
A Centralized Control and Dynamic Dispatch Architecture for File Integrity
Analysis

Guantong Wang, Ronald F. DeMara, Adam J. Rocke
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2450

ABSTRACT

The ability to monitor computer file systems for unauthorized
changes is a powerful administrative tool. Ideally this task
could be performed remotely under the direction of the
administrator to allow on-demand checking, and use of
tailorable reporting and exception policies targeted to adjustable
groups of network elements. This paper introduces M-FICA, a
Mobile File Integrity and Consistency Analyzer as a prototype
to achieve this capability using mobile agents. The M-FICA
file tampering detection approach uses MD5 message digests to
identify file changes. Two agent types, Initiator and Examiner,
are used to perform file integrity tasks. An Initiator travels to
client systems, computes a file digest, then stores those digests
in a database file located on write-once media. An Examiner
agent computes a new digest to compare with the original
digests in the database file. Changes in digest values indicate
that the file contents have been modified. The design and
evaluation results for a prototype developed in the Concordia
agent framework are described.

Keywords:Mobile Agents, File Integrity, Message Digest, and
Computer Security

1. INTRODUCTION

File integrity analyzers serve as a component of an intrusion
detection environment by performing filesystem inspections to
verify the content of security-critical files in order to detect
suspicious modification. On-demand deployment of mobile
agents for file integrity checking can address several challenges
present in client/server environments. The mobile agents travel
between network hosts to inspect changes to the local file
system using local system recourses. Upon successful
inspection, they return to report the results.

There are three main approaches to detecting file changes [1].
These include comparison of:

• the entire file,
• metadata such as modification time, and
• file signatures.

Comparison with an unaltered copy of monitored data is the
most robust method of detecting file changes but it involves
substantial disk storage network transfer overhead. Comparison
using file metadata can be defeated using techniques such as
raw disk access to avoid altering inode data or modifications to
the system clock. For mobile agents, comparison of file
signatures is the best choice.

Agents can use a cryptographic hash function applied to a
message to generate a digest representing the message.

Message digests are similar to checksums or cyclic redundancy
checks in that they represent the contents of a message in a
relatively short number of characters. There are two important
properties of message digest algorithms. The first is that the
algorithm cannot be easily reversed. That is, with at least 128
bits of output, a brute force attack has 1.7 x 10E38 possible
input values of the same length to evaluate before finding one
that generates the correct output. Consequently, it is unlikely
that any two different documents produced at random during
the course of human history would have the same 128-bit
message. The second useful property of message digest
algorithms is that a small change in the input results in a
significant change in the output.

There are many message-digest functions available today. All of
them work in roughly the same way, but they differ in speed and
specific features [2]. One of the most widely used message
digest functions is the MD5 [3] function, which was developed
by Ronald Rivest. The MD2, MD4, and MD5 message digest
functions all produce a 128-bit number from a block of text of
any length. Each of them pads the text to fixed-block size, and
then performs a series of mathematical operations on successive
blocks of the input. The MD2 algorithm has relatively few
weaknesses, but it is computationally demanding. MD4 was
designed to overcome the speed limitation. MD5 was
introduced based on potential attacks against MD4 to include
one more round of internal operations and several significant
algorithmic changes.

2. COMMERCIALLY-AVAILABLE FILE ANALYZERS

The advantages and disadvantages of three popular file integrity
checkers, Tripwire, Veracity and Tiger, are presented. The
ability of mobile agents to address these disadvantages is
described. Finally, the design, implementation and testing of
M-FICA is presented.

Tripwire
Tripwire [4] is an integrity-checking program that gives system
administrators the ability to monitor file systems for added,
deleted, and modified files. A high level model of Tripwire
operation [5] is shown in Figure 1. This shows how the
Tripwire program uses two inputs: a configuration file
describing the file system objects to monitor, and a database of
previously generated signatures.

The Tripwire policy file lists the system and data files to
monitor as specified by the administrator. When running
Tripwire software for the first time, a baseline database of the
file system is created from the policy file. Subsequent operation
compares the current files against this baseline database to

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 1 1ISSN: 1690-4524

identifies any changes, additions, or deletions. If a policy
violation is detected, it will be identified and described in a
violation report.

