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ABSTRACT 
 

Issue of finding a wavelet matched to signal has been addressed 
by various researchers in past. This paper presents a new 
method of estimating wavelet that is matched to a given signal 
in the statistical sense. The key idea lies in the estimation of 
analysis wavelet filter from a given signal and is similar to a 
sharpening filter used in image enhancement. The output of 
analysis wavelet filter branch after decimation is written in 
terms of filter weights and input signal samples. It is then 
viewed to be equivalent to difference of middle sample and its 
smoother estimate from the neighborhood which then needs to 
be minimized. To achieve this, minimum mean square error 
(MMSE) criterion is employed using the autocorrelation 
function of input signal. Since wavelet expansion acts like 
Karhunen-Loève type expansion for generalized 1/fβ processes, 
it is assumed that the given signal is a sample function of an nth 
order fractional Brownian motion. Its autocorrelation function is 
used with MMSE criterion to estimate analysis wavelet filter. 
Next, a method is proposed to design 2-band FIR perfect 
reconstruction biorthogonal filter bank. This result in compactly 
supported wavelet matched statistically to given signal. Further, 
it is shown that compactly supported wavelet with desired 
support can be designed from a given signal. The theory is 
supported with number of simulation examples. 
 
 
Keywords: FIR biorthogonal PR filter bank, Matched wavelet, 
1/fβ processes. 
 
 

1. INTRODUCTION 
 
In the last decade, lot of work has been carried out to find 
wavelet matched to signal. Tewfik [2] designed wavelet 
matched to signal in time domain whereas Gopinath [3] found 
wavelet matched to signal in frequency domain for deterministic 
signals. Mallat and Zhang [4] proposed matching pursuits 
whereas best basis search for signal has been carried out by 
Krim et. al.[5]. Rao and Chapa [6] have proposed an algorithm 
to design wavelet matched to a specified signal. Similarly work 

has been carried out by Wu-sheng [7] and Tsatsanis [8] to 
design signal adapted filter banks whereas Aldroubi [9] 
proposed method to find matched wavelet by projecting the 
signal onto an existing basis.  
 
In this paper, a new method is proposed to design a statistically 
matched wavelet using given signal statistics. It is well known 
that wavelet basis expansion acts like Karhunen-Loève type 
expansion for 1/fβ processes and are suited for the analysis of 
non-stationary signals. Therefore, the given signal is assumed to 
be a sample function of a self-similar process i.e. nth order 
fractional Brownian motion and its autocorrelation function is 
used to estimate the analysis wavelet filter. Next, a method is 
proposed to design 2-band FIR perfect reconstruction 
biorthogonal filter bank. This result in compactly supported 
wavelet matched statistically to given signal. Further, it is 
shown that compactly supported wavelet with desired support 
can be designed from a given signal. Simulation results to 
validate the theory are presented for I-D signals.  
 
Paper Outline 
The paper is organized into six sections. Section 2 covers some 
preliminaries. A brief overview of self-similar processes and 
1/fβ processes is provided in Section 3. Section 4 first discusses 
the proposed method of estimating dual wavelet filter from the 
given signal, assuming it to be 1/fβ process and then describes 
how to design PR biorthogonal filter bank for compactly 
supported wavelet based on this filter. A procedure to design 
wavelet with given support is also described here. Section 5 
contains simulation results on synthesized 1/fβ signals and 
music/speech clips. In the end, conclusions are presented in 
section 6.  

 
 

2. PRELIMINARIES 
 
A wavelet system can be orthogonal or biorthogonal. 
Biorthogonal wavelet system relaxes the condition of 
orthogonality in the wavelet basis and gives more flexibility in 
the design process. It uses the concept of dual basis [11] where, 
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the scaling filter f0 and its dual h0, wavelet filter f1 and its dual 
h1 are required to satisfy (2.1) and (2.2) for perfect 
reconstruction: 
 
                                      h1(n)=(-1)n f0(M-n)                           (2.1) 
                                      f1(n)=(-1)n h0(M-n)                           (2.2) 
 
where, M is any odd delay. 
 
The analysis/synthesis filter bank structure can be drawn as: 

 
          Fig.1:  2-Band Biorthogonal filter bank 

 
The scaling function φ(t) and wavelet function ψ(t) are related 
to f0(n) and f1(n) as: 
 
          φ(t) = ∑

n
 f0(n)√2φ(2t-n)          ∀ n ∈ Z                        (2.3) 

          ψ(t) = ∑ f1(n)√2 φ(2t-n)          ∀ n ∈ Z                       (2.4) 
                     n  
 
Similarly, corresponding to h0 and h1, we get dual scaling 
function φ′(t) and dual wavelet function ψ′(t).  
 

