
Correlating Temporal Thumbprints for Tracing Intruders

Jianhua Yang1, Shou-Hsuan Stephen Huang2

1The Department of Mathematics and Computer Science, Bennett College
900 E. Washington Street, Greensboro, NC, 27401, USA
2Department of Computer Science, University of Houston

4800 Calhoun Rd. Houston, TX, 77204, USA

ABSTRACT

The Design of TCP/IP protocol makes it difficult to reliably
traceback to the original attackers if they obscure their identities
by logging through a chain of multiple hosts. A thumbprint
method based on connection content was proposed in 1995 to
traceback attackers, but this method is limited to non-encrypted
sessions. In this paper, we propose a thumbprint based on time
intervals, T-thumbprint, to identify a connection. T-thumbprint
is a sequence of time gaps between adjacent TCP ‘Send’ packets
of an interactive terminal session. An algorithm is presented to
correlate two T-thumbprints to see if they belong to the same
connection chain. We also discuss how to use T-thumbprints to
traceback an attacker on the Internet, and how to defeat at-
tacker’s manipulation. T-thumbprint has advantages of: (1) It
can be applied to encrypt sessions; (2) It does not require tightly
synchronized clocks; (3) It can defeat attacker’s manipulation to
some extent; and (4) It is efficient, can be used to trace attackers
in real time.

1. INTRODUCTION
People depend on the Internet more and more in daily life and
business activities. Research has shown that various attacks
through the Internet have increased significantly with the
growth of the Internet [7]. To hide their identities, most attack-
ers log though a series of compromised hosts before launching
their attacks, and the compromised hosts are called stepping-
stones [3]. Attackers can avoid their responsibilities for their
activities by using stepping-stones because of known spatial,
political and cooperation reasons.

To prevent interactive connection attacks, many techniques have
been developed. One of them is to prevent a machine from
being used as a stepping-stone, that is to detect if there is a
connection chain going through a particular host, so as to take
some countermeasures to protect the victims, such as notify the
administrator or directly cut off the chain [3, 4, 8]. Some other
methods used to protect victims are to trace back to the at-
tacker’s host [1, 6, 9, 10]. Traceback techniques are classified
into two categories: (1) IP traceback, and (2) connection trace-
back. Research on IP traceback has become rather active since
1999 because of DDOS attacks [11, 12]. IP traceback can’t go
beyond the hosts that send the spoofed IP packets. Typically, a
proficient attacker often launches attack with the help of other
hosts. So only identifying the source of IP packets is not suffi-
cient to hold the attackers responsible for their actions. Tech-
niques for traceback across stepping-stones have become more
important under this situation. There are many papers published

in traceback across stepping-stones [1, 3, 6, 13, 14, 15]. Most of
these technologies are either network-based or host-based. The
representatives of host-based approaches are DIDS (Distributed
Intrusion Detection System) [14], CIS (Caller Identification
System) [6], and Caller ID [1]. The typical network-based ap-
proaches are thumbprint [1], time-based approach [3], and de-
viation-based approach [13].

DIDS has two problems: (i) it can’t be applied to large-scale
network because of its centralized analyzing server; (ii) it fails
to traceback if one host is unavailable to provide the user’s audit
log. The main problem with CIS is that the network load will be
increased because the query incurs additional communication
when the user tries to login one host from another. The draw-
backs of Caller ID [1] include the possibility that counter-
intruders cannot break into one of the compromised hosts, as
well as running the risk of accidentally damaging intermediate
systems.

With the help of thumbprints, which is a short summary of the
contents of a connection, we can uniquely identify a connection
and correlate those related connections. Because the thumbprint
proposed in [1] requires only 24 bytes per minute per connec-
tion, and it is impossible to infer the content from the thumb-
print, so it has the advantages: (1) efficiency; (2) secrecy; and (3)
ease of implementation. But it faced a fatal problem that it
cannot be applied to encrypted sessions (such as sessions estab-
lished by SSH) because the thumbprint comes from the contents
of a connection. Time based and deviation based approaches [3,
13] are techniques using the distinctive characteristics (such as
packet size, time stamp, etc.) of interactive traffic, rather than
using the contents of a connection. They address the content-
dependency weakness of thumbprint method. They can be ap-
plied to encrypted sessions, and are more robust against re-
transmission variation.

