

 Performance Analysis of Information Services in a Grid Environment

Giovanni ALOISIO, Massimo CAFARO, Sandro FIORE, Italo EPICOCO, Maria MIRTO, Silvia MOCAVERO
Center for Adavanced Computing Technologies/ ISUFI University of Lecce & SPACI Consortium

Lecce, 73100, ITALY
{giovanni.aloisio, massimo.cafaro, sandro.fiore, italo.epicoco, maria.mirto, silvia.mocavero}@unile.it

ABSTRACT

The Information Service is a fundamental component in a grid
environment. It has to meet a lot of requirements such as access
to static and dynamic information related to grid resources,
efficient and secure access to dynamic data, decentralized
maintenance, fault tolerance etc., in order to achieve better
performance, scalability, security and extensibility. Currently
there are two different major approaches. One is based on a
directory infrastructure and another one on a novel approach
that exploits a relational DBMS. In this paper we present a
performance comparison analysis between Grid Resource
Information Service (GRIS) and Local Dynamic Grid Catalog
relational information service (LDGC), providing also
information about two projects (iGrid and Grid Relational
Catalog) in the grid data management area .

Keywords: Information Service, Relational Data Model,
LDAP, MDS, DGC.

1. INTRODUCTION

With the proliferation of the Internet comes the opportunity of
aggregating and sharing a wide variety of heterogeneous and
geographically distributed resources (supercomputer, storage
systems, etc.) for solving large-scale computational problems
in science and engineering. A grid environment [1] collects a
lot of information (related to computational resources) in
Information Services, providing a standard mechanism for
publishing and discovering resource status and configuration
information.
The Globus Toolkit [2] includes a set of information service
components collectively referred to as the Monitoring and
Discovery Service (MDS) [3]. It has a hierarchical structure
that consists of three main components: GIIS (Grid Index
Information Service), GRIS (Grid Resource Information
Service) and IPs (Information Providers). MDS is based on a
hierarchical data model and it allows managing static and
dynamic information about the status of a computational grid
and all its components.
Instead Dynamic Grid Catalog (DGC) [4] is an Information
Service that leverages an emerging complementary approach
based on the relational data model [5-7]. Its main components
are: GDGC (Global Dynamic Grid Catalog relational
information service), LDGC (Local Dynamic Grid Catalog
relational information service) and IPs. LDGC is a relational
information service related to a single grid resource and it
allows storing information about a local machine. On the
contrary GDGC, gathers information coming from one or more
LDGCs.
In this paper we compare and analyze the performance of
LDGC and GRIS. The paper is organized as follows: Section 2
describes the information service requirements, Section 3 the

main differences between GRIS and LDGC, and Section 4 the
experimental environment and results. In Section 5 we present
a relational information service (iGrid) and in Section 6 we
describe the Grid Relational Catalog project. We conclude the
paper in Section 7.

2. INFORMATION SERVICE REQUIREMENTS

As pointed out by Global Grid Forum (GGF) [8-9] GIS
working Group, and other previous works [10] a Grid
Information Service should provide the following basic
requirements:
9 Performance: a centralized approach to store information

related to all grid resources is not the best solution, indeed,
it can lead to a performance bottleneck. Good
performance associated to the enquiry protocol is also
absolutely necessary due to the large number of queries
that come to a GIS;

9 Scalability: the number of clients in a Grid environment
can grow exponentially, so a GIS infrastructure highly
scalable is fundamental;

9 Fault tolerance: we remember that component failure in
grid environment is the rule;

9 Stability: steadiness in query response time is another
basic requirement;

9 Extensibility: adding new kinds of information in the
schema must be easy and fast. Users should be able to add
new information items (creating their own information
provider), and to publish them without radically changing
the old system, but simply modifying the configuration
GIS profile;

9 Platform Independence: platform heterogeneity in grid
environment is very common, so this additional
complexity element can be solved designing a cross-
platform Grid Information Service;

