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Abstract 

 
Beneath the earth there are many structures, such as different types of rocks and 

salts. Among them are also hydrocarbons that are a valuable resource for the oil and 

gas industry. One way of studying sub surfaces is using seismograms, which offers a 

seismic-wave representation with many valuable information of the area. By studying 

the patterns within the seismic data one can generate a representation of the 

subsurface based on some parameters that are able to show each one of underlying 

structures, such as the velocity that the waves propagated. With the advancement of 

computer-related technology, such as multi-core processors and GPUs, the 

processing power of computers have increased and the possibility of working with a 

much larger amount of data and using new and more powerful computational 

techniques, such as deep learning, was made possible in a variety of fields. Recently, 

deep learning methods are being applied to solve many geophysical problems, 

including the estimation of subsurface structures based on the velocity parameter. 

This work shows an interdisciplinary approach to estimate velocity models from 

computer modeling seismograms of non-real sub surfaces using a supervised learning 

artificial intelligence technique. The results obtained can contribute much to the 

scientific community as it demonstrates how changes in the seismic data modeling 

process reflects in the velocity model estimation. 

 

                                                           
1
 The paper “A Study on the Use of Deep Learning for Detecting Subsurface Structures” was edited by 

Elsevier Language Editing Services. We would like to express our gratefulness to the reviewers 

Antônio José da Silva Neto, Reynam Pestana and Alexsandro Cerqueira who took some part of their 

time to share their comprehensive and detailed thoughts on this works and carefully alert its main 

issues.  
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1. Introduction 

 

A variety of structures lie beneath the surface of the earth, including water and 

different types of rocks and salts. Among them are hydrocarbon fossil fuel 

resources such as natural gas and petroleum that are extremely valuable for the 

oil and gas industries because they form our primary source of energy. 

However, because the subsurface of the earth is vast, deep, and not easily 

accessible, the identification of such structures is expensive, time-consuming, 

and sometimes uncertain. 

 

One way of studying the subsurface is by using seismograms, which provide 

seismic-wave representations with much valuable information on the area. 

These data are generated by propagating waves in the medium produced by 

either explosives or thumpers in land acquisitions or by air guns in marine 

acquisitions. 

 

By studying the patterns within the seismic data, a representation of the 

subsurface based on some parameters such as the velocity of wave propagation 

(Al-Yahya, 1989) (Stork, 1992) is obtained. The representation shows each of 

the underlying structures. This approach is interdisciplinary as geologists and 

geophysicists rely on computational modeling tools to simulate the physical 

processes that occur during a seismic acquisition. This facilitates the analysis 

of seismograms and the development of new approaches to improve the 

understanding of subsurfaces. 

 

With the advancement of computer technology, such as the development of 

multi-core processors and graphical processing units (GPUs), the processing 

power of computers has increased by many folds. This has opened the 

possibility of working with a much larger amount of data and the use of new 

and more powerful computational techniques, such as deep learning. Recently, 

artificial intelligence (Sajeva, 2016) (Datta & Sen, 2016) and deep learning 

methods have been applied to solve many geophysical problems, including the 

estimation of subsurface structures based on the velocity parameter (Lewis & 

Vigh, 2017) (Araya-Polo, Jennings, Adler, & Dahlke, 2018) (Wu, Lin, & Zhou, 
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2018) (Campos, Nogueira, & Nascimento, Estimating Initial Velocity Models 

for the FWI Using Deep Learning, 2019) (Campos, Nogueira, & Nascimento, 

Tuning a Fully Convolutional Network for Velocity Model Estimation, 2019). 

 

This work presents an interdisciplinary approach to discuss the estimation of 

velocity models based in (Campos, Nogueira, Moreira, & Nascimento, 2019), 

where we presented a more technical discussion on how different parameters 

for modeling a wave propagation can affect the training process and the outputs 

of a deep learning model. An interdisciplinary discussion is fundamental to 

extend this work and make it available to a broader range of readers. 

 

This paper is organized as follows. Section 2 presents the different contexts of 

seismic acquisition and modeling, and introduces the concept of the velocity 

model and why its resolution is important. Section 3 explains the definition of 

deep learning and how it is performed on data. Section 4 describes the 

methodology and experiments used in this work. Section 5 discusses the results 

obtained from our experiments. Section 0 concludes this work. 