This paper’s work is to combine the previous two schemes
together to propose a novel form of thumbprint, which is tempo-
ral thumbprint (T-thumbprint). T-thumbprint is a sequence of
time gaps based on time stamps of the send packets in a connec-
tion. Compare to the methods in [1, 3, 6, 13, 14, 15], T-
thumbprint has the advantages of efficiency, secrecy, robustness,
and ability to defend against attacker’s manipulation.

Section 2 will show a definition of T-thumbprint in details and
its correlation algorithm. Section 3 addresses T-thumbprint’s
ability to identify connection chains. Section 4 will discuss how
T-thumbprints may be used to traceback intruders and how to
defend against intruder’s manipulations. And finally in Section
5, some conclusions and future works will be given.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 4 17ISSN: 1690-4524

2. T-THUMBPRINT AND ITS
CORRELATION ALGORITHM

Assuming that we are monitoring an interactive connection
session between a client (Host 1) and a SSH server (Host
2), typically, we will observe a ‘Send’ packet from Host 1
to Host 2 followed by an acknowledgment and an ‘Echo’
packet [16] from the server. In T-thumbprint, we are
interested in the Send packets originating from Host 1
only so as to not limit this approach on interactive ses-
sions.

2.1 Temporal Thumbprints

Given a sequence of ‘Send’ packets <p1, p2, …, pn+1> from Host
1 to Host 2, let <t1, t2, …, tn+1> be the corresponding time
stamps of <p1, p2, …, pn+1>. A temporal thumbprint (T-
thumbprint) of the connection is defined to be the sequence <t2-

t1, t3-t2, …, tn+1-tn>. Each element represents a time gap between
two successive Send packets. Essentially, we are characterizing
a connection between two hosts by the time gaps of the packets.
So we have an abstract problem of correlating two such T-
thumbprints to see if they are close enough.

The length of a thumbprint depends on the number of send
packets collected. We can certainly divide up the thumbprint
into subsequences for each time unit (such as a 1-minute inter-
val in [1]). The selection of n depends on the network. For local
network, n can be relatively small because of less network
fluctuation, usually 8. But for wide area network, n needs to be
a little bit larger than on local network because of substantial
network fluctuation, usually 32, 64, or 128. The larger the size,
the easier it is to identify the connection, but less efficient.
Similarly, we define T-thumbprint for incoming connection as
well. We call the latter one incoming T-thumbprint, denoted as
iT-thumbprint, and the former one outgoing T-thumbprint,
denoted as oT-thumbprint. For convenience, we usually use T-
thumbprint to represent both incoming and outgoing temporal

thumbprint. // A , and B are two T-thumbprints with elements a[1..n] and b[1..m] respectively.

// Range is a range to check within, T_Max, T_Min are thresholds

Initialize current position CurrPA, CurrPB for A, and B

 // get all the one-to-one match pairs
while (there are more elements in B and A) {
 // counter is the number of matching elements between A and B
 // NumA, NumB are the number of elements in A, B respectively
 lbA=CurrPA; lbB=CurrPB;
 ubA=CurrPA+Range; ubB=CurrPB+ Range;
 Match=false;
 i=lbB;

while(i<=ubB-2 && !Match){
 j=lbA;
 while(j<=ubA-2 && !Match){

 ra1=2*|b[i]-a[j]|/(a[j]+b[i]);
 ra2=2*|b[i+1]-a[j+1]|/(a[j+1]+b[i+1]);
 ra3=2*|b[i+2]-a[j+2]|/(a[j+2]+b[i+2]);
 if(ra1, ra2, ra3 are all less than ε){
 MP[i] = j; //save the matching in MP
 counter++;
 CurrPA=j+1; CurrPB=i+1;
 Match=true;
 }
 j++;
 }
 i++;
 }
 if (Match) {currPA=j; currPB=i;}
 else {currPA++; currPB++;}
}
 // Merge the unmatched segments
while(there are undefined elements in MP){
 if MP[i1]=j1 and MP[i2]=j2 and all MP[i] are
 undefined for i1<i<i2, merge all a[i] (i1<i<i2)
 into one
 element s1 and a[j] (j1<j<j2) into one element s2.
 if (2*|s1-s2|/(s1+s2)<ε) counter++;
}
matching rate MR=counter/min(NumA , NumB);
if(MR >T_Max) A is close to B
else if(MR<T_Min) A is not close to B
else undecided;

