
 

A Grid-based Cyber infrastructure for High Performance  
Chemical Dynamics Simulations 

 
Khadka Prashant and Yu Zhuang 

Department of Computer Science, Texas Tech University 
Lubbock, Texas 79409-3104, USA 

 
and 

 
Upakarasamy Lourderaj and William L. Hase  

Department of Chemistry and Biochemistry, Texas Tech University 
Lubbock, Texas 79409-1061, USA 

 
 

ABSTRACT 
 
Chemical dynamics simulation is an effective means to study 
atomic level motions of molecules, collections of molecules, 
liquids, surfaces, interfaces of materials, and chemical reactions. 
To make chemical dynamics simulations globally accessible to 
a broad range of users, recently a cyber infrastructure was 
developed that provides an online portal to VENUS, a popular 
chemical dynamics simulation program package, to allow 
people to submit simulation jobs that will be executed on the 
web server machine. In this paper, we report new developments 
of the cyber infrastructure for the improvement of its quality of 
service by dispatching the submitted simulations jobs from the 
web server machine onto a cluster of workstations for 
execution, and by adding an animation tool, which is optimized 
for animating the simulation results. The separation of the 
server machine from the simulation-running machine improves 
the service quality by increasing the capacity to serve more 
requests simultaneously with even reduced web response time, 
and allows the execution of large scale, time-consuming 
simulation jobs on the powerful workstation cluster. With the 
addition of an animation tool, the cyber infrastructure 
automatically converts, upon the selection of the user, some 
simulation results into an animation file that can be viewed on 
usual web browsers without requiring installation of any special 
software on the user computer. Since animation is essential for 
understanding the results of chemical dynamics simulations, this 
animation capacity provides a better way for understanding 
simulation details of the chemical dynamics. By combining 
computing resources at locations under different administrative 
controls, this cyber infrastructure constitutes a grid environment 
providing physically and administratively distributed 
functionalities through a single easy-to-use online portal 
 
Keywords: cyber infrastructure, chemical dynamics 
simulations, grid computing, seamless integration, online 
animation 
 
 

1. INTRODUCTION 
 

Chemical dynamics simulation is a powerful computing tool to 
study atomic level motions of molecules, collection of 
molecules, liquids, surfaces, interfaces of materials, and 
chemical reactions. These simulations have important 
applications in many research fields, including nanoscience, 

material and environmental sciences, molecular biology, and 
biochemistry. The Hase research group has developed the VENUS 
chemical dynamics computer program [1] for performing such 
simulations, which they use for their research as well as distribute to 
others. In an effort to make VENUS globally accessible to a broad 
range of users, a cyber infrastructure [2] was developed for accessing 
VENUS, which, through a website, allows a user to run a chemical 
dynamics simulation by selecting or building a simulation model and 
submitting the simulation execution job, and the modified or selected 
model gets executed on server machine, and users can download the 
output file. This web portal has been proven to be a valuable 
resource for research and education, as evidenced by visits of the 
website from researchers, educators, and students within the US and 
abroad. 

 
In the original implementation of the VENUS-accessing cyber 
infrastructure, the simulation jobs were executed in web server 
machine. Computational time for a simulation varies from a few 
seconds to hours, sometimes even to days. For medium and large 
simulation jobs, the server machine is obviously not powerful 
enough — a more powerful cluster is needed to cut days-long jobs 
into hours-long and hours-long to minutes-long by running these 
time-consuming simulations on the cluster in parallel.  Another 
drawback of doing everything on the server machine is that, as the 
number of user requests increases, response time gets poorer even if 
the requested simulation jobs take only several seconds for each. 
Thus, for a better response time, web application is interfaced with a 
cluster and the simulation work is sent to the cluster for execution. 
This enables VENUS cyber infrastructure to serve more users 
simultaneously with better response time.  