9 Robustness and security: in order to address robust
authentication (are you who you say you are),
authorization (are you allowed to access the resources you
are requesting for the tasks you want to perform) and
communication protection requirements we adopt the GSI
protocol [11]. It is an infrastructure that provides generic
security services for applications that will be run on the
grid. Security operations are also dependent on the
particular operating system used. For example, SASL
requires dynamically loaded libraries at runtime and this is
not the rule for all operating systems;

9 Dynamic Data: a good information service must be
designed to meet a lot of requirements such as access to
dynamic data (dynamic information related to grid
resources) e.g. number of active processes, CPU usage
etc.;

9 Timestamp and Time To Live (TTL) attributes for
information: to improve response time and maximize

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 524

flexibility, each provider’s result may be cached for a
configurable period. This cache time-to-live (TTL) is
specified per-provider as part of the local GIS
configuration. It is worth noting that timestamps and TTL
estimates are not meaningful if a common timing
mechanism is not used; thus some protocols like NTP
must be mandatory;

9 Efficient discovery, enquiry and delivery mechanisms:
these mechanisms are necessary in a GIS. It is also
important and fundamental that they perform well in a
grid environment

3. GRIS AND LDGC INFORMATION SERVICE

In this paper we present a comparison between GRIS and
LDGC Information Service.
In Globus Toolkit, MDS includes a standard, configurable
information provider framework called a Grid Resource
Information Service that supplies information about a specific
resource and utilizes the LDAP [12] protocol. It can be
customized by plugging in specific information sources.
A GRIS parses and dispatches each incoming request to one or
more local information providers (we remember that GRIS will
support the “lazy” behavior, that is, caches are only refilled on
client query cache misses). Results are than merged back to the
client, filtered by the GRIS to delete any objects that do not
match the client’s search space.
It is worth noting here that MDS 2 restricts clients to queries
using the LDAP protocol, a fairly restrictive query language,
and forces clients to download a lot of information and do
subsequent client-side processing to find the desired data).
LDGC is a relational information service that has been
designed to meet efficient and secure access to data in order to
achieve better performance, security and scalability. It also
allows to store historical information so that other components
in a grid environment such as schedulers or grid resource
broker, can make statistics or forecasts about the dynamic
behavior of grid resources [4]. A LDGC can answer to queries
coming from other systems on the grid asking for information
about the local machine; this service is called White Page
Service.

Host

Has System System

Disk
IDDisk
Type FileSystem
Mount Point
………..

IDSystem
SystemName
SystemRelease
………..

Timestamp

Timestamp
FreeSpace

hasNet

Net

IDNet
Net Name
Net Addr

…………..

HasService

Service

IDService
Service Name

Service Port
Service Protocol

…………..

Timestamp

Timestamp

IDHost
Hostname

Domain
…………..

N

N

N

M

M

Has CpuStatic Cpu Static

IDCpu
Cpu Family
Vendor id
CpuMHz
Cache size
………….Timestamp

NM

Has DDynamic
NM

M

Uptime

LoadAvg

Has DStatic

Timestamp
TotalSpace

NM

FreeSwap

FreeRam

Figure 1. Entity relation diagram of information stored in
LDGC information service.

An important feature of LDGC is the “cache pre-fetch”. When
TTL information causes data to be flushed from the cache, the
LDGC will automatically restart the information providers in
order to re-fill the cache. This stabilizes the performance of
queries, since most of the time the cache will have the desired
data.
The main differences between GRIS and LDGC information
services are summarized in Table 1 as follows:

Table 1. Main differences between GRIS and LDGC
Information Services
GRIS LDGC
Hierarchical data model Relational data model
Utilizes LDAP Utilizes SQL
No aggregate selection (join) Aggregate selection allowed
Explicit knowledge of the
structure of the tree is
required

Flat table

Directories may not support
transactions

Transactions Supported

Directory service query
language is a procedural
language

SQL is a declarative language

Data are stored in an LDAP
repository in native LDIF
format. LDIF is also the
format for data delivered to,
and received from, MDS.

XML MultiQuery (proprietary
format, see section 6) is the
format for data delivered to
LDGC.