 

 

2. Seismograms and Velocity Models 

 

The exploration of subsurfaces is a highly expensive process for the oil and gas 

industries. It begins with the study of an area and continues up to the drilling of 

an extraction well. The first step for studying a subsurface is to acquire seismic 

information on the area. This is a crucial step for hydrocarbon exploration. It is 

therefore extremely important to understand how the seismic data is produced. 

Generally, the acquisition process can either be performed along a line to 

produce a vertical profile (2D setup) or over the entire area to produce a 

volumetric data of the subsurface (3D setup). 

 

The seismic acquisition process consists of the following: acoustic energy is 

usually generated by controlled sources such as explosives or thumpers on land 

and air guns in the sea. The energy then spreads in the subsurface as a spherical 

wavefront that propagates along all directions. The energy is reflected and 

transmitted by the different types of rocks that exist in the region. The reflected 

signals travel back to the surface and are captured by a set of receivers 

(geophones in a terrestrial acquisition and hydrophones in a marine acquisition) 
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placed along a predefined geometry. These receivers can record components of 

the physical velocity vectors from the particle or pressure field (when using 

hydrophones). Figure 1 illustrates the marine seismic acquisition. 

 

 

Figure 1: Marine seismic acquisition using a single seismic wave source. 
(Committee, 2017) 

Seismic modeling attempts to replicate the seismic acquisition process by using 

algorithms to simulate the sources responsible for the wave propagation and 

reflection and the wave capture by the receivers. Computers are used to 

simulate this process for the development, validation, and use of seismic 

imaging techniques, such as reverse time migration (RTM) (Baysal, Kosloff, & 

Sherwood, 1983) and full-waveform inversion (FWI) (Virieux & Operto, 2009) 

(Dos Santos, 2013), to analyze the seismic data in a less expensive and 

controlled environment. Such methods rely on velocity model representations 

of the subsurface to operate properly. 

 

The subsurface is represented in a velocity model by the value of the velocity 

that the wave propagates with in the given region. The velocity values 

represent the underlying structures that lie in an area because the velocity of the 

seismic wave varies with the material, i.e., the wave propagates at different 

speeds in water, salt bodies, sandstones, shales, and other structures. 

 

The higher the resolution of the velocity model, the more realistic is the 

representation of the subsurface. In other words, the values of the velocity are 

better defined in higher resolution models and thus, the structure can be better 
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identified during post-processing analysis. Figure 2 shows an example of a 

smoothed model and a high-resolution velocity model. 

 

         
a) b) 

Figure 2: An example of a a) smoothed and b) high resolution velocity models 

Velocity models are very important for the analysis of seismograms and 

decision making, but the production of models with high resolutions is 

challenging. This has stimulated researchers to experiment with different 

techniques, including artificial intelligence and deep learning methods. 

 

 

3. Deep Learning Models 

 

The production of a growing amount of information on a daily basis by all sorts 

of devices (smartphones, computers, IoT devices, etc.) has increased the need 

for the development of powerful tools and algorithms that can handle such 

quantities of data. This, together with the increasing power of computers and 

their capabilities for processing a wide variety of data, has contributed to the 

growth in the use of machine learning methods in recent years. 

 

However, the use of machine learning techniques is limited to finding patterns 

in certain types of data, especially when the data are large, complex, and 

extremely non-linear. In such cases, for example, in handwritten recognition 

(LeCun, et al., 1990) and speech or image analysis (LeCun & Bengio, 

Convolutional networks for images, speech, and time series, 1995), deep 

learning models can be used to find complex patterns that could not have been 
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found before at performance levels that sometimes even surpass that of human 

analysis (Krizhevsky, Sutskever, & Hinto, 2012). 