 
3. THEORY OF SELF SIMILAR PROCESSES 

 
A continuous time random process is called self similar if its 
statistical properties are scale invariant. Symbolically, it is 
represented as: 
 
        x(ct)   ≈    cHx(t)                                              (3.1) 
 
where, random process x(t) is self similar with self similarity 
index H (also called as Hurst exponent) for any scale parameter 
c> 0. Equality in (3.1) holds in statistical sense only. 
 
A random process is called wide sense self-similar process if the 
following holds true 
 
    µx(t) =  E{x(t)} = c-Hµx(ct)                            (3.2) 
                rx(t1,t2)  = E{x(t1) x(t2)} = c-2H rx(ct1,ct2)               (3.3) 
 
A continuous time stochastic process with parameter H is self 
similar with stationary increments (H-sssi) iff it is self similar 
with index H and has stationary increments. If H > 1, the 
increments are non-stationary, if 0 < H < 1 x(t) is H-sssi with 
bounded variance and if H < 0, the process is not mean square 
continuous.  
 
Fractional Brownian Motion 
An H-sssi Gaussian process x(t) with 0 < H < 1 is called 
fractional Brownian motion (FBm) and is denoted as BH(t). For 
value of H =1/2, the resulting process is well known Wiener 
process. 
 
Though an FBm process is a  non-stationary process, 
Flandrin[10] has shown using time-frequency representation 
that the averaged PSD of this process follows a power law and 

is directly proportional to 1/ |f|β  with β = 2H + 1. Therefore, in 
general, these processes are also called as 1/fβ processes. 
 
The mean value, variance and autocorrelation function rBH(t1,t2) 
of Gaussian 1/fβ process are given by  
 
          E{BH(t)} = 0 
          Var{BH(t)} = t2HσH

2  
          rBH(t1,t2)  = 1/2 σH

2 (|t1|2H - |t1-t2|2H + |t2|2H)                  (3.4) 

where   σH
2 = var{BH(1)} = 

1
Γ(2H+1)|sin(πH)|

   

 
i.e., it is a zero mean, self similar, non-stationary random 
process. It is observed that normalized incremental process 
defined as 

     ∆BH(t;ε) ≅ 
BH(t+ε)-BH(t)

ε           for every ε > 0                (3.5) 

 
                of FBm is a self-similar stationary process with parameter 

H′=H-1. Therefore, FBm has a generalized derivative and is 
termed as fractional Gaussian noise (FGn).   
 
Corresponding to discrete data set, discrete fractional Brownian 
motion is defined as     
                             BH[k] = BH[kTs]                                        (3.6) 
 
where, Ts is the sampling period. Since the process is self-
similar for any value of c>0, therefore, Ts can be taken to be 
equal to one without loss of generality. 
 
From (3.4) it follows that 
 
        E{BH[k]} = 0 
        Var{BH[k]} = k2HσH

2  
        rBH(k1,k2)  = 1/2 σH

2 ( |k1|2H - |k1-k2|2H + |k2|2H)              (3.7) 
 
Next, discrete fractional Gaussian noise can be defined as 
 
       XH[k] = BH[k] - BH[k-1]                                                 (3.8) 
 
nth order Fractional Brownian motion n-FBm 
Fractional Brownian motion with 0 < H < 1 is called as 1-FBm 
and corresponding 1st order incremental process is called as 1-
FGn. Similarly, n-FBm process is denoted as BH,n(t) with n-
1<H<n and corresponding nth order incremental process is 
defined as n-FGn process. It is given as: 

        XH,n(t) = ∆ℓ(n) BH,n(t) = ∑
j=0

n
(-1)n-j (n

 j )BH,n(t+jℓ)             (3.9) 

  where, ℓ is a real number and is called as lag and n is an 
integer. 
 
