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ABSTRACT 

The Design of TCP/IP protocol makes it difficult to reliably 
traceback to the original attackers if they obscure their identities 
by logging through a chain of multiple hosts. A thumbprint 
method based on connection content was proposed in 1995 to 
traceback attackers, but this method is limited to non-encrypted 
sessions. In this paper, we propose a thumbprint based on time 
intervals, T-thumbprint, to identify a connection. T-thumbprint 
is a sequence of time gaps between adjacent TCP ‘Send’ packets 
of an interactive terminal session. An algorithm is presented to 
correlate two T-thumbprints to see if they belong to the same 
connection chain. We also discuss how to use T-thumbprints to 
traceback an attacker on the Internet, and how to defeat at-
tacker’s manipulation. T-thumbprint has advantages of: (1) It 
can be applied to encrypt sessions; (2) It does not require tightly 
synchronized clocks; (3) It can defeat attacker’s manipulation to 
some extent; and (4) It is efficient, can be used to trace attackers 
in real time.  

1. INTRODUCTION 
People depend on the Internet more and more in daily life and 
business activities. Research has shown that various attacks 
through the Internet have increased significantly with the 
growth of the Internet [7]. To hide their identities, most attack-
ers log though a series of compromised hosts before launching 
their attacks, and the compromised hosts are called stepping-
stones [3]. Attackers can avoid their responsibilities for their 
activities by using stepping-stones because of known spatial, 
political and cooperation reasons.  

To prevent interactive connection attacks, many techniques have 
been developed. One of them is to prevent a machine from 
being used as a stepping-stone, that is to detect if there is a 
connection chain going through a particular host, so as to take 
some countermeasures to protect the victims, such as notify the 
administrator or directly cut off the chain [3, 4, 8]. Some other 
methods used to protect victims are to trace back to the at-
tacker’s host [1, 6, 9, 10]. Traceback techniques are classified 
into two categories: (1) IP traceback, and (2) connection trace-
back. Research on IP traceback has become rather active since 
1999 because of DDOS attacks [11, 12]. IP traceback can’t go 
beyond the hosts that send the spoofed IP packets. Typically, a 
proficient attacker often launches attack with the help of other 
hosts. So only identifying the source of IP packets is not suffi-
cient to hold the attackers responsible for their actions. Tech-
niques for traceback across stepping-stones have become more 
important under this situation. There are many papers published 

in traceback across stepping-stones [1, 3, 6, 13, 14, 15]. Most of 
these technologies are either network-based or host-based. The 
representatives of host-based approaches are DIDS (Distributed 
Intrusion Detection System) [14], CIS (Caller Identification 
System) [6], and Caller ID [1]. The typical network-based ap-
proaches are thumbprint [1], time-based approach [3], and de-
viation-based approach [13]. 

DIDS has two problems: (i) it can’t be applied to large-scale 
network because of its centralized analyzing server; (ii) it fails 
to traceback if one host is unavailable to provide the user’s audit 
log. The main problem with CIS is that the network load will be 
increased because the query incurs additional communication 
when the user tries to login one host from another. The draw-
backs of Caller ID [1] include the possibility that counter-
intruders cannot break into one of the compromised hosts, as 
well as running the risk of accidentally damaging intermediate 
systems.  

With the help of thumbprints, which is a short summary of the 
contents of a connection, we can uniquely identify a connection 
and correlate those related connections. Because the thumbprint 
proposed in [1] requires only 24 bytes per minute per connec-
tion, and it is impossible to infer the content from the thumb-
print, so it has the advantages: (1) efficiency; (2) secrecy; and (3) 
ease of implementation. But it faced a fatal problem that it 
cannot be applied to encrypted sessions (such as sessions estab-
lished by SSH) because the thumbprint comes from the contents 
of a connection. Time based and deviation based approaches [3, 
13] are techniques using the distinctive characteristics (such as 
packet size, time stamp, etc.) of interactive traffic, rather than 
using the contents of a connection. They address the content-
dependency weakness of thumbprint method. They can be ap-
plied to encrypted sessions, and are more robust against re-
transmission variation.  

This paper’s work is to combine the previous two schemes 
together to propose a novel form of thumbprint, which is tempo-
ral thumbprint (T-thumbprint). T-thumbprint is a sequence of 
time gaps based on time stamps of the send packets in a connec-
tion. Compare to the methods in [1, 3, 6, 13, 14, 15], T-
thumbprint has the advantages of efficiency, secrecy, robustness, 
and ability to defend against attacker’s manipulation. 