 
The original version of the VENUS-accessing cyber infrastructure 
also lacks tools for animating a chemical dynamics simulation, 
which is very important for understanding the complex atomic 
motions of the simulation. In a chemical dynamics simulation, the 
positions (i.e. the Cartesian coordinates) of all the atoms of the 
molecular system are calculated for a sequence of time steps by 
some numerical integration. Such a sequence of atom positions as a 
function of time is a classical trajectory that gives a detailed 
“picture” of the complex, often correlated motions of the atoms.  
And animation of the trajectories is an effective way for helping 
understand these atomic-level motions. One of the motivations 
behind the work presented in this paper is to provide an easy-to-use 
online tool for animating chemical dynamics simulations. Steps 
involved in a chemical dynamics simulation and animation can be 
summarized as below:  
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• A simulation with a selected simulation model is 
run through simulation software to get trajectories 
(simulation results). 

• Scene description files are obtained from a selected 
trajectory of the simulation results. 

• Scene description files are run through ray tracer 
program to get individual frames (images). 

• Finally all images are combined to get an animated 
file. 

 
Currently there are numerous tools for performing above steps 
and whole processes usually involve integration of two or more 
software packages, and users need to install all required 
software and hence need to have working knowledge of these 
software packages. To make our online animation tool of 
chemical dynamics simulations widely accessible to users, 
including animation software experts and non-experts, the 
animation tool is incorporated into the cyber infrastructure in 
such a way that multiple software packages for animation are 
integrated, and provide user a single access portal requiring only 
mouse-clicking for data selection or upload for animation, and 
the ensuing animation-creation processes are automated by the 
our system, thus hiding the complexity of creating an animation 
for non-expert users and freeing users from the worries to install 
in their computers and also to obtain  working knowledge of 
animation software. 
   
In addition to ease-of-use, we also optimized the animation tool 
to achieve high processing speed by choosing only a calculated 
subset of simulation data from the entire set of data of a selected 
trajectory, where the subset of data is calculated based on our 
empirical rules to minimize the amount of data for animation 
while also attain a good visual quality of the animation. By 
using only the minimum amount data for adequately good 
visual quality, we not only achieve high processing speed for 
the creation of animation file, but also reduce data transmission 
time over the internet, an essential factor in the quality of 
service for any online animation tools since data transmission 
over any network — internet, grid network, or inter-processor 
connection network — is far slower per unit amount of data 
than data processing speed inside a computer.  
 
To provide the flexibility to serve different users with different 
needs, the cyber infrastructure is designed to have three access 
modes for users: 1. users perform dynamics simulation and 
animation on our computing resources; 2. users run the 
dynamics simulations on our computing resources and 
download simulation results onto their machine which they can 
perform their own post-simulation analyses like animation if the 
users have such software installed on their machines; 3. users 
run dynamics simulations on their own machines and use our 
online animation tool to run the animation.  
 
By combining hardware and software computing resources at 
two locations under different administrative controls, this cyber 
infrastructure constitutes a grid environment providing 
physically and administratively distributed functionalities 
through a single, easy-to-use online portal for chemical 
dynamics simulations, and post-simulation analyses including 
animation of calculated trajectories. While there exist many 
chemical dynamics simulation software packages nowadays, to 
the best of our knowledge, our cyber infrastructure is the only 
online portal to grid environment for chemical dynamics 

simulations and its animation-included post-simulation analyses. 
And this infrastructure is designed to achieve both ease-of-use and 
high performance in terms of utilizing parallel computing power for 
simulations and minimizing data amount for animation and file 
transferring.  
 
The remaining of the paper is organized as follows. Section 2 gives 
the overviews of the cyber infrastructure, Section 3 contains the 
description of the interface to  the cluster for simulation execution 
for the web server machine, Section 4 is the description of the 
integration and optimization of animation software, and the 
conclusion is given in Section 5. 

