmaker” and
“SimulationScexecuter.” Object “SimulationScmaker” creates a
script file called “cluster_venus.sh” and transfers it to the
cluster. For transferring the script file, Object
“SimulationScmaker retrieves object “ClusterExecutable” from
the session and calls its “put” with the script file as parameter.
Script file “cluster_venus.sh” has a command to execute the
simulation model.

 After script is created, “SimulationScexecuter” object is
created. Object “SimulationScexecuter” is responsible for
executing the simulation model in the cluster. Object
“SimulationScexecuter” retrieves object “ClusterExecutable”

from the session and call its “execute” method with the following as
parameter:
<qsub “Path of cluster_venus.sh”/cluster_venus.sh>.

The above command submits cluster_venus.sh script to the cluster
queue with the help of qsub utility. After “cluster_venus.sh” gets
executed, it makes “end.sh” file. When “SimulationScexecuter”
object encounters “end.sh,” it then copies output file to web server
by calling “get” method. After the execution of model is finished, the
user is forwarded to “Final.jsp” JSP page, which has a link to
download the output file. Figure 4 below shows Execution Sequence
Diagram.

:ClusterSession

:ClusterExecutable

connect

sessionCreated

create

sessionDestroyed
closesession

closeconnection

Figure 3: Cluster Connection Sequence Diagram.

:SimulationScMaker

SimulationScExecuter
create

:Final

execute script

 forwards

:ClusterExecutable

execute

 end

 get

 file

 put

 create script

Figure 4: Execution Sequence Diagram.

Login Module

Model/Program Type

 Existing Model File Upload Module Model Modify

Execute Module

Animation Setup

Animation Maker

Animation Viewer

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 512 ISSN: 1690-4524

4. ANIMATION PROCESS

Figure 5 below shows the steps involve in generating animation
from simulation result.

 Figure 5: Animation Process

The “fort.8” file contains information of atoms like atom name,
atomic number, and coordinates of each trajectory calculated
during execution of simulation model. The “vmdx” is a C
program, which converts “fort.8” file into DCD and PSF files.
The PSF file, also called protein structure file, contains
molecular specific information such as atoms, bonds, angles,
dihedrals, etc. DCD is a binary file that contains coordinates of
trajectory. VMD [3] takes DCD and PSF file as input and
generates scene description files. Those scene description files
are fed through Tachyon [4] ray tracer, which converts them
into images. Finally, ImageMagick [5] converts all these images
into an animated GIF file.

This application automates all these processes of generating an
animation. Modules described below are involved in animation
processes.

4.1. Animation Setup Module

Not every simulation model is valid for animation. When
executed, the valid simulation model generates “fort.8” file.
Object “FortfileChecker” performs checking of fort.8 file. If file
is not found, the user is forwarded to “AnimationError.jsp”
page, which displays an error. If the file is found, the user is
forwarded to “AnimationSetup.jsp” page. This JSP page has an
option for setting different parameters of animation. Trajectory
for which animation is generated can be specified. Both the
coloring method used to color atoms and the drawing method
used to draw atoms can be changed. Additionally, the
orientation of atoms can be changed by specifying degree in x, y
and z axes. Delay between frames i.e. the delay between

consecutive images in an animated file can be set. This parameter is
important when the animation has a few frames. By adding delay
between frames, the user can slow down the frames transition, thus
all the details of animated file will be visible. Figure 6 below shows
Animation Setup Sequence Diagram.

optalt

:FortfileChecker :AnimationSetup

[Error]

[Sucess]

:AnimationError

forwards

checkfile

forwards

Figure 6: Animation Setup Sequence Diagram

4.2. Animation Maker Module

After animation parameters has been set on “AnimationSetup.jsp,”
the users clicks “submit” button. It calls “AnimationMaker” servlet.
This servlet is responsible for executing the animation script, which
generates the animated file. Object “AnimationMaker” creates object
“AnimationscriptMaker.” This object creates six script files, viz.
“vmdx.sh,” “vmd.tcl,” “vmd_script.sh,” “tachyon.tcl,” “convert.sh,”
and “delete.sh.”

The script file “vmdx.sh” converts “fort.8” into PSF and DCD files.
DCD file contains the coordinates of trajectory, as specified by users
in “AnimationSetup.jsp” page.

The script file “vmd.tcl” first loads DCD and PSF files; then, it sets
parameters as users choose in the “AnimationSetup.jsp” page. It,
then, calls procedure “makemovie.” The procedure “makemovie”
calls “buildmovie” procedure of VMD, which is responsible for
generating scene file descriptions.