 

Although sometimes confusing, the definitions of artificial intelligence, 

machine learning and deep learning are different. Artificial intelligence (AI) is 

defined by the Merriam-Webster dictionary as “a branch of computer science 

dealing with the simulation of intelligent behavior in computers” (Merriam-

Webster, 2020). Machine learning is seen as a subset of AI where the idea is to 

train computer techniques that are able to learn useful representations from the 

input data (Chollet, 2017). Finally, deep learning is a subset of machine 

learning that emphasizes the learning capability by adding many layers in 

succession to extract even more meaningful representations from the data 

(Chollet, 2017). Figure 3 illustrates a diagram showing how deep learning 

differs from machine learning and from artificial intelligence approaches. 

 

 

Figure 3: Differences among Artificial Intelligence, Machine Learning and 

Deep Learning 

Deep learning models are usually variations of neural networks (Chollet, 

2017). These networks comprise certain types of layers (dense
2
, convolutional

3
, 

recurrent
4
, etc.) depending on the type of problem and the hyperparameters of 

the neural network, such as the guiding function for the training process, the 

                                                           
2
 A dense layer has all of its neurons connected to all the features of an input data 

3
 A convolutional layer processes a certain region of the input data instead of all of it at once 

4
 A recurrent layer has its output fed back to its input 
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minimization function, and the number of layers. The term “deep” refers 

specifically to the number of layers these neural networks have. 

 

As the number of layers increases, the capability of the network to handle more 

complex inputs tends to increase accordingly because of its improved ability to 

handle the non-linearity in the data and consequently, its ability to detect more 

patterns to describe the problem in question. However, this may lead to an 

increase in the computational resource one needs to process such model. Thus, 

there must be a tradeoff of resources available, complexity of the deep learning 

model and size of the data to be processed. 

 

Machine and deep learning models can be trained either in a supervised or 

unsupervised manner. The former (Figure 4) is typically used in regression or 

classification problems, where each input has a matching known output, 

whereas in the latter (Figure 5), the model finds patterns without any external 

guidance and relies only on the input data to form clusters of the most similar 

samples. 

 

Figure 4: Supervised Learning process 
(MC.AI, 2020) 
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Figure 5: Unsupervised Learning process 
(MC.AI, 2020) 

4. Methodology and Experiments 

 

We propose to treat the velocity model estimation problem as a regression 

problem and solve it using a supervised deep learning approach. The input is 

the seismic data and the output, i.e., the target, is a velocity model that 

represents the subsurface on which the seismic acquisition/modeling is 

performed. Therefore, our task can indeed be seen as a regression problem 

whose goal is to find a function that converts seismograms into velocity 

models. 

 

To form our dataset, we first created 1,020 bi-dimensional synthetic velocity 

models of marine regions 3000 m in depth and 3000 m in length with the 

geophysically significant structures separated into layers, folded layers, rocks 

sliding between the layers (fault areas) and vertical variation in the velocity 

value
5
. An example of velocity model can be seen in Figure 6. The process of 

creating a set of velocity models is described with more details in Figure 7. 

 

After the models were created, we applied seismic modeling to each of the 

models. The seismic modeling has many parameters that can be adjusted before 

starting the process. These parameters include the positions and numbers of 

                                                           
5
 The velocity within each layer is constant but varies between the different layers 
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sources and receivers, the dimensions of the subsurface, the timestep the wave 

travels before being recorded by the receivers and the peak frequency. In this 

work, both the sources and receivers were placed along the same geometrical 

axis during the modeling. We chose this configuration for the sources and 

receivers because this is a likely scenario during actual data acquisition when 

exploring unknown subsurfaces as illustrated in Figure 1. 

 

Figure 6: A synthetic velocity model containing 10 layers, folding, dipping 

and fault areas 

 

Figure 7: Flowchart illustrating the process for creating synthetic velocity 

models 
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Our experiments follow two strategies: in one, we vary the number of sources
6
 

and in the other, we vary the peak frequency
7
 for the seismic acquisition. After 

generating the seismic data for a given velocity model, we create the pair of 

data that will be used in the deep learning model and after this is done for every 

velocity model create, we compose the dataset for that seismic modeling 

configuration as described in Figure 8. 

