
Ultrafast Hierarchical OTDM/WDM Network 
 

Hideyuki Sotobayashi(1)(2), Wataru Chujo(2), and Takeshi Ozeki(3) 
 

(1) Massachusetts Institute of Technology 
Room 36-323, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A. 

Phone: +1-617-253-8949, Fax: +1-617-253-9611, E-mail: hideyuki@mit.edu 
(2) Communications Research Laboratory, Incorporated Administrative Agency 

4-2-1, Nukui-Kita, Koganei, Tokyo 184-8795, Japan 
Phone: +81-42-327-5320, Fax: +81-42-327-7035, E-mail: soba@crl.go.jp 

(3) Dept. Electrical and Electrical Engineering, Sophia University 
7-1, Kioicho, Chiyodaku, Tokyo 102-8554, Japan 

Phone: +81-3-3238-3330, Fax: +81-3-3238-3321, E-mail: t-ozeki@gentei.ee.sophia.ac.jp 
 

 
ABSTRACT 
Ultrafast hierarchical OTDM/WDM network is 
proposed for the future core-network. We review its 
enabling technologies: C- and L-wavelength-band 
generation, OTDM-WDM mutual multiplexing 
format conversions, and ultrafast OTDM wavelength-
band conversions. 
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I. Introduction 
The rapidly increase in demand for bandwidth from 
end-users forces network infrastructure to be agile and 
flexible. Expansion of WDM channels results in 
increase of the complexity of optical cross-connect. 

The grouping of wavelengths, that is, layered 
structure of optical path, is a way to reduce this 
complexity.  

Accordingly, hierarchical OTDM/WDM networks, 
as shown in Fig. 1, have been proposed as future core 
networks [1,2]. After grouping WDM channels as 
wavelength-band, the high-level traffic is converted to 
tera-bit/s OTDM, which is cut through the low-level 
nodes with guarantee for error-free transmission using 
a single optical carrier signal monitoring [1,2]. The 
hierarchical structure suggests a natural method of 
using wavelength-band routing to achieve a high 
degree of spectrum reuse. 

In such networks, wavelength-band generation [3], 
multiplexing format conversions [4], and wavelength-
band conversions [5] will be key technologies. 

In this paper, we review the enabling technologies 
for the ultrafast hierarchical OTDM/WDM networks. 
We report experimental demonstrations of a 
frequency standardized 3.24 Tbit/s C- and L-
wavelength-band generation in Section 2, a 40 Gbit/s 
OTDM-WDM mutual multiplexing format conversion 
in Section 3, and a 640 Gbit/s OTDM wavelength-
band conversion in Section 4. 
 
II. C+L-Wavelength-band generation 
We propose a simple configuration of frequency 
standardized simultaneous wavelength-band 
generation using a single supercontinuum (SC) source 
[6], which is directly pumped by an optically 
multiplexed carrier suppressed return-to-zero (CS-RZ) 
signal [3]. Figure 2 shows the operational principle of 
frequency standardized simultaneous wavelength-
band generation in SC-RZ format using SC generation. 
A 10 Gbit/s RZ signal is optically time-delayed 
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network. 
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Fig. 4: Measured optical spectra 

multiplexed into a 40 Gbit/s signal. The optical carrier 
phase of each delayed adjacent pulse is shifted by ?  
using optical phase shifters in the time domain. 
Simultaneous multi-wavelength 40 Gbit/s CS-RZ 
multiplications are performed by SC generation 
directly pumped by a 40 Gbit/s CS-RZ signal. 

Figure 3 shows the experimental setup of 3.24 
Tbit/s (81 WDM x 40 Gbit/s) CS-RZ generation and 
transmission. The generated 40 Gbit/s CS-RZ induced 
SC signal was spectrum sliced and recombined by 
AWGs with a 100 GHz channel spacing to generate 
multi-wavelength 40 Gbit/s CS-RZ signals. Tellurite-
based erbium-doped fiber amplifiers (T-EDFAs) were 
used for amplification of the continuous signal band 
in the C- and L-bands [7]. The transmission line was 

two pairs of a single mode dispersion fiber (SMF) and 
a reversed dispersion fiber (RDF). Signals were 
wavelength demultiplexed by a 100 GHz spacing, 81 
channels of AWG (ch. 1: 1535.04 nm – ch. 81: 
1600.60 nm). Then, the resulting WDM DEMUX 40 
Gbit/s CS-RZ signal was optically TDM 
demultiplexed into 10 Gbit/s by using a Symmetric 
Mach-Zehnder (SMZ) all-optical switch [9]. 