Tripwire software works at the most fundamental layer
protecting the servers and workstations that make up the

corporate network. Tripwire contains two major packages:
Manager and Connector. The Manager is installed on a host
machine and acts as the console and reporter. The Connector is
installed on each protected client and contains configuration,
database, policy, and report files. Features and Benefits of
Tripwire are listed in Table 1.

Figure 1: Tripwire Design

Table 1: Features and Benefits of Tripwire

Feature Benefit

HQ Manager Compatible-- interface with the enterprise-wide
management console

Allows user to have an upgrade path that gives them enterprise-wide
control when used with the Tripwire HQ Manager product.

Cryptographic Signing-- database, policy and report files can
be cryptographically signed

Reduces the need for removable media for the database, policy, report,
or Tripwire data file.

Reporting-- report violations at configurable levels of detail. Different levels of reports allow users to select a response to Tripwire
violations.

Email Reporting-- violation reports can be emailed to a
recipient.

Send reports via email to the appropriate systems administrator(s)
based upon individual rule violations.

Enhanced Policy Language-- a series of rules that specify
Tripwire software checks the integrity of the system.

The policy language has been expanded to include flexibility in
defining rules, as well as the ability to prioritize violations based upon
severity.

Severity Rating-- files can be given separate severity levels. Prioritize critical system files with a higher severity level. Reports that
have a "high" severity rating can be selected for immediate viewing.

While Tripwire is a popular file integrity checker, there are
some disadvantages as described below. These disadvantages
of Tripwire are addressed by deploying mobile agent
technology:
• Lack of Interoperability. Tripwire has limited flexibility in

updating the system for new attacks.
• Extensive network usage. Tripwire processes most of this

data locally. Data is sent to remote network locations
where the data is further abstracted, and then eventually
sent to a central processing site that evaluates results from
all location in the network.

• Expensive to install. Tripwire scheme assumes that a host-
based checker is installed on every host.

• Single point of Failure. Because of Tripwire's central
processing system, a failure may disable the entire security
system.

Veracity
Veracity [6] is a computer program that detects changes in file
systems by creating and manipulating snapshots of directory
trees. A snapshot consists of an ordinary text file that records
the structure of the directory tree, the names of the files in the
tree, and the cryptographic digests of the files in the tree. This
snapshot can later be used to generate a list of changes in the
tree since the snapshot was made. Client/server networking
allows an administrator to monitor the integrity of hundreds of
computers from a single point. Table 2 shows the comparison

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 12 ISSN: 1690-4524

of Tripwire and Veracity. Other Veracity characteristics are
listed below:
• Taking A Snapshot. The snapshot appears as a file in the

directory at the root of the tree.
• Checking Trees. A snapshot file can be used to detect

changes that have been made in the directory tree since the
snapshot was taken. This process, repeated regularly,

enables the snapshot to track the changing file system
while providing an unbroken chain of integrity checking.

• Snapshots. Snapshot files are ordinary text files that store
the structure of the directory tree they represent, along with
the names and cryptographic hashes of the files in the tree.

• Snapshot files are at most 70 characters wide and contain
only printable ASCII characters.

Table 2: Comparison of Tripwire and Veracity

Tripwire Veracity

Architecture Client / Server Client / Server
Language Standard C with micro header file Funnelweb: a literate-programming macro

preprocessor
Available for many platforms Yes Yes

Able to check both files and
directories

Yes - The configuration file contains a list of
entries enumerating the set of directories or files
to be monitored

Yes - It takes a snapshot of an entire directory
tree recording the tree structure, file names, and
cryptographic digests of each file.

Solve the false-positive
problem: able to ignore files
that frequently change

Yes - Use selected mask that describes which file
attributes can be changed without being reported
as an exception

Yes - Use a flexible means for specifying which
subtrees or files are to be checked and to what
extent.

Full strength cryptographic
hashes

Yes Yes

Able to monitor entire network
from a single point

Yes - Tripwire HQ Manager. This is a software
"console" that enables control of HQ Connectors
across an network from a central location.

Yes - Veracity's snaplets system simplifies this
automated checking allowing monitoring of an
entire network.

Officially allocated port Unknown
The Internet Assigned Numbers Authority has
assigned TCP port 1062 for use by
Veracity/FreeVeracity.