Section 2 will show a definition of T-thumbprint in details and 
its correlation algorithm. Section 3 addresses T-thumbprint’s 
ability to identify connection chains. Section 4 will discuss how 
T-thumbprints may be used to traceback intruders and how to 
defend against intruder’s manipulations. And finally in Section 
5, some conclusions and future works will be given.   
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2. T-THUMBPRINT AND ITS 
CORRELATION ALGORITHM 

Assuming that we are monitoring an interactive connection 
session between a client (Host 1) and a SSH server (Host 
2), typically, we will observe a ‘Send’ packet from Host 1 
to Host 2 followed by an acknowledgment and an ‘Echo’ 
packet [16] from the server. In T-thumbprint, we are 
interested in the Send packets originating from Host 1 
only so as to not limit this approach on interactive ses-
sions. 

2.1 Temporal Thumbprints 

Given a sequence of ‘Send’ packets <p1, p2, …, pn+1> from Host 
1 to Host 2, let <t1, t2, …, tn+1> be the corresponding time 
stamps of <p1, p2, …, pn+1>. A temporal thumbprint (T-
thumbprint) of the connection is defined to be the sequence <t2-

t1, t3-t2, …, tn+1-tn>. Each element represents a time gap between 
two successive Send packets. Essentially, we are characterizing 
a connection between two hosts by the time gaps of the packets.  
So we have an abstract problem of correlating two such T-
thumbprints to see if they are close enough. 

The length of a thumbprint depends on the number of send 
packets collected. We can certainly divide up the thumbprint 
into subsequences for each time unit (such as a 1-minute inter-
val in [1]). The selection of n depends on the network. For local 
network, n can be relatively small because of less network 
fluctuation, usually 8. But for wide area network, n needs to be 
a little bit larger than on local network because of substantial 
network fluctuation, usually 32, 64, or 128. The larger the size, 
the easier it is to identify the connection, but less efficient. 
Similarly, we define T-thumbprint for incoming connection as 
well. We call the latter one incoming T-thumbprint, denoted as 
iT-thumbprint, and the former one outgoing T-thumbprint, 
denoted as oT-thumbprint. For convenience, we usually use T-
thumbprint to represent both incoming and outgoing temporal 

thumbprint.  // A , and B are two T-thumbprints with elements a[1..n] and b[1..m] respectively. 

// Range is a range to check within, T_Max, T_Min are thresholds 

Initialize current position CurrPA, CurrPB for A, and B

        // get all the one-to-one match pairs 
while (there are more elements in B and A) { 
        // counter is the number of matching elements between A and B 
        // NumA, NumB are the number of elements in A, B respectively 
  lbA=CurrPA;       lbB=CurrPB;          
  ubA=CurrPA+Range; ubB=CurrPB+ Range; 
  Match=false;  
  i=lbB; 

while(i<=ubB-2 && !Match){ 
  j=lbA; 
  while(j<=ubA-2 && !Match){ 

      ra1=2*|b[i]-a[j]|/(a[j]+b[i]); 
      ra2=2*|b[i+1]-a[j+1]|/(a[j+1]+b[i+1]); 
      ra3=2*|b[i+2]-a[j+2]|/(a[j+2]+b[i+2]); 
      if(ra1, ra2, ra3 are all less than ε ){ 
        MP[i] = j;  //save the matching in MP 
        counter++; 
        CurrPA=j+1; CurrPB=i+1; 
        Match=true;  
      } 
      j++; 
    } 
    i++; 
  } 
  if (Match) {currPA=j; currPB=i;} 
  else {currPA++; currPB++;} 
} 
        // Merge the unmatched segments 
while(there are undefined elements in MP){ 
   if MP[i1]=j1 and MP[i2]=j2 and all MP[i] are  
     undefined for i1<i<i2, merge all a[i] (i1<i<i2)     
         into one 
     element s1 and a[j] (j1<j<j2) into one element s2.
   if (2*|s1-s2|/(s1+s2)<ε) counter++; 
} 
matching rate MR=counter/min(NumA , NumB); 
if(MR >T_Max) A is close to B 
else if(MR<T_Min) A is not close to B 
else undecided; 
 