 
 

2. THE STRUCTURAL OVERVIEWS OF THE CYBER 
INFRASTRUCTURE 

 
This online tool has a three tiered architecture. In the Figure 1, which 
shows the physical architecture, Client is a web browser running in 
any platform, and Web Server is responsible for handling requests 
that come from Client. Application that includes Servlet, JSP pages, 
and Java class files resides in Web Server. Cluster is for running 
simulation model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Physical Architecture 

 
This online tool has been developed using JavaServer Pages (JSP) 
and Java Servlet technology. Figure 2 below shows the Software 
Structure. Only authenticated users will be able to access the system. 
Login module provides functionality for user registration and 
authentication. Users can choose between two programs 
VENUS96C, VENUS05. For each of these program types, there are 
three ways to provide input. Users can use already available 
simulation model as it is; they can modify the already available 
model; and they can upload their simulation model or trajectory file. 
Model/Program Type Selection Module provides functionality for 
choosing the program and input method type. Model Modify Module 
provides functionality for modifying the simulation model. Existing 
Model Module provides functionality for selecting the simulation 
model. File Upload Module allows users to upload the simulation 
model and trajectory file. Execute Module handles the execution of 
simulation model in cluster. Animation Setup Module allows users 
to change different parameters of animation like coloring method, 
the drawing method used for coloring atoms, etc. Animation Maker 
Module provides functionality for generating an animated file. 
Animation Viewer Module allows users to view and download the 
animated file.  
 

Client 

Cluster 

Web Server 

HTTP 

SCP 

INTERNET 
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Figure 2: Software Structure 
 
 

3. CLUSTER INTERFACE 
 
When users connect to a web server, a session is created. Object 
“ClusterSession,” which implements “HttpSessionListener” 
interface, gets notified when a session is created. Object 
“ClusterSession” has two methods: “sessionCreated” and 
“sessionDestroyed”.  
 
Method “sessionCreated” is called at the startup of a session, 
and method “sessionDestroyed” is called at the end of a session. 
Method “sessionCreated” creates object “ClusterExecutable”, 
calls its “connect” method, and saves this object as a session 
object. “Connect” method of object “ClusterExecutable” 
connects to the cluster and creates a connection session with the 
cluster. Other methods of  “clusterexeectuble” object include 
“execute,” “put,” and “get”. The “execute” executes the 
command in cluster; “put” copies files from web server to 
cluster; and “get” copies files from cluster to web server. 
 
Method “sessionDestroyed” calls “closesession” and 
“closeconncetion” method of “clusterexecutable” object, which 
closes the session and connection with the cluster. Figure 3 
below shows Cluster Connection Sequence Diagram. 
 
Existing Model Module, File upload Module, and Model 
Modify produce a simulation model and transfer it to the cluster 
for execution. In the execution of simulation model, two objects 
are involved, viz.  “SimulationScmaker” and 
“SimulationScexecuter.” Object “SimulationScmaker” creates a 
script file called “cluster_venus.sh” and transfers it to the 
cluster. For transferring the script file, Object 
“SimulationScmaker retrieves object “ClusterExecutable” from 
the session and calls its “put” with the script file as parameter. 
Script file “cluster_venus.sh” has a command to execute the 
simulation model. 
 
 After script is created, “SimulationScexecuter” object is 
created. Object “SimulationScexecuter” is responsible for 
executing the simulation model in the cluster. Object 
“SimulationScexecuter” retrieves object “ClusterExecutable” 

from the session and call its “execute” method with the following as 
parameter:  
<qsub “Path of cluster_venus.sh”/cluster_venus.sh>.  

 
The above command submits cluster_venus.sh script to the cluster 
queue with the help of qsub utility. After “cluster_venus.sh” gets 
executed, it makes “end.sh” file. When “SimulationScexecuter” 
object encounters “end.sh,” it then copies output file to web server 
by calling “get” method. After the execution of model is finished, the 
user is forwarded to “Final.jsp” JSP page, which has a link to 
download the output file. Figure 4 below shows Execution Sequence 
Diagram.   
 

