
No Warranty Express or Implied: Why do We Have so many Problems

With the Computer Systems that Pervade our Lives?

John W. COFFEY
Department of Computer Science

The University of West Florida
Pensacola, FL. 32514

ABSTRACT

Computer systems, large and small, are everywhere.

From the 100+ electronic control units in a modern car

to mobile devices, to tablets and desktop computers, to

petabyte databases that are mined for information,

computers pervade our lives. When any factor in our

lives becomes so pervasive, a range of problems will

certainly follow ranging from basic frustration and

inconvenience, to lost productivity, to losses due to

using the devices apart from problems with the devices

themselves, to loss of life. This article explores the

unique role of computers in our lives from the

perspective of their complexity, limits on our ability to

ensure that systems are built without errors, tradeoffs

inherent in the design of computer systems, and

measures that can be taken to address these problems.

Keywords: computer systems, complex artifacts,

computer program correctness, usability, security,

technical workforce, software engineering

1. INTRODUCTION

Computers are everywhere. Upwards of 100 different

electronic control units in cars control the engine, air

bags, speed of the vehicle, provide diagnostic

capabilities, and more. All mobile devices are

computer systems that interact with the world through

other computers. At work, a large percentage of people

use computers. A report from NCES [1] indicates that

the percentage of people using computers at work

grew from 46% in 1993 to 56% in 2003. By 2014, 71%

of all Americans used the Internet.

The range of problems that occur with computer

systems is dizzying. Computer programs freeze up in

the middle of work, printers stop working, voices

mysteriously stop transmitting in smartphone calls,

major companies experience disruptive system

failures, shocking security breaches take place in top

companies and at the highest level of government, and

the list goes on. Through it all, users agree to licensing

agreements that provide absolutely no warranties for

losses due to use of the software or remedies when

such events occur, an astonishing state of affairs.

The remainder of this article contains a description of

why this state of affairs exists. The discussion

addresses why computer systems are some of the most

complex artifacts ever created, limits on the ability to

show conclusively that they have been constructed

correctly, fundamental tradeoffs in how they must be

designed, and a brief case study in large system failure.

The article concludes with some indications of what

can be done about these problems and with some

conclusions.

2. COMPUTERS AS COMPLEX ARTIFACTS

In his seminal paper on software engineering, “No

Magic bullet,” Brooks [16] made the distinction

between what he termed accidental and essential

complexity in software development. Accidental

complexity arises from immaturity in the field and a

lack of software programming languages and

development tools that foster production of good

software efficiently. Brooks states that, over time,

languages and tools improve and accidental

complexities recede.

Much more troubling are what Brooks termed the

essential complexities of software development. He

states that software development is subject to

numerous essential and unavoidable complexities.

There are complexities stemming from the large size

of computer programs and the combinatorial

explosion of ways components can interact. Software

is complex because of its abstract, invisible nature and

because of the fact that software is created to address

a huge range of tasks. While it is very easy to change

the way software works (and all competing software

companies and open-source developers continually do

so), it is equally easy to introduce new errors when

making changes and it is correspondingly difficult to

understand fully all the implications of making

ongoing changes to large programs.

Integrated hardware and software systems are

arguably the most complex artifacts humankind has

ever created. OS 360, first released by IBM in 1964 as

the first truly multi-tasking operating system [7], was

comprised of more than 1,000,000 lines of assembly

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 6 - YEAR 2017 1

language code, and it had 10,000 documented

"features" or bugs. Every attempt to fix a coding error

produced additional errors, many of which were worse

than the error the programmers were trying to repair.

It is estimated that the Microsoft Office software suite

has between 30,000,000 and 60,000,000 lines of code

[8]. Significant portions are essentially "zombie code"

(typically unused subprograms) that cannot be

removed because some other isolated piece of code

might occasionally call it. By contrast, an open-source

competitor to Microsoft Office, Libre Office, weighs

in at a relatively lightweight 12,500,000 loc. It is very

difficult to imagine what 12,000,000 of anything looks

like.