The autocorrelation function of this n-FGn process is defined 
as: 

        r
(n)
(H,n) (τ) = 

σH
2

2  (-1)n ∑
j=-n

n
(-1)j  ( 2n

 n+j ) |τ+jℓ|2H             (3.10) 

Again, for the discrete data set, nth order discrete Fractional 
Brownian motion and nth order discrete FGn can be considered 
with ℓ equal to one. The autocorrelation function of nth order 
discrete FGn is given by 
 

        r
(n)
(H,n) (k) = 

σH
2

2  (-1)n ∑
j=-n

n
(-1)j ( 2n

 n+j ) |k+j|2H               (3.11) 
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Estimation of H Parameter 
The maximum likelihood estimation method presented in [14] 
can be used to estimate parameter H. In [14], the method is 
presented for process with 0 < H < 1 that can be easily extended 
to n-FBm process. If the input process is n-FBm, then its nth 
order incremental process will be n-FGn stationary process. 
Since it is stationary, ML estimation is performed using discrete 
n-FGn vector X and is denoted as Ĥ: 

        Ĥ  =  
 
max
n-1<H<n

  (-N og 
XTR-1X

N    - log |R| )               (3.12) 

 
                         where R is the autocorrelation matrix of discrete 
n-FGn process formed using (3.11). 

 
 

4. ESTIMATION OF STATISTICALLY MATCHED 
WAVELET 

 
A. Method to Estimate Dual Wavelet Filter 
Consider analysis filter bank structure of two band wavelet 
system to which the sampled version of given signal a(t) is 
applied as input 
 

 
Fig.2:2-Band analysis wavelet system 

 
a0(n)=a(n) ≡ sampled version of input signal or approximation 
coefficients of the signal at scale j=0.  
 
Here, h0 is the low pass filter and h1 is the high pass filter such 
that a-1(n) represents the approximation coefficients at scale j=-1 
and d-1(n) represents the finer information in wavelet subspace 
at scale j=-1. 
 
Let us assume that the length of filters is N=5, then d-1(n) can be 
written in terms of filter weights as below: 
 
d-1(n)= h1(0)a0(2n)+h1(1)a0(2n+1) + h1(2)a0(2n+2)+  
            h1(3)a0(2n+3)+ h1(4)a0(2n+4)                                    (4.1) 
 
If the center weight h1(2) is set to unity, then, (4.1) can  be 
rewritten as: 
 
d-1(n)= a0(2n+2) - {-[ h1(0)a0(2n)+ h1(1)a0(2n+1) +  
            h1(3)a0(2n+3)+ h1(4)a0(2n+4)]} 
         = a0(2n+2) - â0(2n+2)    =   e(n)                                   (4.2) 
 
Discussion on equation (4.2): The equation (4.2) has been put in 
the above form so as to derive interesting interpretation for the 
same. This plays a key role in the estimation of matched 
wavelet. Here, â0(2n+2) is the prediction of a0(2n+2) from the 
past as well as future samples. Thus, d-1(n) is the difference 
between a0(2n+2) and its average value based on the 
neighborhood and represents additional/finer information and 
mean square value of this signal should be minimized. Thus, the 
resulting filter h1 should be a high pass filter. Fixing center 
weight equal to one will also help in the design of linear phase 
filter. 
 
 

From (4.2), d-1(n) can also be represented as  
 
   d-1(n) = e(n) =  a0(2n+j) – W0

TA0                                  (4.3) 
 
where, j = index of center weight of filter h1 
  W0 = [ h1(0) h1(1)….h1(j-1) h1(j+1)……h1(N-1)]T 
  A0=-[a0(2n) a0(2n+1)…. a0(2n+j-1) a0(2n+j+1)….a0(2n+N-1)]T  
and  
   N = length of dual wavelet filter h1. 
 
∴   E[e2(n)] =  E[a0

2(2n+j)]   -  2 E[a0(2n+j)W0
TA0] 

                        +  E[W0
TA0A0

TW0]                                      (4.4) 
 
To minimize E[e2(n)], derivative of E[e2(n)] with respect to W0 
is equated to zero. 
 

i,e,     
∂E[e2(n)]
∂W0

  = - 2 E[a0(2n+j)A0
T] + 2R0W0 = 0          

⇒                             E[a0(2n+j)A0
T] = R0W0                        (4.5) 

 
Therefore, if statistics of the input signal are known, then using 
(4.5) filter h1 can be computed.   
 