The script file “vmd_script.sh” runs VMD with input file as
“vmd.tcl”. After execution of this script, VMD generates scene
description files. The number of scene description files depends on
number of frames in DCD file, which in turns depends on NS and
NIP parameters of the simulation model.

The script file “tachyon.tcl” loops through each frame and calls
Tachyon executable with input as scene description file for that
frame. The Tachyon generates .rgb files. To speed up the process of
ray tracing, mediumshade is used, and antialiasing is turned off.

fort.8

vmdx

DCD file PSF file

VMD

Scene Description Files

Tachyon

Images

Animated GIF

ImageMagick

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 13ISSN: 1690-4524

The script file “convert.sh” executes ImageMagick convert
utility, which adds delay as specified by the users and combines
all the images to create animated GIF file.

The fifth script file “delete.sh” deletes the scene description
files and images generated during animation processes. After
necessary scripts have been created, “AnimationMaker” servlet
executes these scripts. The order in which these scripts are
executed is “vmdx.sh”, “vmd_script.sh,” “tachyon.tcl,”
“convert.sh,” and “delete.sh.”

Page “AnimationSetup.jsp” also informs users about progress of
animation processes. It informs users about completed stage(s)
and stage(s) in progress. In an animation process, there are four
stages: psf/DCD file creation, scene files creation, images
creation and GIF file creation. The time it takes to execute the
“vmdx.sh” script file, corresponds to psf/DCD file creation
stage. Similarly, execution time of “vmd.tcl” and
“vmd_script.tcl” corresponds to scene files creation stage. The
execution time of the “tachyon.tcl” corresponds to images
creation stage, and the execution time of the “convert.sh”
corresponds to GIF file creation stage. This progress mechanism
has been created with the help of Dynamics Web Remoting
(DWR) [6]. The servlet “AnimationMaker” creates
“MovieStatusListener” object. As “AnimationMaker” servlet
executes the script, it gives the name of script it is executing to
“MovieStatusListener” object, which passes this information to
“MovieStatusInfo” object. The page “AnimationSetup.jsp” gets
the “MovieStatusInfo” object by calling the method
“getMovieInfo” of “MovieStatusMonitor” object. Then, it
extracts the name of the script being executed from
“MovieStatusInfo” object, and the name is displayed in the
page. Figure 7 below shows the Animation Maker Module
Sequence Diagram.

optloop

:AnimationMaker

create :AnimationscriptMaker

createscript

:MovieStatusListener

:MovieStatus
Info

create

:MovieStatus
Monitor

MovieProgress

create

Execute Script

createanimation

:AnimationSetup

getMovieInfo

MovieStatusInfo

[scriptexecution=true]

Figure 7: Animation Maker Sequence Diagram

4.3. The Optimization

The maximal number of frames in an animated file depends on NS
(total number of integration steps per trajectory) and NIP (number of
steps between intermediate printouts) parameters of simulation
model. For example, for NS=4000 and NIP=20, we get 200
intermediate printouts of coordinates in “fort.8” file. Intermediate
printouts of coordinates in “fort.8” file correspond to frames in an
animated file. Thus, in this case, we have 200 frames. Greater
number of frames generates a larger animated file, and it requires
longer processing time and increases the communication time to
transfer the animated file from a server to a client. To minimize
communication overhead and to reduce processing time for
animation file generation, the number of frames is optimized. The
optimization is carried out in such a way that the number of image
frames is minimized and yet the visual quality of the animation is not
compromised.

In an animation of a trajectory, vibration of an atom is the fastest
motion. From set of frames, of trajectory, if we pick frames so that
the time between consecutive frames equals to at least half of the
time period of the atom having the highest frequency, and generate
an animation with such number of frames, this animation will
capture the motion of the atom having the highest frequency. Since
this animation includes the fastest motion, it will also include all
other motion of atoms, for that trajectory. However, the number of
frames required for this kind of result is large. Therefore, although
the visual quality is very good, processing time is very high. Usually,
the motions that interest chemistry researchers are not the highest
frequency. If we generate animation with amount of frames, which
is average of, viz, number of frames calculated by setting time
between consecutive frames to time period of highest frequency, and
that of lowest frequency, we will be able to reduce the number of
frames and animation will still looks good.