       Algorithm 1: T-thumbprint correlating algorithm 

For the purpose of tracing intruders, the most 
important issue is how to determine one T-
thumbprint is close to another one. For example, 
we would like to determine if a given iT-
thumbprint is similar to an oT-thumbprint of the 
same host, or to determine if oT-thumbprint of 
one host is close to oT-thumbprint of another host 
so as to decide if the two hosts are in the same 
connection chain. We use MR (matching rate), 
which is the ratio between the number of matched 
elements and the number of elements of a T-
thumbprint, to determine if two T-thumbprints 
match. In the following sections, we shall use 
array a[1..n], and b[1..m] to represent the two T-
thumbprints. We define two elements x and y 
from two thumbprints are “close enough” if 
abs(x-y)/((x+y)/2) is less than a predefined 
threshold ε.  

2.2 Challenges of Correlating Sequences 

We can’t always assume that elements between 
two T-thumbprints match exactly. Fig 6 shows us 
a scenario that Host 1, Host 2 and Host 3 are 
connected by one SSH connection chain. If all 
the Send packets from Host 1 to Host 2 are for-
warded exactly to Host 3, correlating such T-
thumbprints would be trivial. But for most cases, 
especially on the Internet, it is more difficult than 
on a local network. Because even if in a same 
chain, the Send packets sent from Host 3 does not 
have a one-to-one relationship with the Send 
packets of Host 2. This makes correlating two T-
thumbprints more complex.  

To understand the scenario how a packet propa-
gates on the Internet, we need to be clear how 
TCP and SSH protocol work [2, 16]. We assume 
there is a packet sent from Host 1 to Host 2, this 
packet would be decrypted first and then en-
crypted at Host 2, finally be forwarded to Host 3. 
This procedure is repeated until this packet 
reaches the end machine of the chain. There is a 
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possibility in packet delivery procedure that the packet would be 
divided into several packets or merged into a big packet.  

The first reason is that after a certain period of connection time 
or each gigabyte of transmitted data between two adjacent hosts 
the encryption key will be re-exchanged, and this communica-
tion is happened only between two adjacent hosts, the packet is 
not forwarded to the downstream Host. The packets sent from 
upstream host should be more than the packets sent from down-
stream host. The second reason is lost packet retransmission. 
Suppose that a packet sent from Host 1 to Host 2 is lost during 
transmission for the reason either Host 2 does not receive that 
packet or Host 1 does not receive any acknowledge packet from 
Host 2, Host 1 would resend that packet until Host 2 acknowl-
edges it. The third reason is that randomly ignore packet sent to 
server side from client side for security reason. Client side will 
randomly send some packets that are marked as ignore packets 
to server side. Once server side receives the ignore packet, it 
neither responds nor forwards, while what server side does is to 
acknowledge client side. So ignore packet transmission would 
result in T-thumbprint being not one-to-one. The fourth reason 
is that the packet may be fragmented during delivery process on 
the Internet. Either a packet size is more than the maximum size 
allowed on the Internet or travels from IPv6 to IPv4, the packet 
will be fragmented. The fifth reason is that the attacker may 
inject some characters (or random delay some packets) to the 
chain in order to defeat some traceback approaches, such as the 
approach in [3]. So attacker’s manipulation on connection chain 
would also result in T-thumbprint difficult to match. Our algo-
rithm is able to tolerate some of these problems stated. Experi-
ment result showed that our algorithm can correlate two T-
thumbprints if an attacker injects no more than 35% characters. 

2.3 T-thumbprint Correlating Algorithm 

Suppose we have two sequences A: a[1..n] and B: b[1..m]. Each 
sequence represents one T-thumbprint. We also assume that 
element a[1] matches with element b[1]. We cannot claim that 
each element in B is exactly matched with a element in A or 
each element in A is exactly matched with a element in B be-
cause of T-thumbprint asymmetry. We need to compute MR to 
determine if two T-thumbprints are matched. 

The first easiest way to do this is to take one element from B, to 
compare to each element in A, to see if this element in B 
matches with any element in A by checking if they are ‘close 
enough’. The problem with this approach is that there may be 
several elements in A matches with the same element in B. So in 
our algorithm three consecutive elements in A are checked if 
they are ‘close enough’ to three consecutive elements in B to 
determine one pair matching. It will largely decrease false posi-
tive rate. We already know a[1] matches with b[1], but it doesn’t 
mean that b[2] must match with a[2]. The element b[2] in se-
quence B probably matches with a[2] or a[3] or some other 
elements. We divide the algorithm into two phases: the first 
phase matches elements between A and B one-to-one; the sec-
ond phase matches the remaining unmatched elements.   