:ClusterSession

:ClusterExecutable

connect

sessionCreated

create

sessionDestroyed
closesession

closeconnection

           
Figure 3: Cluster Connection Sequence Diagram. 

 
:SimulationScMaker

SimulationScExecuter
create

:Final

execute script

                     forwards

:ClusterExecutable

execute

  end

  get

  file

  put

  create script

 
Figure 4: Execution Sequence Diagram. 
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4.  ANIMATION PROCESS 
 

Figure 5 below shows the steps involve in generating animation 
from simulation result.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     
      
 
 
 
 
                           Figure 5: Animation Process  
 

The “fort.8” file contains information of atoms like atom name, 
atomic number, and coordinates of each trajectory calculated 
during execution of simulation model. The “vmdx” is a C 
program, which converts “fort.8” file into DCD and PSF files. 
The PSF file, also called protein structure file, contains 
molecular specific information such as atoms, bonds, angles, 
dihedrals, etc. DCD is a binary file that contains coordinates of 
trajectory. VMD [3] takes DCD and PSF file as input and 
generates scene description files. Those scene description files 
are fed through Tachyon [4] ray tracer, which converts them 
into images. Finally, ImageMagick [5] converts all these images 
into an animated GIF file.  
 
This application automates all these processes of generating an 
animation. Modules described below are involved in animation 
processes. 

 
 

4.1. Animation Setup Module 
 

Not every simulation model is valid for animation. When 
executed, the valid simulation model generates “fort.8” file. 
Object “FortfileChecker” performs checking of fort.8 file. If file 
is not found, the user is forwarded to “AnimationError.jsp” 
page, which displays an error. If the file is found, the user is 
forwarded to “AnimationSetup.jsp” page. This JSP page has an 
option for setting different parameters of animation. Trajectory 
for which animation is generated can be specified. Both the 
coloring method used to color atoms and the drawing method 
used to draw atoms can be changed. Additionally, the 
orientation of atoms can be changed by specifying degree in x, y 
and z axes. Delay between frames i.e. the delay between 

consecutive images in an animated file can be set. This parameter is 
important when the animation has a few frames. By adding delay 
between frames, the user can slow down the frames transition, thus 
all the details of animated file will be visible. Figure 6 below shows 
Animation Setup Sequence Diagram. 

 

optalt

:FortfileChecker :AnimationSetup

[Error]

[Sucess]

:AnimationError

forwards

checkfile

forwards

 
Figure 6: Animation Setup Sequence Diagram 

 
 

4.2. Animation Maker Module 
 

After animation parameters has been set on “AnimationSetup.jsp,” 
the users clicks “submit” button. It calls “AnimationMaker” servlet. 
This servlet is responsible for executing the animation script, which 
generates the animated file. Object “AnimationMaker” creates object 
“AnimationscriptMaker.” This object creates six script files, viz. 
“vmdx.sh,” “vmd.tcl,” “vmd_script.sh,” “tachyon.tcl,” “convert.sh,” 
and “delete.sh.” 
 
The script file “vmdx.sh” converts “fort.8” into PSF and DCD files. 
DCD file contains the coordinates of trajectory, as specified by users 
in “AnimationSetup.jsp” page. 

 
The script file “vmd.tcl” first loads DCD and PSF files; then, it sets 
parameters as users choose in the “AnimationSetup.jsp” page. It, 
then, calls procedure “makemovie.” The procedure “makemovie” 
calls “buildmovie” procedure of VMD, which is responsible for 
generating scene file descriptions.  
 
The script file “vmd_script.sh” runs VMD with input file as 
“vmd.tcl”. After execution of this script, VMD generates scene 
description files. The number of scene description files depends on 
number of frames in DCD file, which in turns depends on NS and 
NIP parameters of the simulation model.  