Resource limits Unknown
The server configuration file allows limits to be
placed on the server's use of processes, memory
and (using access delays) CPU time.

Cryptographic Signing Yes - The Tripwire database, policy, and optional
report file can be cryptographically signed

Yes

Violation reports can be
emailed to specified recipients.

Yes Yes

Multiple Levels of Reports Users can choose from five levels of reports. Unknown

Tiger
Tiger [7] is a set of scripts that search a system for weakness
which could allow an unauthorized user to change system
configurations, gain root access, or change important system
files. Included in the package are a static audit tool, a signature
database to check system binaries against known signatures of
patch files, and a network traffic analyzer that aids system
administrators in assessing outside threats. Tiger scans the
cron, inetd, and passwd files for vulnerabilities. It also inspects
file permissions, aliases, and PATH variables to see if they can
be used to gain root access [8]. Scans for system vulnerabilities
in inetd, host equivalents, and PATH variables are performed to
determine if a user can gain remote access to the system. MD5
signatures are used to determine if key system binaries have
been altered. Tiger scripts may be run together or individually
to allow system administrators to determine the best strategy for
checking their system

Most available security tools fails into two categories: static
audit tools and integrity checkers. The foundations of integrity
checking programs, such as Tripwire or Veracity, are that a

database is created with some unique identifier for each file to
be monitored. By recreating that identifier, which could be a
copy of the entire file contents, and comparing it against the
saved version, it is possible to determine if a file has been
altered. Furthermore, by comparing entries in the database, it is
possible to determine if files have been added or deleted from
the system.

Tiger serves as a static audit tool. It is a checklist program,
similar to the shell scripts. A checklist is one form of this
database for a UNIX system. The file contents themselves are
not usually saved, as this would require too much disk space.
Instead, a checklist would contain a set of values generated
from the original file - usually including the length, time of last
modification, and owner. The checklist is periodically
regenerated and compared against the saved copies to identify
discrepancies from the stored values. A particular weakness of
Tiger is that a user gaining access to the root account may
modify the raw disk to alter the saved data without it showing in
the checklist.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 1 3ISSN: 1690-4524

3. ROLE OF MOBILE AGENTS IN FILE INTEGRITY

Mobile agents are program instances that are able to move
within a network under their own control. Mobile agents consist
of code, a data state, and an execution state. Mobile agents are
able to autonomously migrate, communicate to each other, and
offer services or interfaces to applications.

Characteristics of Mobile Agents
Mobile agents serve as a framework on top of which
decentralized infrastructure services can be built. By embedding
functionality in mobile software agents distributed across the
network, intelligence traditionally centralized in a few
controlling nodes is pushed out into the system at large. The
following are important characteristics for mobile agents:
• encapsulate a thread of execution and preserve data when it

moves from one network node to another,
• move easily across the network,
• must be small in size due to the cost associated with

hosting and transporting an agent,
• are able to cooperate with other agents in order to perform

complex or dynamic tasks, and
• are able to identify and use resources specific to any node.

Mobile Agents for File Integrity
There are several motivations for consideration of mobile
agents: [9] [10] [11]
• Mitigate network latency. For critical real-time systems,

latencies are not acceptable. Multiple agents offer a
solution as they can be dispatched from a central controller
to act locally and directly execute the controller's
directions.

• Reduce network load. Mobile agents reduce the flow of
raw data in the network as they move the computations to
the data rather than the data of the computations.

• Execute asynchronously and autonomously. Tasks
embedded in mobile agents become independent of the
creating process and can operate asynchronously and
autonomously.

• Adapt more dynamically. Mobile agents also have the
ability to sense their execution environment and
autonomously react to changes.

• They are naturally heterogeneous. Because mobile agents
are generally computer- and transport-layer-independent
and are dependent only on their execution environment,
they provide optimal conditions for seamless system
integration.

• Provide robust and fault-tolerant behavior. The ability of
mobile agents to react dynamically to unfavorable
situations enables building of robust and fault-tolerant
distributed systems.

4. MOBILITY-ENHANCED NETWORK FILE
INTEGRITY (M-FICA) PROTOTYPE

The Mobile File Integrity and Consistency Analyzer, M-FICA,
is a file integrity checker using mobile agent techniques. M-
FICA agents are sent from a host to a client machine, reside
there to check file changes of the local system using local
system recourses, then return to report the results.