In the first phase, if a[i] doesn’t match with b[j], instead of 
moving to match b[j+1] with a[i+1], we continue to check if b[j] 
matches with elements a[i+1] etc. Symmetrically, we compare 
a[i] with b[j], b[j+1], etc. If there is no match after a number of 
comparisons (say 5), we increase both i and j and continue the 
process. If there is a match, we set up the current position for 
each sequence to the position next to the matching element in 

each sequence. In the second phase, we group all the unmatched 
elements between two matched elements and treat it as one and 
see if this new element will match with the corresponding one 
on the other sequence.  For example, suppose in first scan, we 
have matched two one-one pairs, assuming they are <a[2], b[2]>, 
and <a[5], b[7]> respectively. In second phase, we just simply 
check if sum of a[3] and a[4] matches with sum of b[3], b[4], 
b[5], and b[6]. Algorithm 1 shows the correlating algorithm in 
details. The output of Algorithm 1 is the matching rate between 
the two sequences A and B. 

3. IMPLEMENTATION 
We set up the test environment in the Computer Science De-
partment Lab at the University of Houston to collect network 
packets. Our objective is to test if we can use T-thumbprint to 
traceback to intruders and how is the performance of T-
thumbprint. 

3.1 Test Environment and software 

We have two Linux hosts (Red Hat 9.0) acl08 and acl09 with 
administrative privileges. We need to monitor and capture all 
the packets going through the NIC of acl08 and acl09, where the 
network bandwidth is 100M. We use some other “source” ma-
chines to simulate several connections going through the two 
monitored machines. The source machines, called Host 1, … , 
Host 4, are located in computer science Lab running Linux 
operating system.  

We have obtained access rights from other hosts without admin-
istrative privileges. One is “Mex”, which is located in Mexico. 
The second is “Epic”, which is located in California. The third 
one is Bayou, which is located on University of Houston cam-
pus. With the above hosts we formed connection chains Host i 
(i=1 to 4)  Acl09  Mex  Acl08  Epic  Bayou by using 
SSH. In the above chains, Bayou is supposed to be the victim, 
and Host 1, … , Host 4 are the source machines, while other 
hosts in between are compromised stepping-stones.  

We implemented a program called Temporal Thumbprint Trace-
back (TTT), which only supports Ethernet for simplicity, with 
Libpcap [5] to capture T-thumbprint. Libpcap is a free Packet 
Capture Library made by Lawrence Berkeley National Labora-
tory. 

3.2 Test Procedure 

We established four connections, Host i Acl09 Mex 
Acl08 Epic Bayou, where i=1 to 4., while the four con-

nections share the same path. We run the program TTT on 
Acl08 and Acl09 to capture the packets passing through them, 
and form T-thumbprints at Acl08 and Acl09. Our objective is to 
see if we can identify and match connections at the two moni-
tored hosts. To make it more challenge, we set up several con-
nections through the same chain of hosts. Four individuals 
operated at Host 1, Host 2, Host 3, and Host 4 respectively at 
the same time, and each person input the same content at his/her 
own typing speed. We captured all four T-thumbprints on each 
connection passing through Acl08 and Acl09. Consequently, 
what we need to do is to verify if we can use the four oT-
thumbprints to pick up four connections. The results are showed 
in Section 3.3.  
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The reason why we make the connections we built shared the 
same path, the same location, the same contents, and the same 
time is to create the worst possible situation to find the separate 
identities for the four users. In the real world, most probably, the 
intruders on the Internet won’t operate around same location and 
input same thing at same time as other users. We try to use the 
connections what we set up to simulate the worst case. If T-

thumbprint could deal with this type of worst case, it can deal 
with all kinds of cases. 

Table 1. T-thumbprint correlating results between two hosts on 
the Internet. 

Connection at Acl08  

Connection 
at Acl09 

C0(%) C1(%) C2(%) C3(%) 

C0 92.37 0.00 0.57 0.52

C1 – 84.00 0.57 0.00

C2 – – 87.42 0.62

C3 – – – 89.00

 

3.3  Experiment Results and Analysis 

We are going to show the results of (1) Given T-thumbprints, if 
we could identify the same chain among those connections; (2) 
The function of correlating algorithm; (3) The performance of 
T-thumbprint.  