The Windows 10 operating system is estimated to

contain 50,000,000 lines of code. It is Microsoft's

policy to push out code patches on a regular basis. The

patches take two forms – bug fixes and security

patches. Introductory software engineering courses

universally bemoan the problems that come with a

"code and fix" approach to software evolution,

characterizing it as an "anti-pattern," the exact

opposite of a good programming practice [18], for

software development.

While software itself is extremely complex to develop

and maintain, separate problems come from the

complexity of the human-computer interface (HCI).

Software companies have competed for decades by

adding features to software. Overly complex HCIs

cause frustration and loss of productivity (in the best

case) and lead to serious human error with significant

consequences in the worst case. With the advent of

GUI-based windowing systems such as MacOS in the

1980s, predictable locations for basic functionality

such as opening and saving files simplified human-

computer interactions. With the advent of Web-based

interfaces, often designed to appear artful at the

expense of functional, any semblance of HCI

uniformity is gone. Usability suffers correspondingly,

and frustration at the inability to perform simple tasks

is pervasive.

Two fundamental strategies (one for hardware and

another for software) are utilized to maximize the

likelihood of proper execution, or in the worst case, to

allow system performance to degrade gracefully and

end in a controlled way in the presence of a

catastrophic error. For hardware, redundant systems

with uninterruptable power supplies are used.

However, building redundancy into systems is

expensive and hence, many systems have single point

of failure vulnerabilities. For software, the concept is

"defense in depth" which dictates that software should

have a series of defenses so that, if an error cannot be

successfully handled at one level, there are additional

levels of defense to handle the problem.

Exception handlers are a basic capability to provide

defense in depth for software errors. Design of

exception handlers is complex, and many

programmers actually create anti-patterns in place of

good design patterns for exception handling. In the

some cases, such poor programming practices can lead

software to behave incorrectly or to bomb in the

presence of errors, and in other cases, they can open

up security vulnerabilities.

3. LIMITS ON THE ABILITY TO PROVE

PROGRAM CORRECTNESS

Computer programs are based upon logic used to

implement algorithms. A great many aspects of

computer programs are amenable to proof techniques

that enable developers to show conclusively that some

condition holds. For example, in many cases, the time

a program will take to process a dataset can be

determined either a-priori or empirically. Proof

techniques can be applied to demonstrate program

correctness for small programs. Unfortunately formal

methods are mathematically intensive to use and do

not scale well to large programs.

Interacting programs make matters even worse. A

modern architectural design pattern for large software

systems is service-oriented architecture [11]. Service-

oriented architectures seek to combine different pieces

of program functionality (often realized in separate

programs) into a composite application. It is a new

way to tie together different legacy software systems

that were often stand-alone applications before Web-

based apps became so pervasive. As distributed

applications with different functions running on

different machines and data being accessed through

message passing, a great many things must go right for

the result to be right, and very small esoteric problems

can cause the system to fail. No scalable formal

methods exist that are generally accepted to show the

correctness of such systems.

4. USABILITY AND SECURITY IMPACTS

The usability of a device refers to how readily the user

can achieve the goals of use of the device. Studies in

Human-Computer Interface (HCI) and usability have

been ongoing for decades. In 1998, Hartson [22] stated

that HCI work has the goal of making software use

efficient, effective, safe, and satisfying to use. He

discusses both ease of use and usefulness as equally

important aspects of usability. With the advent of

2 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 6 - YEAR 2017 ISSN: 1690-4524

graphical user interfaces on standalone computer

systems, some consistency started to emerge in

software interfaces. However, as early as 1998,

Hartson appreciated the lack of standardization in Web

interfaces and the isolation of WebApp users who

could not necessarily ask a colleague nearby how to

perform a particular function.