 

 

Figure 8: Flowchart that demonstrates how the seismic data is created and how 

a dataset for an experiment is composed 

We use a fully convolutional network (Long, Shelhamer, & Darrel, 2015), 

specifically the U-Net architecture (Ronneberger, Fischer, & Brox, 2015), to 

perform the estimation of the velocity model. This network consists of two 

parts. The first part is called the encoder
8
 and the second part is called the 

decoder
9
. Identifying both the important aspects of the seismic data and where 

they are located is essential for the velocity model estimation problem as the 

                                                           
6
 As the sources are responsible for propagating the waves, we expect to change the information 

redundancy contained in the seismic data in the first strategy because fewer sources generate less 

redundant information and more sources generate more redundant information. 
7
 We expect to vary the amount of detail in the seismic data because the lower the frequency of the 

acquisition/modeling, the less details and complexity the seismic data has. 
8
 The encoder reduces the size of the input and simplifies the input for the detection of usable 

information in the data. 
9
 The decoder resizes the output of the encoder to the size of the output to determine the location of 

useful information. 
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seismic data contain location-sensitive information on the substructure, i.e., 

some parts of the seismogram represent certain regions of the subsurface better. 

 

For each seismic modeling configuration, we trained a different instance of the 

deep learning model but preserved its architecture, i.e., the training of a model 

with a set of seismograms neither contributed to nor interfered with the training 

of the other models. In order words, the configuration of the models remained 

the same throughout every experiment, but each model was trained with a set 

of seismogram results from its own unique seismic modeling configuration 

separately from the other models, as shown in Figure 9. 

 

 

Figure 9: Flowchart that demonstrates the process for training and evaluating a 

U-Net instance for all experiments available 

The evaluation of the estimations from the deep learning model relative to their 

ground-truth target counterparts was performed in two different ways. We first 

analyzed the estimation results qualitatively by comparing the plot of the 

ground-truth model with the plots of the estimated velocity models; these 

models were generated by the deep learning models trained with seismograms 

from different seismic modeling configurations as input. We then performed a 

quantitative analysis by calculating some statistical metrics to assess the quality 

of the regression methods where we now considered the entire data set instead 

of a single sample. 

 

We used five statistical metrics: the mean squared error (MSE), the mean 

absolute error (MAE), the coefficient of correlation (Pearson r), the coefficient 

of regression (R
2
), and the factor of two (fac2). The results should ideally show 
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a value as close to 0 as possible for the first two metrics and as close to 1 as 

possible for the remaining metrics. The MSE was used as the function to be 

minimized by the deep learning model during training in order to guide the 

deep learning model to its optimal configuration. 

 

 

5. Results 

 

Our discussion starts with the graphical analysis of the results. We chose for 

this analysis a ground-truth velocity model with 8 folding layers and dipping 

layers, as depicted in Figure 10a. This velocity model also has a fault area 

indicated in the figure by a yellow ellipsis. The remaining velocity models in 

Figure 10 are the results of estimations performed by the U-Net using seismic 

data generated by different configurations of the seismic modeling described 

above as input. 

 

We can infer from this analysis that the estimated velocity models c, f, and g in 

Figure 10 have the best deep learning results. They have well positioned layers, 

clearly visible folding and dipping layers, and fair estimates of the fault 

structure in the model. Furthermore, the velocity values are consistent with the 

ground-truth reference. 

 

However, we cannot generalize that these models performed well for all the 

samples by analyzing only a single sample. The performance of the models for 

this sample might only be a fortuitous coincidence, and therefore, further 

analysis with more samples is needed. It is however impractical to manually 

check every estimate from all the experiments to evaluate the models. Hence, 

proceeding with a quantitative analysis is desirable as we can quickly extend 

the performance evaluation to all the samples in the dataset by applying 

reliable methods to determine the quality of the regression achieved. 

 

Table 1 displays the results obtained from the U-Net in all the experiments and 

the time it took to completely train the deep learning model. It can be seen that 

the computational time taken to train the deep learning model was more 

sensitive to variations in the number of sources than variations in the peak 

frequency. This is because the size of the seismic dataset became larger as we 

increased the number of sources during the modeling/acquisition, whilst 
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changing the peak frequency changed the values obtained during the 

modeling/acquisition, but not the size of the data. 