We got four oT-thumbprints at Acl08, and Acl09 respectively, 
and we use time interval that one packet travels from one host to 
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another to represent the distance between the two hosts. The 
distance between Acl08 and Acl09 in the experiment is about 70 
ms long. Table 1 shows the result of MRs between different 
connections, it clearly shows the strong correlation between the 
connections. In Table 1, C0, C1, C2, and C3 represent outgoing 
connections of Acl08 and Acl09 respectively, and the values 
displayed in this table are MRs between one connection at 
Acl08 and another connection at Acl09. 

Fig. 1, Fig. 2, Fig. 3, and Fig. 4 show us the performance of 
Algorithm 1. Fig. 1 and Fig. 2 show the scenarios of two 
matched T-thumbprints before and after processing with Algo-
rithm 1, while Fig 3, and Fig 4 show the scenarios of unmatched 
case before and after processing by Algorithm 1, (unit used in 
these figures are microseconds). Comparing Fig. 1 to Fig. 2, and 
Fig 3 to Fig 4, it is not difficult to find that the ability of Algo-
rithm 1 is to determine if two T-thumbprints are in the same 
chain.  

 

 

 

 

 

We use adaptability to measure T-thumbprint performance. The 
adaptability is defined as the variations of MR between two T-
thumbprints over the distance between two hosts. Fig. 5 shows 
the performance of T-thumbprint, where Y axis stands for the 
MRs of two T-thumbprints, and X axis stands for the distance 
between two hosts. Fig 5 shows that if the distance is increased, 
the MR will be decreased for the T-thumbprints in the same 
chain. The method we used to increase the distance between two 
hosts is to connect another two hosts more times because there 
isn’t any method to purely increase the distance between two 
fixed hosts without inserting any other hosts between them. So 
long as we introduce more hosts, it should affect the perform-
ance of the T-thumbprint negatively. In fact, the real perform-
ance of T-thumbprint is better than what is showed in Fig. 5, 
therefore Fig. 5 shows us only the lower bound performance of 
T-thumbprint. 

4. TRACEBACK WITH T-THUMBPRINT 
AND DISCUSSION 

4.1 Traceback with T-thumbprints 

There are two ways to use T-thumbprints to traceback. One is to 
use oT-thumbprints only to do traceback. Another one is to use 
oT-thumbprints and iT-thumbprints together to trace back. Fig 6 
shows the scenario that several hosts are connected by one chain 
<C1, C2, C3, C4> and used as stepping-stones, where Ci’s are 
the connections and T-thumbprinti represents the corresponding 
thumbprint  

The first way to do traceback is only to use oT-thumbprint. We 
have oT-thumbprint4 at Host 3 for outgoing connection C4. 
What we need to do first of all at Host 3 is to request all outgo-
ing T-thumbprints of each upstream host that connect to Host 3 
directly. The second step is to correlate oT-thumbprint4 with all 
other oT-thumbprints requested at Host3 to decide which con-
nection is in the same chain with C4. Similarly, we can do the 
same thing in Host 2 as what we do in Host 3 to trace back 
which connection among all the incoming connections of Host 2 
is in the same chain with C3. Recursively, we will eventually 
trace back to the intruder only with outgoing T-thumbprints. 
The problems with this way are inefficient, overloading the 
network and difficult to synchronize oT-thumbprint. To over-
come the shortcomings of this way, we have another way to do 
traceback. 

The second way is to combine incoming T-thumbprint with 
outgoing T-thumbprint to traceback intruders. Unlike the previ-
ous way, it is not necessary to transfer oT-thumbprint over 
network. What it needs to do in the first step is to correlate oT-
thumbprint4 with all of the iT-thumbprint at Host 3 to decide 
which incoming connection is in the same chain with C4. The 
second step is to request Host 2 which incoming connection of 
Host 2 is in the same chain with C3. We do the same thing 
recursively and will eventually get where the intruder is. The 
main advantage of this way is we can guarantee the iT-
thumbprint and oT-thumbprint are in the same time interval 
because we use the same process on the same host to collect the 
incoming and outgoing T-thumbprint at the same time. Another 
important issue is that we can traceback in real time. T-
thumbprint is not large. Typically, it is 8x4 bytes long on local 
network, and 128x4 bytes long on the Internet. T-thumbprint 
could be generated and correlated within 1 second. So we could 
traceback attackers in real time by using T-thumbprints. Due to 
the space limitation, we will discuss the detail in another paper. 