To check for data consistency
GRIS servers use GIS schema
with default setting = NO

To check for MultiQuery data
consistency DGC servers use
a Document Type Definition
(DTD) with default setting =
YES

LDAP was designed to
contain small records of
information

LDGC relational database is
designed to contain small and
big records of information

GRIS performs poorly in the
presence of frequent updates

Achievable high update rates
and freshness

No complex queries LDGC supports both simple
and complex queries

GRIS do not provide support
for data streams

Streaming supported

Historical information not
stored

Historical information also
stored

Not very efficient and
scalable support for a large
and growing number of data
objects

Efficient and scalable support
for a large and growing
number of data objects

Need to have some client-side
processing

Rich queries that allow to find
data without having to do any
client-side processing

Providers are restarted when a
new query is received and
information cache is expired

Providers are automatically
restarted when information
cache is expired

4. EXPERIMENTAL ENVIRONMENT AND
RESULTS TEST

The test queries used in our experiments were related to many
kinds of information. For instance in our tests we retrieved the
following ones:
9 Static Host Information (operating system, number of

processors, etc.);

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 25

9 Dynamic Host Information (load average, free memory
Ram, free memory Swap, etc);

9 Storage System Information (total disk space, available
disk space, etc);

9 Network Interface Information (machine names and
addresses).

To make a performance comparison between Globus MDS
GRIS 2.2 and LDGC 1.0 we did the following tests.
First we created in the Initialization Phase a Relational
Database for the LDGC Information Service with the same
information that we have in the GRIS schema.
A simple partial Entity-Relation (ER) [13] model can be seen
in Figure 1.
Then we ran on the same machine GRIS and LDGC
Information Providers (only core providers were considered) in
order to generate information needed in the Population Phase.
Finally, two applications (clients) were developed in order to
contact and to query GRIS and LDGC servers in the Querying
Phase. In this last phase, due to the not very large amount of
data we note no considerable difference between performance
related to different queries (both in GRIS using LDAP and in
LDGC using SQL language).
In LDGC, the unique SQL operation time-wasting is a join, but
joins between tables involve few tuples, so even changing
queries, results were the same. Also in GRIS changing the
entry point in the tree no considerable differences were found.
We tested GRIS and LDGC with same reference-query related
to the following processor information: CpuSpeedMhz,
CpuVendor, CpuModel, CpuVersion, CpuFree1MinX100.
The first client application uses Globus API and LDAP library
to query the GRIS server. Moreover, it uses Simple
Authentication and Security Level (SASL - binding through
GSI-GSS API) to establish a secure connection with the GRIS
server.
To test GRIS using SASL we configured properly our GRIS
server installing a required Globus certificate needed for
mutual authentication. The second one uses Globus API and
DGC library (version 1.0) to bind and query the DGC server.
The security mechanism used in this application is based on the
Grid Security Infrastructure (GSI) which enables the use of
X509 certificates in order to provide authentication and
authorization services.

Query response time GRIS/LDGC

0
100
200
300
400
500
600
700
800
900

1000

1 3 5 7 9 11 13 15 17 19
Repeated Trials (from 1 to 20)

M
ill

is
ec

BASE ONE SUB LDGC

 Figure 2. Query response time for GRIS (base, one, sub
scopes) and LDGC

We choose not to use the ldapsearch and dgcsearch (tools that
are respectively available in the Globus and DGC Information
Service distributions) because using them would have resulted
in timings affected by an unnecessary overhead (initial setup,
parameter options parsing, etc.) and also because real grid-