Technical support is also often problematic. Help

capabilities associated with large-scale software

programs routinely return voluminous, mostly

irrelevant results following a help query. Tech support

by live humans is usually expensive when it is

available. Constantly changing software ensures that

user documentation is constantly lagging behind the

actual program and unreliable. Web sites are often

designed with an eye to aesthetics at the expense of

usability and often come with no tech support at all.

Usability is also impacted by ever-increasing needs for

security. The evolution of security concerns since

Robert Morris unleashed the first worm on the Internet

in 1988 [15] have been profound. Two areas that

illustrate this evolution of concerns are the tradeoffs

inherent in ease of access and use and the

accompanying security concerns that are raised, and in

the evolution of viruses and anti-virus software.

Donaldson [14] states that security professionals

continually have to make decisions regarding the

tradeoffs among security, privacy, and convenience.

He states that very broadly, people and organizations

have opted for convenience over privacy, at the

expense of raising new security concerns. As an

example, the decision is made to put mission-critical

data in the cloud, possibly improving security in some

ways (reliable backup so it will not be lost) and

possibly worsening security in other ways (the CEO

wants to access the data through an ever-evolving

series of devices with unknown security

vulnerabilities).

Recent successful hack attacks such as the attack on

the 2016 Democratic National Committee [17] are

typical of this concern. Best evidence is that state

actors from Russia had been inside the DNC network

for up to a year before the attack was made public.

Attackers utilized a "software implant" which behaves

as a bootkit which the computer system BIOS

launches on system start. A successful implant might

have the status of a privileged background process

passively inspecting data or actively injecting malware

payloads [18].

The outlook for cybersecurity is not likely to improve

[19]. Dishman reports that since the successful 2013

attack on the Target Corporation, JP Morgan Chase,

Scottrade, UPS, Goodwill, Sony, the FBI, Experian,

and others have been attacked successfully. The

average financial cost of a successful data attack is

almost $4 million and rapidly rising. The financial cost

to clean up after a successful security breach does not

include intangible costs of bad publicity, customer

concern that using the capabilities after the cleanup

might entail new risks, etc.

Earlier antivirus software relied on detecting

signatures that indicated malware, and antivirus

software processed a rapidly growing collection of

these signatures. In the early days, there were not a

great many different virus types and new ones did not

appear that quickly. Furthermore, they propagated via

removable media such as diskettes rather than over the

Internet. Today, viruses are polymorphic, making

them able to generate many variants of themselves that

can defeat signature-based virus checkers. When

detecting them by traditional means is possible, it is at

the expense of consuming significant system resources

in monitoring. Slow systems quickly become a

usability/convenience issue. A consequence of the

multiple layers of security that are put in place is that

computers that are unimaginably more powerful than

could have been envisioned decades ago sometimes

run more slowly than machines from those eras.

The supply of computer professionals is also

problematic. Historically, the United States has had

large shortfalls in the number of young people wanting

to go into computer-related fields. Many who go into

the field in school do so under the misapprehension

that ability to use computer systems (such as their

smartphones and video game consoles) will translate

into success in Computer Science curricula. A

consequence of this inaccurate perception coupled

with low levels of preparation in math and computer

classes in K-12 has meant fewer entrants to the field at

the University level, higher than desirable rates of

attrition, and significant shortfalls in the production of

qualified computer professionals.

5. A TYPICAL COMPUTER PROBLEM

The landscape of potential examples of problems with

computer systems is truly expansive. As of summer,

2016, a major US airline was in the middle of an

extremely high-profit time due to the lingering effects

of low fuel prices. In August 2016, a major computer

system lost power and backup systems failed to come

online [4]. The systems were down for more than 6

hours, leaving passengers stranded for much longer

times than that. The airline was ultimately forced to

cancel more than 1500 flights, and experienced major

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 6 - YEAR 2017 3

problems over the course of several days. Some weeks

before, essentially the same thing happened to another

major carrier. In the past year, three other carriers also

had computer-related disruptions.