4.2 Attacker’s Evasion 

We have discussed the possibility to traceback intruders with T-
thumbprint. Most probably, intruders who are aware of the risks 
of being traced try to evade the trace-back by modify their 
connections. To prevent the T-thumbprint detection, they may 
randomly delay the outgoing packets or randomly inject some 
characters into the connection so that the outgoing and incoming 
connections appear unrelated. T-thumbprint method depends on 
intruder’s keystroke speed. V. Paxson [17] showed that user’s 
keystroke should obey Pareto distribution. If more characters 
are inserted into the stream, it is very difficult to maintain Pareto 
distribution without carefully processing. We can detect the 
intruder’s invasion by simply checking if the T-thumbprint 
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Fig 6. Illustrating how to use T-thumbprint to 
trace back 
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breaks Pareto distribution. This method doesn’t always work 
because if the insertion is processed carefully, the intruder can 
still make the stream keeping Pareto distribution, however, at 
least T-thumbprint makes the intruder work harder. In the fol-
lowing, we are going to give the analysis that even if the ma-
nipulated T-thumbprints obey Pareto distribution, we still can 
correlate them but with some limitations. 

One fact is that the intruders can only delay the outgoing pack-
ets, rather than accelerating them, and another fact is that in-
truders can’t tolerate much long delay, which means there is an 
upper bound for intruder’s packet delay. Suppose we have two 
time sequences N1(t), and N2(t) to represent two T-thumbprints 
respectively, where N1(t) is the original sequence, and N2(t) is 
the manipulated sequence. We make the following two assump-
tions: (1) The character emerges in the manipulated sequence 
N2(t) if and only if it has emerged in its original sequence N1(t). 
(2) If one character emerges in its original sequence N1(t), it 
must emerge in its manipulated sequence N2(t) within a certain 
time interval. David L., et al, [17] pointed out in theory that the 
two sequences are still related under the above two assumptions. 
That is, the scaling coefficients of the two sequences wavelet 
transform must be very close at long time scales. So even if in 
time domain, we couldn’t correlate the two sequences (one is 
the original one, and the other one is the transformed one by 
packet delay), but we still can correlate them in frequency-time 
domain. The only problem is that we need to monitor the chain 
for a longer time. Algorithm 1 won’t work on frequency-time 
domain because it is time domain based, and we are still work-
ing on frequency-time domain T-thumbprint correlating algo-
rithm. 

Suppose the attacker manipulate one connection by randomly 
injecting some characters into the chain. The experiment results 
in Fig. 7 showed that our approach could defeat attacker’s in-
jecting chaff attack in certain extant. Here we still assume that 
we have one time sequence N1(t) to represent the original T-
thumbprint, and N2(t) to represent the injected T-thumbprint. 
N2(t) is generated by our simulating program with different 
injecting rate. At each certain injecting rate, we get one MR of 
N1(t) and N2(t) by using Algorithm 1. The results showed that 
when attacker add up to 35% characters to N1(t), Algorithm 1 is 
able to correlate N1(t) and N2(t). 

5. CONCLUSIONS 
We have proposed a new time-based thumbprint to correlate 
connections and traceback intruders on the Internet. The results 
showed it works on the Internet and has advantages of (1) It can 
be applied to encrypt sessions; (2) It does not require tightly 
synchronized clocks; (3) It can defeat attacker’s manipulation in 
certain extent; (4) It is efficient, can be used to do trace-back in 
real time. Another important application of T-thumbprint is to 
detect stepping-stone, but with high false positive rate. 

We don’t need to install the software TTT in all hosts. For 
example, for the scenario that one intruder connects out from a 
local network and connects back to that local network finally, 
we just need the gateway of that local network to install this 
software. All the outgoing and incoming connections are moni-
tored and for each connection one T-thumbprint is generated. If 
we correlate the incoming T-thumbprint and the outgoing T-
thumbprint, it is not difficult to get the inside intruder. There are 
still some problems with the T-thumbprint traceback. It is vul-

nerable to intruder’s manipulation even though we have shown 
some counter measures in the literature. 
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