The wavelet structure is ideally suited for self-similar or say 1/fβ 
processes and the wavelet expansion acts like k-L type 
expansion for 1/fβ processes [1]. Therefore, consider input 
signal a(t) as self similar process with self similarity index H 
lying in the range n-1 < H < n. It can now be represented as 
 
             a(ct)  ≈   cHa(t)                                                          
Or, 
             a(2t) ≈ 2H a(t)             with  c=2                                (4.6) 
 
The autocorrelation function of this process can be computed 
using (3.10). For 0 < H < 1: 
 
            ra(t1,t2) = 1/2 σH

2 ( |t1|2H - |t1-t2|2H + |t2|2H) 
 
∴ Using (3.3) 
 
            ra(2t1,2t2)  = 22H-1 σH

2 ( |t1|2H - |t1-t2|2H + |t2|2H)           (4.7) 
 
For discrete input process, corresponding autocorrelation 
function is 
           ra(2n1,2n2)  = 22H-1 σH

2 ( |n1|2H - |n1-n2|2H + |n2|2H)       (4.8) 
 
Using expression of (4.8), R for N=3 can be formed as 

R= 22H-1 σH
2 R′ 

 
      2|2n|2H             |2n|2H + |2n+1|2H –1       |2n|2H + |2n+2|2H– 22H 
             

R′ =  |2n|2H + |2n+1|2H –1        2|2n+1|2H        |2n+1|2H + |2n+2|2H –1 
 
       |2n|2H + |2n+2|2H –22H   |2n+1|2H + |2n+2|2H –1       2|2n+2|2H 

               (4.9) 
 and W = [h1(0)     1         h1(2)]T   
 
Thus, using (4.5) dual wavelet filter h1 can be computed.  
 
Initially, self-similarity index for given input signal is found by 
the method of [14] using (3.12). Then autocorrelation matrix R 
of a0(2n) is computed using  (3.10) as in (4.8) for N=3 and 
0<H<1. Thereafter (4.5) is used to compute filter h1 for any 
value of n that is sufficiently high. 
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B. Design of FIR Perfect Reconstruction Biorthogonal Filter 
Bank 
The four filters h0 , h1, f0 , f1 of the analysis/synthesis filter bank 
structure as shown in Fig.1 are related by (2.1) and (2.2) for the 
condition of perfect reconstruction.  
 
First from (2.1), the scaling filter f0 is computed. All these filters 
are FIR filters. Since, the integer translates of φ(t) and ψ(t) form 
the basis of V0 and W0 respectively in L2. Similarly, f0(Mm-n) 
and f1(Mm-n) form the basis of ℓ2 for integer values of m and 
h0(n-Mm) and h1(n-Mm) form the dual basis of ℓ2 for integer 
values of m.  
 
Therefore,  
 
 ∑
n

  h0(n-2m1) f0(n-2m2) = δ(m1-m2)    ∀m1,m2 ∈ Z           (4.10) 

and   ∑
n

  h0(n-2m1) h1(n-2m2) =  0       ∀m1,m2 ∈ Z          (4.11) 

 
To find h0, (4.10) and (4.11) are required to be evaluated for 
only those values of m1 and m2 for which the vectors f0(n-Mm2) 
and h1(n-Mm1) overlap with h0(n). The filter f1 can then be 
found using (2.2). Thus, all four filters can be found that form 
perfect reconstruction FIR biorthogonal filter bank. 

C. Design of compactly supported wavelet with desired 
support 
A compactly supported wavelet with desired support can be 
designed by initially choosing different order for the dual 
wavelet filter as well as dual scaling filter. Say, the dual wavelet 
filter of order 3 is chosen. And it is desired to design dual 
scaling filter of order 7. Then 2 extra zeros can be padded 
before and after the actual filter h1 and rest of the filters can be 
designed using the procedure mentioned in section-4(B). Hence, 
a wavelet with desired support can be designed by choosing 
different orders for h0 and h1. 

 
 

5.  SIMULATION RESULTS 
 

The proposed method is applied on two synthesized 1/fβ 
processes, one music, one speech and one clip with sound of 
horse. First dual wavelet filter is estimated using the theory 
proposed in section 4(A). Then, analysis/synthesis filters are 
designed from the signal itself for FIR PR biorthogonal filter 
bank based on theory presented in section 4(B). 
 
The wavelet associated with the corresponding filter bank 
structure is the statistically matched wavelet. The analysis and 
synthesis filters corresponding to statistically matched wavelet 
for all these five clips are tabulated in Table-1. Resulting 
wavelet and the scaling functions are plotted in Fig.3. 