To verify above statement, we did experiment on F- + CH3OOH
system. For this system, highest vibrational frequency is 4000 cm-1,
lowest frequency is 420 cm-1, length of trajectory is 1750 fs and time
step between consecutive frames is 1 fs. We calculate the time period
using the formula as shown below.

c=νλ, c= light of speed, ν=vibrational frequency, λ=wave length
ν=c*1/λ
1/t=c*λ-1, vibrational frequency can be written as 1/t, t is time period
and λ-1 is vibrational frequency in cm-1
t=1/(c*λ-1)
t=1/ ((2.99792458*1010 cm. sec.)*λ-1), c=2.99792458*1010 cm sec.
t= (3.335640952 *10-11/λ-1) sec.
For our system, time period of highest frequency:
t=3.335640952 *10-11/4000
t=8 *10-15

t=8 fs.
Time period of lowest frequency:
t=3.335640952 *10-11/420
t=80 *10-15

t=80 fs.
Number of frames to be picked:
1/2(1750/8+1750/80) ≈100

Time step between these 100 frames=1750/100≈18. Therefore,
frames picked were in order of 1, 19, 37, and so on. We generate an
animation with these100 frames and the animation was effective.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 514 ISSN: 1690-4524

To implement this method described above, we need to have
access to simulation output file, but since this online tool has
also option to generate an animation from uploaded trajectory
file, for this case, we cannot do such calculation. Therefore, we
fix the number of frames based on above experiment and
processing time, it takes to generate animation.

Figure 8, below shows the processing time versus no of frames,
for different number of atoms. It shows processing time for 8,
729, 1290 and 2013 number of atoms with respect to 10,
50,100,200,300 and 400 frames. As seen in figure, for each
frame, as number of atoms increases there is only slightly
increase in processing time <1 min. On basis of this, we can
conclude that, processing time for each frame is same,
independent of number of atoms. In our web server for 10
frames, processing time is approximately 12 seconds, for 50
frames it is approximately 1 minutes, for 100 frames it is
approximately 2 minutes, for 200 frames it is approximately 4
minutes, for 300 frames it is approximately 6 minutes, and for
400 frames it is approximately 7 minutes.

For F- + CH3OOH system, with 100 frames processing time is
approximately 2 minutes and animation with this number of
frames is effective. So whatever large no of frames fort.8
contains, only 100 frames will be picked and transferred to
DCD file. Of course, this empirical criterion could be system-
dependent, so people who prefer high animation quality may
impose more than 100 frames. As future work, we are planning
to add functionality that provides people with choices of high
animation visual quality and medium visual quality.

0

1

2

3

4

5

6

7

8

10 50 100 200 300 400

Frames

Ti
m

e
(m

in
.) No. Atoms 8

No. of Atoms 729

No. of Atoms 1290

No. of Atoms 2013

Figure 8: Animation Generation Time versus No. of Frames

5. CONCLUSION

In this paper, we presented new developments of a cyber
infrastructure for high performance chemical dynamics simulations
through an online portal to the chemical dynamics simulation
software VENUS and post-simulation analyses tools including easy-
to-use optimized animation creation software. This infrastructure
integrates multiple software packages for simulation and post-
simulation analyses into one web portal where all processes of
software interactions are automated by the system, thus freeing users
from having to obtain working knowledge of all necessary but
complex software packages. By dispatching, different, computational
tasks to physically and administratively distributed computing
resources that are available to us, this cyber infrastructure attain high
computation performance by utilizing all computing power of a
computational grid it has access to. VENUS-web portal can be
accessed using http://cdssim.chem.ttu.edu URL.

6. ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under Grant Nos. CHE-0412677 and CHE-0615321, and
the Robert A. Welch Foundation under Grant No. D-0005.

7. REFERENCES

[1] Hase, William L., Ronald J. Duchovic, Xiche Hu, Andrew

Komornicki, Kieran F. Lim, Da-hong Lu, Gilles H. Peslherbe,
Kandadai N. Swamy, Scott R. Vande Linde, Antonio Varandas,
Jacobin Wang, and Ralph J. Wolf. "VENUS 96, A General
Chemical Dynamics Computer Program." Quantum Chemistry
Program Exchange 16, no. 671 (1996).

[2] Chawla, Navdeep. "EVALUATION OF TECHNOLOGIES
FOR WEB-ENABLED CHEMICAL DYNAMICS
SIMULATIONS." M.S. thesis, Texas Tech University, 2005.

[3] Humphrey, William, Andrew Dalke, and Klaus Schulten.
"VMD - Visual Molecular Dynamics." Journal of Molecular
Graphics 14 (1996): 33-38.

[4] Tachyon. Accessed 1 jan 2007. Available from
http://jedi.ks.uiuc.edu/~johns/raytracer

[5] ImageMagick. Accessed 1 jan 2007. Available from
http://www.imagemagick.org/script/index.php

 [6] DWR. Accessed 1 jan 2007. Available from
http://getahead.ltd.uk/dwr

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 5 15ISSN: 1690-4524

	I462RV