The large-scale computer systems employed by these

airlines are called Enterprise Resource Planning (ERP)

systems [12]. They are typically aggregates of

multiple systems, some decades old that have been

retrofit to work together over the Internet. Most

involve a great many layers of software (called virtual

machines) that execute on distributed physical

hardware. Such systems are case studies in what can

go wrong with complex interacting programs [6].

The airlines and many other large companies struggle

with very old, mainframe-based, legacy systems.

Noffsinger et al [25] describe legacy systems as

ranging from some that are well maintained to those

that exist with only a program codebase and data,

obsolete or non-existent technical or user

documentation, or even executable code only with no

source code. In the latter case, maintainers modify the

machine code directly, and it is impossible to know

about limits coded into the data until a limit is

exceeded and something breaks.

Anytime one sees a "character mode" computer screen

in a business or governmental agency, it is probably

the front end to a legacy system. They are still

pervasive. The leaders of some companies understood

that solving the Y2K problem was an opportunity to

migrate away from legacy systems, but many

perceived such a migration as simply too expensive

and disruptive. Weighing the prospect of mass-

extinction due to a failed, unthinkably expensive

migration to a new system with a slow death by 1000

cuts inflicted by maintaining the old system, many

companies chose to keep cutting [28].

6. WHAT CAN BE DONE?

Obviously, such a multi-faceted problem must have a

multi-faceted solution. Despite all the difficulties,

ongoing efforts are being made to address the wide

range of problems with computer systems. While

problems exist on a great many fronts, underlying

them all are an enumerable set of root causes

including:

 an insufficient and insufficiently educated

technical workforce

 difficulties replacing massive, mission-

critical legacy systems

 a moving target due to the rapid proliferation

of IT that potentially has serious safety or

security design flaws

 a large number of individuals and state-

sponsored groups trying to exploit system

vulnerabilities

 a naïve belief that more technology cures all

problems

The US Bureau of Labor Statistics publishes the

Occupational Outlook Handbook [25], which cites

more than 1,400,000 computer specialist jobs in

computer and information technology. Most of those

jobs are experiencing rapid demand growth. On the

supply side, the amount of exposure to computer-

related courses has been variable in K-12, but has

tended to be low. Some students go through K-12 with

only a few end-user courses in computers. Some

technical high schools have a full slate of computer-

related classes, but they are the exception.

Initiatives to foster interest in the STEM disciplines

are increasing in the United States, particularly for

under-represented groups such as women. According

to the U.S. Bureau of Labor Statistics, women earn

approximately 18% of the technical degrees awarded

and comprise 25% of the computer and information

technology work force. Eleven percent of Tech

executives are women [26]. The source of the problem

is well known – in the absence of consistent mentoring

and encouragement, young women lose interest in

technology at a very early age – often as early as

middle school. Efforts to foster more participation by

women have been ongoing for decades. Advances in

how to encourage women hold some promise.

If the cohort of computer and information technology

professionals cannot be homegrown, the only other

option is to import them. The H-1B visa program

provides 65,000 visas per year for foreign national

graduates of the US university system plus 20,000

extra for people who have earned a Master's or

Doctorate. The H-1B program is restrictive; one can

only be obtained via a sponsoring employer and is lost

if employment with that employer ends.

Furthermore, the relatively small number of visas is

for all "specialty occupations" including but not

limited to all of STEM, medicine, social sciences,

education, law and business. The Computer and

Information Technology field alone could consume all

of the H-1B visas in any given year. Tech companies

nationwide have long clamored for liberalization of

the H-1B requirements in order to improve their

prospects of recruiting the talent they need.

Improving security training for both software

developers and system administrators is a rapidly

growing concern and endeavor. Introductory

4 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 6 - YEAR 2017 ISSN: 1690-4524

programming courses are being modified to introduce

the concepts of robustness and security early on. The

concept of a Center for Academic Excellence (CAE)

is a new designation for institutions that offer

computer-related curricula that conform to a model

curriculum for security professionals. Overall

awareness of security concerns are rapidly growing.

