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ABSTRACT

JMP® Genomics is statistical discovery software that
can uncover meaningful patterns in high-throughput
genomics and proteomics data. JMP® Genomics is
designed for biologists, biostatisticians, statistical
geneticists, and those engaged in analyzing the vast
stores of data that are common in genomic research
(SAS, 2009).

Data mining was performed using JMP® Genomics
on the two collections of microarray databases
available from National Center for Biotechnology
Information (NCBI) for lung cancer and breast cancer.
The Gene Expression Omnibus (GEO) of NCBI
serves as a public repository for a wide range of high-
throughput experimental data, including the two
collections of lung cancer and breast cancer that were
used for this research. The results for applying data
mining using software JMP® Genomics are shown in
this paper with numerous screen shots.

Keywords: Microarray databases, Lung Cancer,
Breast Cancer, Data Mining, Supercomputing, Gene
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1. BACKGROUND

The software used in this research is JMP® Genomics
from SAS Institute, Inc. of Cary, NC that according to
Product Brief of SAS (2009) dynamically links
advanced statistics with graphics to provide a
complete and comprehensive picture of results,
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whether the data comes from traditional microarray
studies or data summarized from next-generation
technologies. Preliminary work done by the authors
for the visualization by supercomputing data mining
using JMP® Genomics from SAS for similar data was
presented in Segall et al. (2010) and (2009).

Some of the previous research that has been
performed by others in the area of applications of
supercomputing to data mining include those of Zaki
et al. (1996) for parallel data mining, Thoennes and
Weems (2003) for performance of data mining on
complex microprocessors, and data mining of large
datasets with geospatial information by the image
spatial data analysis group (2009) and University of
Illinois at Urbana-Champaign, and Wilkins-Diehr and
Mirman (2009) for on-demand supercomputing for
emergencies that includes discussions for applications
to breast cancer diagnosis.

2.DATA

The Gene Expression Omnibus (GEO) is a public
repository that archives and freely distributes
microarray, next-generation sequencing, and other
forms of high-throughput functional genomic data
submitted by the scientific community. These data
include single and dual channel microarray-based
experiments measuring mRNA, miRNA, genomic
DNA (including arrayCGH, ChIP-chip, and SNP), and
protein abundance, as well as non-array techniques
such as serial analysis of gene expression (SAGE),
and various types of next-generation sequence data. In
addition to data storage, a collection of web-based
interfaces and applications are available to help users
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query and download the experiments and gene
expression patterns stored in GEO.

The data sets used in the research presented in this
paper are those from the Gene Expression Omnibus
(GEO) from the National Center of Biotechnology
Information (NCBI). One set of data is that of
expression data for lung cancer that was made public
on August 30, 2008; and the other is that for gene
expression profiling in breast cancer that was made
public in February 2006.

Lung Cancer Data Used in This Paper

According to NCBI (2007), the detection, treatment,
and prediction of outcome for lung cancer patients
increasingly depend on a molecular understanding of
tumor development and sensitivity of lung cancer to
therapeutic drugs.

NCI (2007) states that the application of genomic
technologies, such as microarray, is widely used to
monitor global gene expression and has built up
invaluable information and knowledge, which is
essential to the discovery of new insights into the
mechanisms common to cancer cells, resulting in the
identification of unique, identifiable signatures and
specific characteristics. According to NCBI (2007) it
is likely that application of microarray may
revolutionize many aspects of lung cancer being
diagnosed, classified, and treated in the near future.
NCBI (2007) used microarrays to detail the global
gene expression patterns of lung cancer.

The overall design of NCBI (2007) as used in this
paper consisted of adjacent normal-tumor matched
lung cancer samples that were selected at early and
late stages for RNA extraction and hybridization on
Affymetrix microarrays. A total of 66 samples were
used for microarray analysis in NCBI (2007),
including pairwise samples from 27 patients, who
underwent surgery for lung cancer at the Taipei
Veterans General Hospital, two tissue mixtures from
the Taichung Veterans General Hospital, two
commercial human normal lung tissues, one
immortalized, nontumorigenic human bronchial
epithelial cell line, and 7 lung cancer cell lines.