 

   
                                                     a) 

 
                       b)                                                            c) 

 

                       d)                                                            e) 
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                       f)                                                            g) 

Figure 10:  a) Ground-truth velocity model and graphical results obtained with 

the experiments using b) 1 source, c) 10 sources, d) 25 sources, and e) 50 

sources all modeled with a peak frequency of 4 Hz, and 25 sources with a peak 

frequency of f) 8 Hz and g) 16 Hz. 

Table 1. Evaluation statistical metrics and the time for training (in hours) 

the U-Net in each of the experiments 

  Peak 

Frequency 

(Hz) 

Time 

(h) 
MSE MAE R² r fac2 

1 

source 
4 7.19 14172 75.39 0.966 0.983 0.999 

10 

sources 
4 7.43 7313 45.41 0.978 0.989 1.0 

25 

sources 
4 8.10 6837 44.19 0.980 0.990 1.0 

25 

sources 
8 8.14 6126 46.79 0.982 0.991 0.999 

25 

sources 
16 8.09 7578 54.69 0.980 0.990 1.0 

50 

sources 
4 9.07 7207 49.72 0.980 0.990 0.999 

 

Apart from analyzing the computational time, it can also be seen from Table 1 

that the experiments have broadly similar statistical metrics. Although they are 

close to one another, these metrics contain much information on how each 

model performed. For example, having only one source yields a high MSE, 

indicating that the U-Net did not progress much during training and hence 
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detected fewer useful patterns in the input data that could be translated into the 

velocity model compared to the models trained with the other configurations. 

 

Following this line of thought, it is reasonable to assume that having more 

sources will lead to better results. We can indeed see that the MSE decreased 

by almost half when 10 sources were modeled instead of 1. The other statistical 

metrics also improved significantly. This pattern was repeated when the 

sources were increased from 10 to 25 at a constant peak frequency of 4 Hz. 

However, all the metrics deteriorated when the number of sources was 

increased from 25 to 50. We believe that this deterioration is due to the large 

size of the velocity model. Because the subsurface and consequently, the 

velocity model, are relatively small, increasing the number of sources 

excessively might increase the input data complexity and introduce data 

artifacts that distort the U-Net learning process and lead to degraded 

performance. 

 

An interesting result was obtained when the peak frequency of the seismic 

modeling was changed. After increasing the peak frequency from 4 to 8 Hz, all 

the statistical metrics except the MAE improved even further and we achieved 

the best results in this work. However, when the peak frequency was doubled 

again, the metrics became worse than the experiment with 50 sources. Since 

the peak frequency changes the level of details in the seismic data and 

consequently, the numerical values in the data, we believe that changing the 

values and increasing the details excessively could cause the U-Net to 

misidentify certain patterns in the seismic data and associate them erroneously 

with the velocity model. 

 

The results obtained with these experiments are extremely interesting. They 

show that a deep learning model can be applied to even a simple seismogram 

with only a single source to estimate a velocity model with a fairly good 

resolution. The results also show that different configurations of the seismic 

modeling produce different outputs in the deep learning model and that 

increasing the number of sources or the peak frequency excessively does not 

necessarily lead to better estimated velocity models.  
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6. Conclusions 

 

We demonstrated in this work how a deep learning model can be used to 

estimate the velocity models of subsurfaces from seismic data. The seismic 

data were generated from seismic modeling with different configurations from 

a common set of synthetic ground-truth velocity models. We could thus 

evaluate how the different configurations influenced the performance of our U-

Net deep learning model and consequently, the resolution of the estimated 

velocity models. 

 

We conclude that the U-Net can estimate velocity models from seismograms 

acquired from even just a few sources because the size and complexity of the 

subsurface is not high. However, we believe that as the size grows and more 

complex structures such as salt bodies are considered, more sources would 

generate more patterns for the deep learning model to detect and thus generate 

better estimates. Moreover, because the U-Net was shown to be insensitive to 

high peak frequencies, i.e., large amounts of detail in the seismic data, 

modeling with middle-range frequencies produces the best estimations. 

 

The results are promising as the U-Net can estimate velocity models with 

considerably high resolution from seismograms produced by seismic modeling 

with different sets of parameters. This indicates that the method can give an 

initial estimation even if the seismogram is produced from a limited 

configuration. Future research will focus on experiments dimensionality 

reduction applied on the seismic data and different deep learning architectures. 
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