enabled applications will exploit directly the Globus API and
LDAP and DGC libraries.
The experiment were performed on a PC (sara.unile.it) with a
AMD 1.0GHz processor, 512MB of main memory, Linux
Operating System (kernel 2.4) and a 30GB EIDE HD
7200RPM. We used a free RDBMS (PostgreSQL 7.4 in our
tests, but this is not a fixed constraint in our LDGC
implementation because we can use whatever RDBMS as for
instance Oracle, MySQL, etc.) with default system settings.
There were no other considerable running applications during
the experiments. To take into account the caching mechanisms,
we proceeded issuing a first set of 20 queries to our GRIS
server using the base scope. Then we waited for 20 minutes in
order for the GRIS cache to expire (by default the expiry period
for almost all the information providers is set to 1 or 15
minutes; there are three information providers for which the
cache expire after 12 hours, so that the information provided
was considered as always available).
Once again a new set of 20 queries was issued, this time with
one as scope. After 20 minutes a set of 20 queries was issued
using the sub scope. Finally a set of 20 queries (SQL) was
issued to the DGC server.
The experiment was repeated several times during the day
(peak time for computing resource with high workload) and
late during the night (off-peak time, low workload) and we
obtained the same results. For every client applications results
were averaged in order to address accuracy test requirement.
We tested only the Search operation because it is the most
frequent one related to the analyzed Information Services
(other operations as Insert, Update and Delete are not
considered in this comparison).
Referring to Figure 2 it is worth noting that caching mechanism
used by GRIS is evident. As expected, for the GRIS, the first
query in each set (scope base one and sub) takes significantly
more time due to the empty cache; also expected is the increase
in response time when querying the GRIS with scope going
from base to one and finally to sub.

Query response time ratio GRIS/LDGC (1st
trial e avg(2-20))

0
1
2
3
4
5
6
7
8
9

10

BASE ONE SUB

t(
G

R
IS

)/t
(L

D
G

C
)

First Trial Trials (from 2 to 20)

 Figure 3. Query response time ratio (GRIS/LDGC) (repeated
trials from 1 to 20)

On the contrary LDGC is more stable and the difference
between the first query and the others is less evident. Referring
to Figure 3, if we consider the query time ratio between GRIS
and LDGC we obtain a very interesting information; indeed
response time for LDGC (in the first query) is at least reduced
by a factor of eight w.r.t. GRIS.
For the remaining nineteen queries the results are very similar
(in practise no difference between GRIS and LDGC) and we
can also note this in Figure 4.
We can justify the differences in time related to the first query
considering that when cache expires GRIS does not restart
provider until there is an incoming query that needs those

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 526

information (this lazy behavior is an issue related to GRIS and
not to LDAP protocol). Instead, in LDGC, providers are
automatically restarted when information cache is expired; in
this way updated information is always available for every
incoming query.

Query response time (query 2-20)

76

81

86

91

2 4 6 8 10 12 14 16 18 20
Repeated Trials (from 1 to 20)

M
ill

is
ec

BASE ONE SUB LDGC

Figure 4. Query response time (repeated trials from 2 to 20)

Query Response Time (trials 2-20)

78
79
80
81
82
83
84
85

BASE ONE SUB LDGC

M
ill

is
ec

Average Time

 Figure 5. Query average response time and variance (repeated
trials from 2 to 20)

Let us now consider Figure 5. In this graphs we reported
average response time considering variance for query going
from number 2 to number 20. There is no considerable
difference between the two proposed approaches from the
average time point of view.
Figure 4 showed that GRIS response times are less stable (more
fluctuations) than the ones related to LDGC. Indeed variance
in query response time in GRIS is higher than in LDGC (see
Figure 5).
In this version no optimizations were introduced in the LDGC
to speedup the output results. In the future, some caching
mechanisms, as for instance some views, will be introduced to
improve performance of our LDGC Information Service.

5. RELATIONAL INFORMATION SERVICE

The presented relational model for information handling has
been used as starting point for the design of the iGrid
Information Service developed within the European GridLab
project, namely within work package 10 [14], leaded by the
Center for Advanced Computational Technologies of the
University of Lecce in Italy.
As shown in fig. 6, the iGrid distributed architecture is based
on two kind of nodes, the iServe and the iStore GSI enabled
web services. The iServe collects information related to a
specific computational resource, while the iStore gathers
information coming from registered iServes.

The current architecture allows iStores to register themselves to
other iStores, thus creating distributed hierarchies, improving
the fault tolerance of the entire system.