Breast Cancer Data Used in This Paper

The breast cancer data set used in this research was
obtained on the web from NCBI (2006), which
analyzed microarray data from 189 invasive breast
carcinomas and from three published gene expression
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datasets from breast carcinomas. NCBI (2006)
identified differentially expressed genes in a training
set of 64 estrogen receptor (ER)-positive tumor
samples by comparing expression profiles between
histologic grade 3 tumors and histologic grade 1
tumors and used the expression of these genes to
define the gene expression grade index. The data set
for the figures generated in this paper consisted of
over 22,000 rows representing different variables.

The breast cancer data presented by NCBI (2006) was
from 597 independent tumors were used to evaluate
the association between relapse-free survival and the
gene expression grade index in a Kaplan-Meier
analysis. All statistical tests performed by NCBI
(2006) were two-sided. The overall design of NCBI
(2006) was 64 microarray experiments from primary
breast tumors used as training set to identify genes
differentially expressed in grades 1 and 3. NCBI
(2006) design included 129 microarray experiments
from primary breast tumors of untreated patients used
as validation set to validate the list of genes and its
correlation with survival.

3. RESULTS

Data Mining Performed Using Sas Jmp®
Genomics For Lung Cancer Data

Figure 1 shows the window called “basic expression
workflow” that is the process that runs a basic
workflow for expression data used to select variables
of interest.

The data used for the lung cancer and its associated
tumors consisted of over 22,000 rows representing
genes and 54 columns representing samples as shown
in Figure 2.

Our research using SAS JMP® Genomics yielded
distributions plots of conditions, patients and
characteristics; correlation analysis of principle
components as shown in Figure 3 which shows
“normal” versus ‘“cancer” in the scatterplots , and
dendograms of hierarchical clustering as shown in
Figure 4. Figure 5 shows a Volcano plot of the
summary plot of individual genes and their differences
in condition of cancer from normal tissues.

Our research performed some predictive modeling
using SAS JMP® Genomics that yielded one-way
analysis plots of fitting a selected gene number 1773
by condition and also by patient as shown in Figure 6.
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Figure 2. Adenocarcinoma Cancer Data Figure 4. Dendograms of hierarchical clustering
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Figure 6. One-way analysis plots
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Data Mining Performed Using Sas Jmp®
Genomics For Breast Cancer Data

Box plots of a 50-iteration simple random cross-
validation root mean square error (RMSE) are shown I
Figure 7 for five different models. In this Figure 7, the
dependent variables is “grade” for level of severity of
cancer tumors in breast cancer, and the predictor
continuous variables is “age”. Cross validation was
performed that on predictive model settings selected
and compares the results.

Figure 8 shows the 235 predictors ranked for each of
the models used as training set data. Figure 9 shows
the Heat Map and Dendograms for breast cancer data
which uses colors to indicate the intensity of
correlation. The lower right corner of Figure 9 Heat
Map is in red indicating highly correlated microarrays.

The frequency distributions are shown in Figure 10
that were obtained by highlighting the selected portion
of Figure 9 Heat Map and indicate no grade 3 tumors.
Partitioning the decision trees as shown in Figure 11
shows contingency analysis of predicted class by
grade of tumor, and also the distribution data by true
grade of tumor, actual probabilities, and correct
predictions.

Model RMSE Comparison 2
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Figure 8 Training set data
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4. CONCLUSIONS AND SUMMARY

This paper emphasizes the usefulness of SAS JMP®
Genomics with supercomputing and data mining. This
research illustrates genetic visualization for the
analysis and modeling of microarray databases for
both lung and breast cancer as a tool for better
understanding of the consequences of these diseases
and for potential strategies for their treatments
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