 Algorithm 1: T-thumbprint correlating algorithm

For the purpose of tracing intruders, the most
important issue is how to determine one T-
thumbprint is close to another one. For example,
we would like to determine if a given iT-
thumbprint is similar to an oT-thumbprint of the
same host, or to determine if oT-thumbprint of
one host is close to oT-thumbprint of another host
so as to decide if the two hosts are in the same
connection chain. We use MR (matching rate),
which is the ratio between the number of matched
elements and the number of elements of a T-
thumbprint, to determine if two T-thumbprints
match. In the following sections, we shall use
array a[1..n], and b[1..m] to represent the two T-
thumbprints. We define two elements x and y
from two thumbprints are “close enough” if
abs(x-y)/((x+y)/2) is less than a predefined
threshold ε.

2.2 Challenges of Correlating Sequences

We can’t always assume that elements between
two T-thumbprints match exactly. Fig 6 shows us
a scenario that Host 1, Host 2 and Host 3 are
connected by one SSH connection chain. If all
the Send packets from Host 1 to Host 2 are for-
warded exactly to Host 3, correlating such T-
thumbprints would be trivial. But for most cases,
especially on the Internet, it is more difficult than
on a local network. Because even if in a same
chain, the Send packets sent from Host 3 does not
have a one-to-one relationship with the Send
packets of Host 2. This makes correlating two T-
thumbprints more complex.

To understand the scenario how a packet propa-
gates on the Internet, we need to be clear how
TCP and SSH protocol work [2, 16]. We assume
there is a packet sent from Host 1 to Host 2, this
packet would be decrypted first and then en-
crypted at Host 2, finally be forwarded to Host 3.
This procedure is repeated until this packet
reaches the end machine of the chain. There is a

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 418 ISSN: 1690-4524

possibility in packet delivery procedure that the packet would be
divided into several packets or merged into a big packet.

The first reason is that after a certain period of connection time
or each gigabyte of transmitted data between two adjacent hosts
the encryption key will be re-exchanged, and this communica-
tion is happened only between two adjacent hosts, the packet is
not forwarded to the downstream Host. The packets sent from
upstream host should be more than the packets sent from down-
stream host. The second reason is lost packet retransmission.
Suppose that a packet sent from Host 1 to Host 2 is lost during
transmission for the reason either Host 2 does not receive that
packet or Host 1 does not receive any acknowledge packet from
Host 2, Host 1 would resend that packet until Host 2 acknowl-
edges it. The third reason is that randomly ignore packet sent to
server side from client side for security reason. Client side will
randomly send some packets that are marked as ignore packets
to server side. Once server side receives the ignore packet, it
neither responds nor forwards, while what server side does is to
acknowledge client side. So ignore packet transmission would
result in T-thumbprint being not one-to-one. The fourth reason
is that the packet may be fragmented during delivery process on
the Internet. Either a packet size is more than the maximum size
allowed on the Internet or travels from IPv6 to IPv4, the packet
will be fragmented. The fifth reason is that the attacker may
inject some characters (or random delay some packets) to the
chain in order to defeat some traceback approaches, such as the
approach in [3]. So attacker’s manipulation on connection chain
would also result in T-thumbprint difficult to match. Our algo-
rithm is able to tolerate some of these problems stated. Experi-
ment result showed that our algorithm can correlate two T-
thumbprints if an attacker injects no more than 35% characters.

2.3 T-thumbprint Correlating Algorithm

Suppose we have two sequences A: a[1..n] and B: b[1..m]. Each
sequence represents one T-thumbprint. We also assume that
element a[1] matches with element b[1]. We cannot claim that
each element in B is exactly matched with a element in A or
each element in A is exactly matched with a element in B be-
cause of T-thumbprint asymmetry. We need to compute MR to
determine if two T-thumbprints are matched.

The first easiest way to do this is to take one element from B, to
compare to each element in A, to see if this element in B
matches with any element in A by checking if they are ‘close
enough’. The problem with this approach is that there may be
several elements in A matches with the same element in B. So in
our algorithm three consecutive elements in A are checked if
they are ‘close enough’ to three consecutive elements in B to
determine one pair matching. It will largely decrease false posi-
tive rate. We already know a[1] matches with b[1], but it doesn’t
mean that b[2] must match with a[2]. The element b[2] in se-
quence B probably matches with a[2] or a[3] or some other
elements. We divide the algorithm into two phases: the first
phase matches elements between A and B one-to-one; the sec-
ond phase matches the remaining unmatched elements.