Figure 6. iGrid Architecture

The Information Service is based on a relational DBMS
(PostgreSQL is currently used as back-end) and can handle
information extracted directly from a computational resource
(through a set of information providers), but also information
directly supplied by users allowing users to store information.
To date, iGrid Information System can handle information
related to:
9 System: belongs to this class, information like operative

system, release version, machine architecture;
9 CPU: for a CPU is extracted static information like model,

vendor, version, clock speed; but also dynamic
information like idle time, nice time, user time, system
time, load;

9 Memory: related to memory is available static information
like amount of RAM, swap space size, and dynamic
information like available memory space, available swap
space;

9 File Systems: static information is extracted as well as
dynamic information; some examples include file system
type, mount point, access rights, size, available space;

9 Network Interfaces: information that belongs to this
category include: network interface name, network
address, network mask;

9 Local Resource Manager: the information belonging to
this category can classified further more in three different
subclasses: information about queues, and information
about jobs, and static information about Local Resource
Management System (LRMS). Some example of
information that can be extracted is LRMS type, LRMS
name; queues name, status, number of CPU assigned to
the queue, maximum number of jobs that can be in the
queue, number of jobs queued, etc.; finally, jobs name,
identifier, owner, status, submission time, etc. Currently
only information providers for OpenPBS, and Globus
Gatekepeer are available;

9 Certification Authorities: information related to trusted
certification authority such as subject name, serial
number, expiration date, issuer, PK algorithm, etc.;

A set of information can be also supplied by user. The user
supplied information are:
9 Firewall: related to firewall we have information like the

name of the machine where the firewall is installed on, the
administrator name, the range of ports allowed to pass
through the firewall;

9 Virtual Organization: information related to VO can be
used to automatically discover which resources belong to
a given VO. In this category we have VO name, resource

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 27

type, a help desk phone number, help desk URL, the job
manager, etc.;

9 Service and Web Service: it is also possible to use the
information service for service or web service discovery.
In such a case information like service name, description,
WSDL location, keyword are available;

The implementation includes system information providers
outputting XML, while user information is directly supplied by
the user simply calling a web service registration method.
iGrid uses a push model for data exchange: information
extracted from resources are stored on the local DBMS, and
periodically sent to registered iStores, while user supplied
information is immediately stored on local DBMS and sent to
registered iStores. Thus, an iStore has always fresh, updated
information, and does not need to ask iServes for information.
Moreover, each information is tagged with a time to live that
allows iGrid to safely removes stale information from the
DBMS as needed. Indeed, on each user lookup, data clean-up is
performed before returning to the client the information
requested. When iGrid starts, the entire DBMS is cleaned up.
Thus the user will never see stale information.
Fault tolerance works as follows. In case of failure of an iStore,
iServes remove temporarily the faulty iStore from their
registration list. Periodically, the iStore list is updated by
adding previously removed iStores (when iStores are available
again). In this case, the local DBMS is dumped and
immediately sent to newly added iStores.
The iGrid web service is based on the gSOAP toolkit with the
GSI plugin and the GRelC libraries, it uses libxml2 library to
parse XML documents and information providers use gtop
library to extract the needed information from resources.
Finally iGrid support TSL on back-end for binding to relational
DBMS, supports GAS authorization service [15] for user
authorization and Mercury logging service for user access and
service usage monitoring [16].
We are also investigating a possible implementation of a peer
to peer overlay network based on one of the current state of the
art distributed hash table algorithms in order to improve iGrid
scalability.

6. THE GRID RELATIONAL CATALOG
PROJECT

Starting from the Dynamic Grid Catalog Information Service,
we moved towards a more general purpose framework for
adaptive data management in a grid environment, that is the
Grid DataBase Management System [17,18]. In our definition,
it is "a system which dynamically, automatically and
transparently reconfigures at runtime, components such as
Data Resources according to the Grid state in order to
maintain a desired performance level. It must offer an efficient,
robust, intelligent, transparent, uniform access to Grid-
Databases."
The Grid Relational Catalog project [19] (developed at the
CACT/ISUFI Laboratory of the University of Lecce), aims at
providing a first implementation of the Grid-DBMS
specification.
It provides a set of high level and grid-enabled data services
such as for instance:
9 Data Access Service (DAS): it provides a standard

database access interface for relational and not-relational
(i.e. textual database) data sources. It is based on the core
DGC library and provides an extension of that set of APIs
(currently the DAS libraries [20] contains more than 80