 
 
 
Table-1: Analysis and Synthesis filters for different clips with PR property for statistically matched wavelet 
 

Clip No./No. of 
samples/Value of H 

Coefficients of Analysis and Synthesis filters  

 
1. 1/fβ clip, 

4000 samples 
H=0.7 

 

 
h0 = [0   -0.147150     0.470914     -0.221870     -0.891308     -0.221879    0.470905   -0.147141]    
h1 = [0        0.227247    -0.727242      1.0               -0.727242       0.227237     0                  0] 
f0 =  [0        0                 -0.227237     -0.727242     -1.0               -0.727242    -0.227247     0]    
f1 = [-0.147141   -0.470905   -0.221879    0.891308      -0.221870    -0.470914    -0.147150     0]   

 
2. 1/fβ clip, 

3000 samples 
H=0.3 

 

 
h0 = [0     -0.016931     0.228188     -0.338793     -0.837994     0.027806     0.012149     0] 
h1 = [0      0.040496    -0.545771     1.0                -0.552149     0.039859     0.017415     0] 
f0 = [0       0.017415    -0.039859     -0.552149    -1.0              -0.545771    -0.040496     0]  
f1 = [0      -0.012149     0.027806     0.837994     -0.338793    -0.228188    -0.016931     0]    
 

 
3. Sound of horse, 

20000 samples 
H=0.9508, Sampling 

rate: 11025Hz 

 
h0 =[ 0.412959    -1.291842     0.758511     1.690582      -1.208537     0.257451] 
h1 =[0.237437     -0.742762     1.0              -0.791950       0.377747    -0.080470]    
f0 = [0.080470      0.377747     0.791950     1.0                 0.742762      0.237437]   
f1 = [0.257451      1.208537     1.690582    -0.758511      -1.291842    -0.412959] 
 

 
4.  Music, 11218 

samples 
H=1.7156, Sampling  

      rate: 11025Hz 

 
h0 =[-0.194491    0.254399    -0.150729   -0.309043   -1.587747    1.209136     -0.919468      0] 
h1 =[0.156738    -0.205017    -0.452637     1.0          -0.450684    -0.205475      0.156250        0]   
f0 =[0        0.156250     0.205475     -0.450684    -1.0         -0.452637      0.205017    0.156738] 
f1 =[0      0.919468     1.209136      1.587747    -0.309043     0.150729       0.254399    0.194491] 
 

 
5.  Speech, 2713 

samples 
H=1.6568, Sampling  

      rate: 11025Hz 

 
h0 = [0    -0.049773     0.175988    -0.121615   -0.286242    0.2767 05   0.727025    0.276758   -0.286330    
         -0.121649    0.176069   -0.049828] 
h1 =[ 0       0      0     0.197220    -0.697327    1.0    -0.697266    0.197327      0      0      0     0] 
f0 = [0  0   0  0   0.197327   0.697266   1.0    0.697327   0.197220   0  0   0]    
f1 = [0.049828    0.176069     0.121649    -0.286330     -0.276758     0.727025      -0.276705      -0.286242     
         0.121651    0.175988     0.049773     0] 
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                             Clip-1(a)                                                            (b)                                                                           (c) 

 
                              Clip-2(a)                                                             (b)                                                                         (c) 

 
                             Clip-3(a)                                                                (b)                                                                      (c) 

 
                             Clip-4(a)                                                               (b)                                                                      (c) 

 
                             Clip-5(a)                                                               (b)                                                                (c) 
Fig 3: Statistically matched wavelets and corresponding scaling functions with dual wavelet filters for all five clips. 
           (a) Scaling Function                         (b) Wavelet Function                         (c) Analysis Wavelet Filter 
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6. CONCLUSIONS 
 
In this paper, a new method of estimating statistically matched 
wavelet has been proposed. For this, first the analysis wavelet 
filter is extracted from signal. The idea to estimate this filter is 
similar to a sharpening filter used in image processing. The 
input signal is assumed to be nth order fractional Brownian 
motion with zero mean. Based on this assumption, the Hurst 
exponent H of this self similar process is computed using the 
already existing methods in literature. Next, analysis wavelet 
filter of specific order is computed. Thereafter, a method is 
proposed to design 2-band perfect reconstruction FIR 
biorthogonal filter bank using the estimated analysis wavelet 
filter. The wavelet associated with this filter bank is the 
statistically matched compactly supported wavelet. It is shown 
that from a given signal, compactly supported statistically 
matched wavelet of desired support can be designed.  
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