  
The script file “tachyon.tcl” loops through each frame and calls 
Tachyon executable with input as scene description file for that 
frame. The Tachyon generates .rgb files. To speed up the process of 
ray tracing, mediumshade is used, and antialiasing is turned off. 

  

fort.8 

vmdx 

DCD file PSF file 

VMD 

Scene Description Files 

Tachyon 

Images 

Animated GIF 

ImageMagick 
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The script file “convert.sh” executes ImageMagick convert 
utility, which adds delay as specified by the users and combines 
all the images to create animated GIF file. 
  
The fifth script file “delete.sh” deletes the scene description 
files and images generated during animation processes. After 
necessary scripts have been created, “AnimationMaker” servlet 
executes these scripts. The order in which these scripts are 
executed is “vmdx.sh”, “vmd_script.sh,” “tachyon.tcl,” 
“convert.sh,” and “delete.sh.”  

 
Page “AnimationSetup.jsp” also informs users about progress of 
animation processes. It informs users about completed stage(s) 
and stage(s) in progress. In an animation process, there are four 
stages:  psf/DCD file creation, scene files creation, images 
creation and GIF file creation. The time it takes to execute the 
“vmdx.sh” script file, corresponds to psf/DCD file creation 
stage. Similarly, execution time of  “vmd.tcl” and 
“vmd_script.tcl” corresponds to scene files creation stage. The 
execution time of the “tachyon.tcl” corresponds to images 
creation stage, and the execution time of the “convert.sh” 
corresponds to GIF file creation stage. This progress mechanism 
has been created with the help of Dynamics Web Remoting 
(DWR) [6]. The servlet “AnimationMaker” creates 
“MovieStatusListener” object. As “AnimationMaker” servlet 
executes the script, it gives the name of script it is executing to 
“MovieStatusListener” object, which passes this information to 
“MovieStatusInfo” object. The page “AnimationSetup.jsp” gets 
the “MovieStatusInfo” object by calling the method 
“getMovieInfo” of “MovieStatusMonitor” object. Then, it 
extracts the name of the script being executed from 
“MovieStatusInfo” object, and the name is displayed in the 
page. Figure 7 below shows the Animation Maker Module 
Sequence Diagram. 
 

optloop

:AnimationMaker

create :AnimationscriptMaker

createscript

:MovieStatusListener

:MovieStatus
Info

create

:MovieStatus
Monitor

MovieProgress

create

Execute Script

createanimation

:AnimationSetup

getMovieInfo

MovieStatusInfo

[scriptexecution=true]

 
Figure 7: Animation Maker Sequence Diagram 

 
 
 
 

4.3. The Optimization 
 

The maximal number of frames in an animated file depends on NS 
(total number of integration steps per trajectory) and NIP (number of 
steps between intermediate printouts) parameters of simulation 
model. For example, for NS=4000 and NIP=20, we get 200 
intermediate printouts of coordinates in “fort.8” file. Intermediate 
printouts of coordinates in “fort.8” file correspond to frames in an 
animated file. Thus, in this case, we have 200 frames. Greater 
number of frames generates a larger animated file, and it requires 
longer processing time and increases the communication time to 
transfer the animated file from a server to a client. To minimize 
communication overhead and to reduce processing time for 
animation file generation, the number of frames is optimized. The 
optimization is carried out in such a way that the number of image 
frames is minimized and yet the visual quality of the animation is not 
compromised.  
 
In an animation of a trajectory, vibration of an atom is the fastest 
motion. From set of frames, of trajectory, if we pick frames so that 
the time between consecutive frames equals to at least half of the 
time period of the atom having the highest frequency, and generate 
an animation with such number of frames, this animation will 
capture the motion of the atom having the highest frequency. Since 
this animation includes the fastest motion, it will also include all 
other motion of atoms, for that trajectory. However, the number of 
frames required for this kind of result is large. Therefore, although 
the visual quality is very good, processing time is very high. Usually, 
the motions that interest chemistry researchers are not the highest 
frequency.  If we generate animation with amount of frames, which 
is average of,  viz, number of frames calculated by setting time 
between consecutive frames to time period of highest frequency, and 
that of lowest frequency, we will be able to reduce the number of 
frames and animation will still looks good.  
 