In the first phase, if a[i] doesn’t match with b[j], instead of
moving to match b[j+1] with a[i+1], we continue to check if b[j]
matches with elements a[i+1] etc. Symmetrically, we compare
a[i] with b[j], b[j+1], etc. If there is no match after a number of
comparisons (say 5), we increase both i and j and continue the
process. If there is a match, we set up the current position for
each sequence to the position next to the matching element in

each sequence. In the second phase, we group all the unmatched
elements between two matched elements and treat it as one and
see if this new element will match with the corresponding one
on the other sequence. For example, suppose in first scan, we
have matched two one-one pairs, assuming they are <a[2], b[2]>,
and <a[5], b[7]> respectively. In second phase, we just simply
check if sum of a[3] and a[4] matches with sum of b[3], b[4],
b[5], and b[6]. Algorithm 1 shows the correlating algorithm in
details. The output of Algorithm 1 is the matching rate between
the two sequences A and B.

3. IMPLEMENTATION
We set up the test environment in the Computer Science De-
partment Lab at the University of Houston to collect network
packets. Our objective is to test if we can use T-thumbprint to
traceback to intruders and how is the performance of T-
thumbprint.

3.1 Test Environment and software

We have two Linux hosts (Red Hat 9.0) acl08 and acl09 with
administrative privileges. We need to monitor and capture all
the packets going through the NIC of acl08 and acl09, where the
network bandwidth is 100M. We use some other “source” ma-
chines to simulate several connections going through the two
monitored machines. The source machines, called Host 1, … ,
Host 4, are located in computer science Lab running Linux
operating system.

We have obtained access rights from other hosts without admin-
istrative privileges. One is “Mex”, which is located in Mexico.
The second is “Epic”, which is located in California. The third
one is Bayou, which is located on University of Houston cam-
pus. With the above hosts we formed connection chains Host i
(i=1 to 4) Acl09 Mex Acl08 Epic Bayou by using
SSH. In the above chains, Bayou is supposed to be the victim,
and Host 1, … , Host 4 are the source machines, while other
hosts in between are compromised stepping-stones.

We implemented a program called Temporal Thumbprint Trace-
back (TTT), which only supports Ethernet for simplicity, with
Libpcap [5] to capture T-thumbprint. Libpcap is a free Packet
Capture Library made by Lawrence Berkeley National Labora-
tory.

3.2 Test Procedure

We established four connections, Host i Acl09 Mex
Acl08 Epic Bayou, where i=1 to 4., while the four con-

nections share the same path. We run the program TTT on
Acl08 and Acl09 to capture the packets passing through them,
and form T-thumbprints at Acl08 and Acl09. Our objective is to
see if we can identify and match connections at the two moni-
tored hosts. To make it more challenge, we set up several con-
nections through the same chain of hosts. Four individuals
operated at Host 1, Host 2, Host 3, and Host 4 respectively at
the same time, and each person input the same content at his/her
own typing speed. We captured all four T-thumbprints on each
connection passing through Acl08 and Acl09. Consequently,
what we need to do is to verify if we can use the four oT-
thumbprints to pick up four connections. The results are showed
in Section 3.3.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 4 19ISSN: 1690-4524

The reason why we make the connections we built shared the
same path, the same location, the same contents, and the same
time is to create the worst possible situation to find the separate
identities for the four users. In the real world, most probably, the
intruders on the Internet won’t operate around same location and
input same thing at same time as other users. We try to use the
connections what we set up to simulate the worst case. If T-

thumbprint could deal with this type of worst case, it can deal
with all kinds of cases.

Table 1. T-thumbprint correlating results between two hosts on
the Internet.

Connection at Acl08

Connection
at Acl09

C0(%) C1(%) C2(%) C3(%)

C0 92.37 0.00 0.57 0.52

C1 – 84.00 0.57 0.00

C2 – – 87.42 0.62

C3 – – – 89.00

3.3 Experiment Results and Analysis

We are going to show the results of (1) Given T-thumbprints, if
we could identify the same chain among those connections; (2)
The function of correlating algorithm; (3) The performance of
T-thumbprint.