APIs whereas in the DGC library only 12 APIs were
developed). Furthermore additional features (GridFTP
protocol [21,22,23] and compression mechanisms) are
also supported in the DAS to improve performance and
speedup query submission and data retrieval processes
[24]. A wider set of operations related to data
manipulation (i.e. movefirst_record, movenext_record,
find_records, etc.) is also available to support user
applications development.

9 Data Gather Service (DGS): it provides a data integration
service, which gathers information coming from several
DAS [25]; indeed it is placed among grid applications and
the Data Access Services. It exploits the libxml2 [26] and
the DAS libraries. Currently two versions of the DGS are
already implemented (the GRelC Gather Service [27,28] –
GGS - and the Enhanced GGS [29]). The EGGS exploits
the Global-Global-DGC inquiry protocol (additional
details about this protocol can be found in [4]) in order to
improve efficiency and scalability.

9 Dynamic Reconfiguration Service (DRS): a “scheduling-
based” service which is responsible for automatically
reconfiguring (that is, replicating, relocating and
partitioning) data sources accordingly to host and data
sources performance.

9 Data Monitoring Service (DMS): a service which aims at
monitoring the entire Grid (hosts and databases
performance) in order to obtain information useful for
making decision processes (see DRS);

9 Data-Optimizer Service (DOS): a service which aims at
optimizing the performance related to the data sources
creating views, indexes and so on, based on previous
statistics and performance threshold defined by the
administrator.

Client
GRelC

Multiquery

Server
GRelC

LDGC

Server
GRelC

GDGC

Client
GRelC

Multiquery
Packets

SimpleQuery
Packet

SimpleQuery
Packet

Info Providers

Multiquery
Packets

Figure 7. Dynamic Grid Catalog Architecture

To date, the DAS and the DGS components are already
implemented (using C language for performance reasons) and
used in several grid applications/projects related to Earth
Observation System (Distributed EOS Information Service
[29,30]), Healthcare (Virtual clinical folder on the Grid [27]),
and Bioinformatics (ProgenGrid project [31,32]). Moreover
core libraries (such as the grelc_multiquery_lib_v1.0 and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 528

grelc_sdai_lib_v1.1) are also used in other projects such as for
instance the iGrid Information Service (see previous section).
The DAS and DGS (both the client/server and the Web Service
GSI enabled version) provide several features such as security
(authentication, authorization, delegation, data encryption,
access control policy), transparency (supplying grid
applications with dynamic binding to heterogeneous DBMSs –
PostgreSQL [33], MySQL [34], Oracle [35], etc.), efficiency
(high throughput, concurrent accesses, fault tolerance, reduced
communication overhead) and dynamicity (dynamic
mechanisms illustrated before).
Currently, the DAS, provides full support for several kinds of
not-traditional queries such as:
• MultiQuery: it represents a new mechanism useful to

submit a huge amount of INSERT, DELETE and
UPDATE queries in a single shot, reducing both the
connection time and the interactions between client
applications and DAS; this can lead to interesting
improvements in the query submission process as reported
in [36]. Moreover, jointly using compression mechanisms
(zlib [37]) and GridFTP protocol we can strongly reduce
the MultiQuery transfer time from client applications to
DAS. The MultiQuery mechanism can be extensively used
within whatever relational information service, because it
represents an attractive and efficient data exchange format
between Information Providers (IP) and Data Collectors
Nodes (i.e. LDGC). The basic version of the DGC
Relational Information Service, described in this paper,
carried out this kind of query to push data from
computational resources to LDGC and GDGC (see Figure
7)

• WorkflowQuery: multiple query with dependencies
submitted to several data sources (the output of a query
provides the input for the next one). We plan to use this
kind of query into complex bioinformatics experiments
that needs to combine elementary task (life science basic
applications such as protein to protein comparison) into a
workflow structure.