The Common Weakness Enumeration [27] is an

evolving listing of the most damaging vulnerabilities

is software and steps to eliminate them.

Improving the computer programming languages that

are used is a key idea. Historically, we have learned

that truly general-purpose languages such as PL-1 and

Ada have not worked well. Sometimes, programming

languages are imposed upon developers (for example,

Objective C and Swift by Apple), even though other

languages might be better designed and more usable.

Targeted, special-purpose languages (all Turing-

computable, but tailored to specific applications) often

have distinct advantages, and these advantages are

becoming better known. The Tiobe group [26] track

programming language usage, and the results are

revealing and do not change rapidly.

Software engineering techniques have improved

markedly over the years. In the early days, the

waterfall model provided a lockstep process of

developing requirements, a design, an

implementation, testing and maintenance. The spiral

model expanded on the waterfall model to create an

iterative process that evaluated progress, future

direction, and risks to the project at each iteration.

For smaller projects, so-called agile development

approaches are becoming the norm. Agile

development entails rapid cycles of software release,

definition of new capabilities for the next iteration, and

implementation. Often work according to an agile

development strategy is performed in small teams.

Specific approaches under the agile development

umbrella include extreme programming, DSDM, FDD

and SCRUM.

The Software Engineering Institute [28] at Carnegie-

Mellon University developed the Capability Maturity

Model Integration – a five-level model to characterize

the quality of a software development organization'

development process. The model ranges from

"chaotic" at level 1, having no set approach to software

development at all, to an optimizing, continuous

improvement process at level 5. Department of

Defense contractors must gain certification at level

three of the CMMI to be eligible for most contracts.

Such approaches improve software quality in large

projects. Through all these initiatives, a lingering

question remains: is the complexity of the systems we

want to produce out stripping our increase in ability to

produce complex systems?

7. SUMMARY AND CONCLUSIONS

Some problems with computer systems are destined to

remain intractable because of the difficulties inherent

in the development of immensely complex artifacts.

Other problems, such as the supply of a properly

educated workforce are, while difficult and recurring,

addressable. Particularly, gaining more participation

by women in computer and information technology

can yield significant payoffs. Liberalizing H-1B visas

specifically for ICT positions could help. Having more

open and interoperable standards for software and

software systems improves reliability and efficiency in

the development process. Better curricula,

programming languages, and improved development

processes might at least prevent further loss of ground.

8. REFERENCES

[1] NCES. Percentage of Workers 18 or older using

computers on the job. Online, available at

https://nces.ed.gov/programs/digest/d08/table

s/dt08_432.asp
[2] Avery, R. The ENIAC. Online, available at

http://www.ushistory.org/oddities/eniac.htm
[3] MIT. The Robert Morris Internet Worm. Online

available at:

http://groups.csail.mit.edu/mac/classes/6.805/

articles/morris-worm.html
[4] Zhang, B. The airline industry has a massive

problem – and there's no real fix. Online,

available

http://www.businessinsider.com/deltas-

computer-outage-airline-industry-problem-

2016-8
[5] ERP. ERP – Enterprise Resource Planning.

Available, online:

http://www.webopedia.com/TERM/E/ERP.ht

ml
[6] Jones, C., and Weise, E. Travel Trouble? Here's

why your airline flight is delayed. Online,

available:

http://www.usatoday.com/story/money/2016/

08/11/airlines-complex-aging-systems-lead-

to-flight-delaying-computer-

glitches/88539190/
[7] OS/360. International Business Machines

Operating System/360, Online, available at:

https://www.britannica.com/technology/IBM

-OS-360
[8] Dvorak, J. C., Microsoft Office's Spaghetti

Code Mess. Online, available at:

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 6 - YEAR 2017 5

http://www.pcmag.com/article2/0,2817,24181

17,00.asp
[9] Code.org. How many lines of code?. Available

online: https://code.org/loc

[10] DevTopics. 20 Famous Software Disasters.