We got four oT-thumbprints at Acl08, and Acl09 respectively,
and we use time interval that one packet travels from one host to

0 50 100 150 200 250 300 350 400 450
65

70

75

80

85

90

95

100

Distance(ms)

M
R

Fig 5. Performance of T-thumbprint

M
R

 (%
)

Distance (ms)

Fig 1. Matched T-thumbprints correlation
before processing

Fig 2. Matched T-thumbprints correlation
after processing

2 4 6 8 10 12 14

x 10
5

2

4

6

8

10

12

14
x 10

5

2 4 6 8 10 12 14

x 10
5

2

4

6

8

10

12

14
x 105

Acl08

A
cl

09

A
cl

09

A
cl

09

A
cl

09

Acl08Acl08 Acl08

0.5 1 1.52 4 6 8 10 12 14

x 10
5

2

4

6

8

10

12

14
x 10

5

Acl08

A
cl

09

2 2.5 3 3.5 4

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

A
cl

09

A
cl

09

A
cl

09

Acl08

Fig 3. Unmatched T-thumbprints correlation
before processing

Fig 4. Unmatched T-thumbprints correlation
after processing

Acl08 Acl08

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 420 ISSN: 1690-4524

another to represent the distance between the two hosts. The
distance between Acl08 and Acl09 in the experiment is about 70
ms long. Table 1 shows the result of MRs between different
connections, it clearly shows the strong correlation between the
connections. In Table 1, C0, C1, C2, and C3 represent outgoing
connections of Acl08 and Acl09 respectively, and the values
displayed in this table are MRs between one connection at
Acl08 and another connection at Acl09.

Fig. 1, Fig. 2, Fig. 3, and Fig. 4 show us the performance of
Algorithm 1. Fig. 1 and Fig. 2 show the scenarios of two
matched T-thumbprints before and after processing with Algo-
rithm 1, while Fig 3, and Fig 4 show the scenarios of unmatched
case before and after processing by Algorithm 1, (unit used in
these figures are microseconds). Comparing Fig. 1 to Fig. 2, and
Fig 3 to Fig 4, it is not difficult to find that the ability of Algo-
rithm 1 is to determine if two T-thumbprints are in the same
chain.

We use adaptability to measure T-thumbprint performance. The
adaptability is defined as the variations of MR between two T-
thumbprints over the distance between two hosts. Fig. 5 shows
the performance of T-thumbprint, where Y axis stands for the
MRs of two T-thumbprints, and X axis stands for the distance
between two hosts. Fig 5 shows that if the distance is increased,
the MR will be decreased for the T-thumbprints in the same
chain. The method we used to increase the distance between two
hosts is to connect another two hosts more times because there
isn’t any method to purely increase the distance between two
fixed hosts without inserting any other hosts between them. So
long as we introduce more hosts, it should affect the perform-
ance of the T-thumbprint negatively. In fact, the real perform-
ance of T-thumbprint is better than what is showed in Fig. 5,
therefore Fig. 5 shows us only the lower bound performance of
T-thumbprint.

4. TRACEBACK WITH T-THUMBPRINT
AND DISCUSSION

4.1 Traceback with T-thumbprints

There are two ways to use T-thumbprints to traceback. One is to
use oT-thumbprints only to do traceback. Another one is to use
oT-thumbprints and iT-thumbprints together to trace back. Fig 6
shows the scenario that several hosts are connected by one chain
<C1, C2, C3, C4> and used as stepping-stones, where Ci’s are
the connections and T-thumbprinti represents the corresponding
thumbprint

The first way to do traceback is only to use oT-thumbprint. We
have oT-thumbprint4 at Host 3 for outgoing connection C4.
What we need to do first of all at Host 3 is to request all outgo-
ing T-thumbprints of each upstream host that connect to Host 3
directly. The second step is to correlate oT-thumbprint4 with all
other oT-thumbprints requested at Host3 to decide which con-
nection is in the same chain with C4. Similarly, we can do the
same thing in Host 2 as what we do in Host 3 to trace back
which connection among all the incoming connections of Host 2
is in the same chain with C3. Recursively, we will eventually
trace back to the intruder only with outgoing T-thumbprints.
The problems with this way are inefficient, overloading the
network and difficult to synchronize oT-thumbprint. To over-
come the shortcomings of this way, we have another way to do
traceback.