M-FICA was developed based on experience with the Tethered
Agent and Collective Hive (TACH). The TACH concept for
remote-access system management was defined by Costa [12].

Figure 2 shows a high-level view of TACH. The three
components of the architecture include a centralized Hive to
keep track of agents and collect data, a Task Manager to assign
priority codes and conditions of task execution, and an Agent
Registry to track fingerprints of agents. Upon deployment by
the Task Manager, agents establish communication with the
Hive and the Agent Registry registers the agent as "live" then
executes tasks defined by its Customized Task Module.
Limitations of TACH include the use of a centralized Hive for
agent control and a periodic communication protocol between
agents with time-out detection used to detect status changes in
the agents. If the hive is disabled then the entire TACH system
has been compromised.

Functional Requirements
There are two basic routines to complete file integrity tasks.
The baseline database is created by computing a digest for each
file designated in the policy file. Subsequent scans compute a
new digest for each monitored file and compare the new result
with the baseline.

Environmental Requirements
In a distributed computing environment, it is common for
several platforms to exist. Therefore, Java was selected as
programming language because of its platform independence.
M-FICA agents are programmed using the Concordia mobile
agent API. It is necessary that the system can be run on any
hardware platform. Therefore, any machine that can offer a Java
1.1 run-time environment can meet the basic needs of the
system.

Design Issues and Features
Issue 1. Because of the heterogeneous nature of

computer equipment at most sites, the code is written in Java
language.

Issue 2. Detecting file tampering by comparing each
file against a duplicate copy requires considerable storage and
time. Generating and comparing file signatures may require
more computation, but it requires much less storage so the
signature approach is selected.

Issue 3. Message digests represent the contents of a
message in a relatively short number of characters. MD5 is
selected as the encoding algorithm to digest the file contents.

Issue 4. Agents shall be small, specialized pieces of
code. For maximum efficiency, two agents are designed to
complete the task: Initiator and Examiner. The size of all six
associated classes is less than 5K bytes.

Issue 5. Policy file and baseline database file integrity
is critical. To avoid being corrupted, those files are stored on
removable media.

High-level Design
The Mobile Agent File Integrity Analyzer project uses two
agents: Initiator and Examiner to complete the functional
requirements. Initiator, illustrated in Figure 3, reads the
configuration, or policy, file and then reads each designated file
from the local system. It then computes a digest for each file
and reports to the host. All the digests are collected in a
baseline file stored on read-only media.

Examiner, illustrated in Figure 4, reads the policy and system
files, then generates new message digests using the MD5
algorithm. It then reads original message digests from baseline
and compares each new message digest with baseline. Finally it
produces a list of changed files to report to the host.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 14 ISSN: 1690-4524

A Taxonomy of IDS architectures is presented in [13]. In
particular, the class of centralized Control with Dynamic
Dispatch (CCDD) architectures have a single control module
coupled with dynamic data movement. In the M-FICA
framework, agents are dispatched across the network to collect
data and return only the filtered results to a single host for
processing. This single host serves as the centralized control
node. Since the agents can be sent to any node in the network at
times specified by the server during runtime, there is a dynamic
dispatch of agents. There is also a dynamic dispatch of data as
data travels with the agents throughout the network domain.

5. EXPERIMENTAL RESULTS

A test file is created to evaluate agent operation. Initiator is
launched to compute a baseline digest. Examiner then
computes another digest for comparison. The results shall be the

same when file contents are unmodified. For subsequent tests,
the test file is modified. When Examiner checks the file again,
the results shall be changed. The result is illustrated in Figure
5.

Result shows that the Initiator/Examiner agent protocol is able
to identify changes in file contents resulting in an incorrect
message digest. This can provide an effective means to manage
file integrity checking in dynamic environments where
numerous instances of policy files dictating which files should
be scanned are needed to be maintained on the remote hosts.
Instead this information is dispatched with the Examiner agent
when needed from the administrator's site. While current
capabilities of M-FICA include reliable detection of file
modifications, the policy administrator console remains as
future work.