To verify above statement, we did experiment on F- + CH3OOH 
system. For this system, highest vibrational frequency is 4000 cm-1, 
lowest frequency is 420 cm-1, length of trajectory is 1750 fs and time 
step between consecutive frames is 1 fs. We calculate the time period 
using the formula as shown below. 
 
c=νλ, c= light of speed, ν=vibrational frequency, λ=wave length 
ν=c*1/λ 
1/t=c*λ-1, vibrational frequency can be written as 1/t, t is time period 
and λ-1 is vibrational frequency in cm-1 
t=1/(c*λ-1)  
t=1/ ((2.99792458*1010 cm. sec.)*λ-1), c=2.99792458*1010 cm sec. 
t= (3.335640952 *10-11/λ-1) sec. 
For our system, time period of highest frequency: 
t=3.335640952 *10-11/4000 
t=8 *10-15 

t=8 fs. 
Time period of lowest frequency: 
t=3.335640952 *10-11/420 
t=80 *10-15 

t=80 fs. 
Number of frames to be picked: 
1/2(1750/8+1750/80) ≈100 
 
Time step between these 100 frames=1750/100≈18. Therefore, 
frames picked were in order of 1, 19, 37, and so on. We generate an 
animation with these100 frames and the animation was effective. 
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To implement this method described above, we need to have 
access to simulation output file, but since this online tool has 
also option to generate an animation from uploaded trajectory 
file, for this case, we cannot do such calculation. Therefore, we 
fix the number of frames based on above experiment and 
processing time, it takes to generate animation.  

 
Figure 8, below shows the processing time versus no of frames, 
for different number of atoms. It shows processing time for 8, 
729, 1290 and 2013 number of atoms with respect to 10, 
50,100,200,300 and 400 frames.  As seen in figure, for each 
frame, as number of atoms increases there is only slightly 
increase in processing time <1 min. On basis of this, we can 
conclude that, processing time for each frame is same, 
independent of number of atoms. In our web server for 10 
frames, processing time is approximately 12 seconds, for 50 
frames it is approximately 1 minutes, for 100 frames it is 
approximately 2 minutes, for 200 frames it is approximately 4 
minutes, for 300 frames it is approximately 6 minutes, and for 
400 frames it is approximately 7 minutes. 

 
For F- + CH3OOH system, with 100 frames processing time is 
approximately 2 minutes and animation with this number of 
frames is effective. So whatever large no of frames fort.8 
contains, only 100 frames will be picked and transferred to 
DCD file. Of course, this empirical criterion could be system-
dependent, so people who prefer high animation quality may 
impose more than 100 frames. As future work, we are planning 
to add functionality that provides people with choices of high 
animation visual quality and medium visual quality. 
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Figure 8: Animation Generation Time versus No. of  Frames 

5. CONCLUSION 
  
In this paper, we presented new developments of a cyber 
infrastructure for high performance chemical dynamics simulations 
through an online portal to the chemical dynamics simulation 
software VENUS and post-simulation analyses tools including easy-
to-use optimized animation creation software. This infrastructure 
integrates multiple software packages for simulation and post-
simulation analyses into one web portal where all processes of 
software interactions are automated by the system, thus freeing users 
from having to obtain working knowledge of all necessary but 
complex software packages. By dispatching, different, computational 
tasks to physically and administratively distributed computing 
resources that are available to us, this cyber infrastructure attain high 
computation performance by utilizing all computing power of a 
computational grid it has access to. VENUS-web portal can be 
accessed using http://cdssim.chem.ttu.edu URL. 
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