The second way is to combine incoming T-thumbprint with
outgoing T-thumbprint to traceback intruders. Unlike the previ-
ous way, it is not necessary to transfer oT-thumbprint over
network. What it needs to do in the first step is to correlate oT-
thumbprint4 with all of the iT-thumbprint at Host 3 to decide
which incoming connection is in the same chain with C4. The
second step is to request Host 2 which incoming connection of
Host 2 is in the same chain with C3. We do the same thing
recursively and will eventually get where the intruder is. The
main advantage of this way is we can guarantee the iT-
thumbprint and oT-thumbprint are in the same time interval
because we use the same process on the same host to collect the
incoming and outgoing T-thumbprint at the same time. Another
important issue is that we can traceback in real time. T-
thumbprint is not large. Typically, it is 8x4 bytes long on local
network, and 128x4 bytes long on the Internet. T-thumbprint
could be generated and correlated within 1 second. So we could
traceback attackers in real time by using T-thumbprints. Due to
the space limitation, we will discuss the detail in another paper.

4.2 Attacker’s Evasion

We have discussed the possibility to traceback intruders with T-
thumbprint. Most probably, intruders who are aware of the risks
of being traced try to evade the trace-back by modify their
connections. To prevent the T-thumbprint detection, they may
randomly delay the outgoing packets or randomly inject some
characters into the connection so that the outgoing and incoming
connections appear unrelated. T-thumbprint method depends on
intruder’s keystroke speed. V. Paxson [17] showed that user’s
keystroke should obey Pareto distribution. If more characters
are inserted into the stream, it is very difficult to maintain Pareto
distribution without carefully processing. We can detect the
intruder’s invasion by simply checking if the T-thumbprint

Host
1

Host
2

Host
3

C4C3 C2 C1

Fig 6. Illustrating how to use T-thumbprint to
trace back

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

M
R

 (
%

)
M

R
 (%

)

Percentage of injected characters (%)

Fig 7. Scenario of using T-thumbprint to defeat at-
tacker’s chaff character manipulation

Percentage of injected characters (%)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 4 21ISSN: 1690-4524

breaks Pareto distribution. This method doesn’t always work
because if the insertion is processed carefully, the intruder can
still make the stream keeping Pareto distribution, however, at
least T-thumbprint makes the intruder work harder. In the fol-
lowing, we are going to give the analysis that even if the ma-
nipulated T-thumbprints obey Pareto distribution, we still can
correlate them but with some limitations.

One fact is that the intruders can only delay the outgoing pack-
ets, rather than accelerating them, and another fact is that in-
truders can’t tolerate much long delay, which means there is an
upper bound for intruder’s packet delay. Suppose we have two
time sequences N1(t), and N2(t) to represent two T-thumbprints
respectively, where N1(t) is the original sequence, and N2(t) is
the manipulated sequence. We make the following two assump-
tions: (1) The character emerges in the manipulated sequence
N2(t) if and only if it has emerged in its original sequence N1(t).
(2) If one character emerges in its original sequence N1(t), it
must emerge in its manipulated sequence N2(t) within a certain
time interval. David L., et al, [17] pointed out in theory that the
two sequences are still related under the above two assumptions.
That is, the scaling coefficients of the two sequences wavelet
transform must be very close at long time scales. So even if in
time domain, we couldn’t correlate the two sequences (one is
the original one, and the other one is the transformed one by
packet delay), but we still can correlate them in frequency-time
domain. The only problem is that we need to monitor the chain
for a longer time. Algorithm 1 won’t work on frequency-time
domain because it is time domain based, and we are still work-
ing on frequency-time domain T-thumbprint correlating algo-
rithm.

Suppose the attacker manipulate one connection by randomly
injecting some characters into the chain. The experiment results
in Fig. 7 showed that our approach could defeat attacker’s in-
jecting chaff attack in certain extant. Here we still assume that
we have one time sequence N1(t) to represent the original T-
thumbprint, and N2(t) to represent the injected T-thumbprint.
N2(t) is generated by our simulating program with different
injecting rate. At each certain injecting rate, we get one MR of
N1(t) and N2(t) by using Algorithm 1. The results showed that
when attacker add up to 35% characters to N1(t), Algorithm 1 is
able to correlate N1(t) and N2(t).