Figure 3: Mobile Agent Initiator Architecture

Figure 2: TACH Architecture

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 1 5ISSN: 1690-4524

Figure 4: Mobile Agent Examiner Architecture

Figure 5: Change Detected For File Containing The Text “Security Agent”

6. CONCLUSION AND FUTURE WORK

The Mobile File Integrity and Consistency Analyzer (M-FICA)
prototype has been designed and assessed. Results show that
deploying two agent types can form a sufficient protocol for file
integrity checking. Initiator and Examiner agents perform the
file integrity tasks while maintaining space-efficient operation
requiring as little as 5 KB/agent of Java code. Even when under
conditions of network load, results show agents of that size to
keep detection delay well below 5 seconds.

Furthermore, deploying Java agents overcomes the
heterogeneous environment barrier. The test indicated that the
same software could also be used in Windows 98 and Windows
NT environments in multiple network labs without
modification. Thus, agent-based integrity checkers can be cost
effective when compared with client/server-based architectures.
Agent-based integrity checkers can provide more readily-
maintainable security tools that can be more directly customized
on a dynamic basis upon deployment.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 16 ISSN: 1690-4524

Future research tasks include developing a centralized control
console and semi-automatic adjustments to the policy file by
prompting the administrator for updates to address the false
positive problem inherent in all integrity analyzers. Also, use of
different levels of security measurement by the agents is to be
explored, along with experiments to determine Examiner agent
size and complexity limits based on network loading and
latency trade-offs.

Malicious action by a legitimate user, referred to as insider
tampering, is particularly challenging to deal with since attacks
perpetrated by knowledgeable insiders have the potential to be
more devastating than those that are externally originated.
Additional research includes adapting and extending the M-
FICA framework to mitigate the risk associated with network
tampering exposures including those associated with insider
risk presented in [14].

REFRENCES

[1] Simson Garfinkel and Gene Spafford, Practical Unix
Security, O'Reilly & Associates, Inc. 1991.

[2] Bruce Schneier, Applied Cryptography, 2nd Edition,
John Wiley & Sons, Inc., 1996.

[3] R. L. Rivest. RFC 1321: “The MD5 Message Digest
Algorithm”. Technical Report, Internet Activities Board,
April 1992.

[4] Gene H. Kim, Eugene H. Spafford, “The Design and
Implementation of Tripwire: A File System Integrity
Checker”, COAST Laboratory, Department of Computer
Sciences, Purdue University, 1995. <URL:
ftp://coast.cs.purdue.edu/pub/papers/gene>

[5] Gene H. Kim, Eugene H. Spafford, “Experiences With
Tripwire: Using Integrity Checks for Intrusion Detection”.

System Administration, Networking and Security
Conference III, Usenix, 1994.

[6] Rocksoft Limited, 1999, “Veracity Network Integrity”, <
URL: http://www.veracity.com/index.shtml>

[7] Daniel Framer, Eugene H. Spafford, “The Cops Security
Check System TAMU Security Tools - Tiger”, 1993,
<URL: http://www.net.tamu.edu/network/tools/tiger.html>

[8] Bobby S. Wen. “Open-Source Intrusion-Detection Tools
for Linux”, Linux Journal, October 2000.

[9] Simon Y. Foo and Michael Arradondo, “Mobile Agents
for Computer Intrusion Detection”, Proceedings of the
36th Southeastern Symposium on System Theory, March
2004.

[10] Wayne Jansen, Peter Mell, Tom Karygiannis, Don Marks,
“Applying Mobile Agents to Intrusion Detection and
Response”, National Institute of Standards and
Technology, Computer Security Division, 1999.

[11] Oleg Kachirski and Ratan Guha, “Effective Intrusion
Detection Using Multiple Sensors in Wireless Ad Hoc
Networks”, Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, January
2003.

[12] C. Costa, “TACH Design Concept”, Lockheed Martin
Corporation, 1998.

[13] Adam J. Rocke and Ronald F. DeMara, “Collaborative
Object Notification Framework For Insider Defense Using
Autonomous Network Transactions”, Autonomous Agents
and Multi-Agent Systems, Vol. 12, No. 1, pp. 93 – 114,
2006.

[14] Ronald F. DeMara and Adam J. Rocke, “Mitigation of
Network Tampering Using Dynamic Dispatch of Mobile
Agents”, Computers & Security, Vol. 23, No. 1, pp. 31 –
42, 2004.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 1 7ISSN: 1690-4524

	P101422