Online, available:

http://www.devtopics.com/20-famous-

software-disasters/
[11] Sward, R., and Bolenq, J. Service-oriented

architecture (SOA) concepts and

implementations. HILT '12: Proceedings of the

2012 ACM conference on High integrity

language technology. Boston, ACM 978-1-

4503-1505-0/12/12. p11.

[12] Stoilov, T, and Stoilova, K. Functional Analysis

of Enterprise Resource Planning Systems.

Proceedings of CompSysTech '08, Proceedings

of the 9th International Conference on

Computer Systems and Technologies. Pp

IIIB.8-1 - IIIB.8-6.

[13] Slagell, A. Thinking Critically about Computer

Security. Skeptical Inquirer. 34(3). 2010.

Online available:

http://www.csicop.org/si/show/thinking_criti

cally_about_computer_security_trade-offs
[14] Donaldson, S. Security Tradeoffs, a Culture of

Convenience. Security Week. Online, available:

http://www.securityweek.com/security-

tradeoffs-culture-convenience. 2013.
[15] Morris Worm. Wikipedia. Online. Available:

https://en.wikipedia.org/wiki/Morris_worm
[16] Brooks, F. No Silver Bullet: Essence and

Accident in Software Engineering. Proceedings

of the 10th IFIP World Computing

Conference. H.-J. Kugler, ed., Elsevier Science

B.V.,Amsterdam, NL. 1986.

[17] Kovacs, E. More Evidence links Russia to DNC

Attack. SecurityWeek. Online, available:

http://www.securityweek.com/more-

evidence-links-russia-dnc-attack
[18] Horovitz, O. 2014 Prediction: Smart Cyber

Criminals Learn from NSA "Software

Implants" Online, available:

https://privatecore.com/blogs/tag/software-

implants/
[19] Oracle. Exception-Handling Antipatterns Blog.

Online, available:

https://community.oracle.com/docs/DOC-

983543.
[20] Dishman, L. The Most Critical Skills Gap:

Cybersecurity. Online Available:

http://www.fastcompany.com/3062210/the-

future-of-work/the-most-critical-skills-gap-

cybersecurity
[21] Middlebury Interactive Languages. Coding vs

Foreign Languages: Do We Really Have to

Choose? Online, available:

http://www.middleburyinteractive.com/blog/

coding-v-foreign-languages-do-we-really-

have-choose.
[22] Hartson, H. R. Human-computer Interaction:

Interdisciplinary roots and trends, The Journal

of Systems and Software 43. 1998. pp 103-

118.

[23] Neilson, J. Usability 101: Introduction to

Usability. Online. Available:

http://www.nngroup.com/articles/usability-

101-introduction-to-usability/
[24] BMC. Remedy Incident and Problem

Management. Online. Available:

http://www.bmc.com/it-solutions/remedy-

incident-management.html
[25] Bureau of labor Statistics. Occupational

Outlook handbook. Online, Available:

http://www.bls.gov/ooh/occupation-

finder.htm
[26] Fidelman, M. Here's the Real Reason There are

Not More Women in Tehcnology. Online,

Available:

http://www.forbes.com/sites/markfidelman/2

012/06/05/heres-the-real-reason-there-are-

not-more-women-in-

technology/2/#479f1ed83c67
[27] Mitre Corp. Common Weakness Enumeration.

Online, available: https://cwe.mitre.org/

[28] Patrizio, A. Bad Migration Experiences Ldeave

IT Bisses Gun-shy. Online, Available:

http://www.cio.com/article/3120951/it-

industry/bad-migration-experiences-leave-it-

bosses-gun-shy.html

6 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 6 - YEAR 2017 ISSN: 1690-4524

	IP025LL17.pdf