Figure 4 shows the optical spectra of generated and 
transmitted wavelength-band signal. Figure 5 shows 
the measured optical spectra and eye diagrams of 
WDM ch. 1 (1535 nm) and ch. 81 (1601 nm). 
Transmission of frequency standardized 
simultaneously generated 3.24 Tbit/s (81 WDM x 40 
Gbit/s) CS-RZ over 80 km dispersion compensated 
link are experimentally demonstrated using T-EDFAs 
with 66 nm continuous signal in C- and L-wavelength 
band with bit-error rates (BERs) less than 10-9. 
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Fig. 2: Simultaneous wavelength-band 
generation of frequency standardized CS-

RZ DWDM signal. 
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Fig. 3: Experimental setup of frequency 
standardized simultaneously generation and 

transmission of 3.24 Tbit/s (81 WDM x 40 Gbit/s) 
wavelength-band CS-RZ signal. 
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III. OTDM-WDM Multiplexing format 
conversion 
We propose an efficient scheme of photonic 
multiplexing format conversion and reconversion of 
OTDM and WDM by wavelength interchange using 
optical time-gating of highly chirped SC and high 
speed pulse trains [4]. Figure 6 shows the operational 
principle of multiplexing format conversion. When 40 
Gbit/s OTDM signals are used to control the time-
gating ON/OFF window, the 10 GHz repetition rate 
SC pulses are converted to 4 x 10 Gbit/s WDM 
signals, since the center wavelengths of four WDM 
channels depend on the time-gating position. WDM-
to-OTDM conversion is achieved by controlling the 
time-gating widow using WDM signals. Four time-
aligned 10 Gbit/s WDM signals are used for 
controlling the time-gating ON/OFF window, 40 GHz 
repetition rate pulse trains are converted to 4 x 10 
Gbit/s OTDM signals.  

Figure 7 shows the experimental setup of 40 Gbit/s 
photonic conversion. 10 GHz SC pulses are optically 
time-gated in semiconductor saturable absorber [10] 
pumped by amplified 40 Gbit/s OTDM data. The 
time-window opens while the pump pulse saturates 
the absorber and its duration is 10 ps. The center 

wavelengths of time-gated SC pulses depend on the 
time position of time-gating. Then, it is WDM 
demultiplexed using an AWG having channel spacing 
of 350 GHz (? 1 : 1544.1 nm -?? 4 : 1552.5 nm). For 
WDM-to-OTDM conversion, the 40 GHz pulse trains, 
which are generated by four times time-delayed 
optical multiplexer from 10 GHz MLLD pulse trains, 
are optical time gated by using the 40 Gbit/s WDM 
data. The converted 40 Gbit/s OTDM data are time 
demultiplexed into 10 Gbit/s by optical time-gating. 

Figure 8 shows the experimental results. 40 Gbit/s 
OTDM-to-4 x 10 Gbit/s WDM-to-40 Gbit/s OTDM 
conversions in series are experimentally demonstrated 
based upon ultrafast photonic processing with BERs 
less than 10-9. 

 
IV. 640 Gbit/s Wavelength-band conversion 
We propose wavelength-band conversion of ultrafast 
OTDM signals to establish wavelength-band path 
routing [5]. By use of highly nonlinear dispersion-
shifted fibers,  (HNL-DSF) almost pulse broadening-
free, highly efficient wavelength-band conversions 
can be obtained.  

Figure 9 and Fig. 10 respectively show the SCF
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Fig. 7: Experimental setup. 
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experimental setup of C-to-L and L-to-C wavelength-
band conversion. For C-to-L wavelength conversion, 
a 640 Gbit/s OTDM signal in the C-band is 
wavelength converted to L-band in a HNL-DSF by 
four-wave mixing. After that, the converted L-band 
signal is demultiplexed into 10 Gbit/s using a HNL-
DSF based optical switch. For L-to-C wavelength 
conversion, the opposite wavelength allocation was 
used.  

Figure 11 shows the experimental results of 640 
Gbit/s sub-pico second OTDM signals wavelength-
band conversions of C-to-L-wavelength-band and L-
to-C-wavelength-band accompanied by 640-to-10 
Gbit/s OTDM demultiplexing. In both experiments, 
wavelength conversions were done with BERs less 
than 10-9 
 
V. Conclusion 

Key technologies for hierarchical OTDM/WDM 
network, that is, 3.24 Tbit/s frequency standardized C- 
and L-wavelength-band generation, 40 Gbit/s OTDM-
WDM mutual multiplexing format conversions, and 
640 Gbit/s OTDM wavelength-band conversions are 
reviewed. The proposed schemes based upon ultrafast 
photonic processing would become crucial in the 
future hierarchical OTDM/WDM network. 
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Fig. 11: Experimental results of 640 Gbit/s OTDM 
signal (a),(b) C-to-L wavelength-band conversion, 
and (c),(d) L-to-C wavelength-band conversion. 
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