5. CONCLUSIONS
We have proposed a new time-based thumbprint to correlate
connections and traceback intruders on the Internet. The results
showed it works on the Internet and has advantages of (1) It can
be applied to encrypt sessions; (2) It does not require tightly
synchronized clocks; (3) It can defeat attacker’s manipulation in
certain extent; (4) It is efficient, can be used to do trace-back in
real time. Another important application of T-thumbprint is to
detect stepping-stone, but with high false positive rate.

We don’t need to install the software TTT in all hosts. For
example, for the scenario that one intruder connects out from a
local network and connects back to that local network finally,
we just need the gateway of that local network to install this
software. All the outgoing and incoming connections are moni-
tored and for each connection one T-thumbprint is generated. If
we correlate the incoming T-thumbprint and the outgoing T-
thumbprint, it is not difficult to get the inside intruder. There are
still some problems with the T-thumbprint traceback. It is vul-

nerable to intruder’s manipulation even though we have shown
some counter measures in the literature.

6. REFERENCES
1. Stuart Staniford-Chen, L. Todd Heberlein, “Holding Intruders

Accountable on the Internet”, Proceedings of the 1995
IEEE Symposium on Security and Privacy, Oakland, CA,
May 1995, pp.39-49.

2. T. Ylonen, “SSH—Secure Login Connections Over the Inter-
net”, In 6th USENIX Security Symposium, San Jose, CA,
USA, 1996, pp. 37-42.

3. Yin Zhang, Vern Paxson, “Detecting stepping-stone”, Pro-
ceedings of the 9th USENIX Security Symposium, Denver,
CO, 2000, pp. 67-81.

4. Kwong H. Yung, “Detecting Long Connecting Chains of
Interactive Terminal Sessions”, RAID 2002, 2002, pp. 1-16.

5. Lawrence Berkeley National Laboratory (LBNL), “The
Packet Capture library”,. ftp://ftp.ee.lbl.gov/libpcap.tar.z,
accessed March 2004.

6. H. Jung (ed.), “Caller Identification System in the Internet
Environment”, Proceedings of 4th USENIX Security Sym-
posium, 1993, pp. 17-32.

7. CERT, http://www.cert.org, accessed March 2004.
8. J. Yang, S. Huang, “A Real-Time algorithm to Detect Long

Connection Chains of Interactive Terminal Sessions”, Pro-
ceedings of InfoSecu04, Shanghai, China, 2004, pp.198-203.

9. S. Savage, D. Wetherall, A. Karlin, T, “Anderson: Network
Support for IP Traceback”, ACM/IEEE Transactions on
Networking, Vol. 9, No. 3, 2001, pp. 226-237.

10. A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F.
Tchakountio, B. Schwartz, S. Kent, W. Strayer, “Single-
Packet IP Traceback”, ACM/IEEE Transactions on Net-
working, Vol. 10, No. 6, 2002, pp. 721-734.

11. J. Elliott, “Distributed Denial of Service Attack and the
Zombie Ant Effect”, IP Professional, March/April 2000.

12. Computer Emergency Response Team (CERT), “CERT
Advison CA-2000-01 Denial-of-service developments”,
http://www.cert.org/advisories/CA-2000-01.html, January
2000.

13. K. Yoda, H. Etoh, “Finding Connection Chain for Tracing
Intruders”, Proceedings of the 6th European Symposium
on Research in Computer Security (LNCS 1985), Tou-
louse, France, October 2000, pp. 31-42.

14. S. Snapp (ed.), “DIDS (Distributed Intrusion Detection
System)-Motivation, Architecture, and Early Prototype”,
Proceedings of 14th National Computer Security Confer-
ence, October 1991, pp. 167-176.

15. C. Ko, D.A. Frincke, T. Goan Jr.(ed.), “Analysis of An
Algorithm for Distributed Recognition and Accountability”,
Proceedings of the 1st ACM Conference on Computer and
Communication Security, 1993, pp. 154-164.

16. University of Southern California, “Transmission Control
Protocol”, RFC 793, September 1981.

17. D. L. Donoho (ed.), “Detecting Pairs of Jittered Interactive
Streams by Exploiting Maximum Tolerable Delay”, RAID
2002, 2002, pp. 45-59.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 422 ISSN: 1690-4524

	P128657