• ActionQuery: query jointly used with job submission on
grid resources (the resultset of a query can be seen as the
input for a program installed on a grid node);

As a future work, we plan to implement all of the services
described before (i.e. DRS, DMS and DOS), moving towards a
Grid Services architecture (Open Grid Service Architecture –
OGSA [38] or the emerging WSRF [39]).
Several efforts will be addressed in the dynamic mechanisms
described in the Grid-DBMS definition, in order to develop an
efficient adaptive framework for data management in a grid
environment.

7. CONCLUSIONS

In a grid environment information is a critical element. In this
paper we presented a performance analysis between Grid
Resource Information Service (GRIS) and Local Dynamic Grid
Catalog (LDGC). Considering the same set of information in
our tests the average queries response times were very similar
when data were available in the cache; on the contrary we
obtained different results with an empty cache (response time
for LDGC was reduced by a factor of eight w.r.t. GRIS).
Furthermore we obtained other interesting results related to
stability (response time for LDGC was more stable then
GRIS). We justified the different times related to the first query

considering that when cache expires LDGC and GRIS manage
information providers differently.
After the analysis of experimental results, we described the
Relational Information Service iGrid (developed within the
European GridLab project), which leverages the relational
model for handling information into a Grid Information Service
and the Grid Relational Catalog project (GRelC), which
provides a set of data management, access and integration
services in a grid environment.

8. REFERENCES

[1] Ian Foster, Carl Kesselman and Steve Tuecke. 2001. The

anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputer
Applications.

[2] The Globus Project, http://www.globus.org
[3] Monitoring Discovery Service, http://www.globus.org/mds/
[4] G.Aloisio, M.Cafaro, E.Blasi, I. Epicoco, S.Fiore, M.Mirto,

Dynamic Grid Catalog Information Service, Proceedings
of the First European Across Grids Conference,
February 13-14, 2003 Santiago de Compostela (Spain),
Lecture Notes in Computer Science, Springer-Verlag, N.
2970, 2003,pp. 198-205

[5] Peter Dinda and Beth Plale. 2001. A unified relational
approach to grid information services. Technical Report
GWD-GIS-012-1,GGF.
[http://www.cs.northwestern.edu/~urgis/gis012.pdf]

[6] W. Hoschek, G. McCance. 2001. Grid Enabled Relational
Database Middleware, Informational Draft
URL: [http://www.cs.northwestern.edu/~pdinda/relational-
gis/hoschek_mccance_ggf3.pdf].

[7] B. Plale, P. Dinda, and G. von Laszewski. 2002. Key
Concepts and Services of a Grid Information Service,
Proceedings of the 15th International Conference on
Parallel and Distributed Computing Systems (PDCS
2002)

[8] Relational Grid Information Services (RGIS-RG),
http://www.gridforum.org/1_GIS/RDIS.htm

[9] Grid Forum. Information Systems and Performance area.
http://www.gridforum.org/

[10] G. Aloisio, M. Cafaro, I. Epicoco, S. Fiore. 2002.
Analysis of the Globus Toolkit Grid Information
Service. Technical Report GridLab-10-D.1-0001-1.0.
[http://www.gridlab.org/Resources/Deliverables/D10.1.pdf]

[11] S. Tuecke, 2001 Grid Security Infrastructure (GSI)
Roadmap. Internet Draft.
[www.gridforum.org/security/ggf1_2001-03/drafts/draft-
ggf-gsi-roadmap-02.pdf]

[12] Heinz Johner, Larry Brown, Franz-Stefan Hinner,
Wolfgang Reis, Johan Westman - Understanding LDAP
[http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg2449
86.pdf]

[13] Eric K. Clemons. Principles of Database Design, Vol 1.
Prentice Hall, 1985.

[14] http://www.gridlab.org/WorkPackages/wp-10/index.html
[15] http://www.gridlab.org/WorkPackages/wp-6/index.html
[16] http://www.gridlab.org/WorkPackages/wp-11/index.html
[17] G. Aloisio, M. Cafaro, S. Fiore, M. Mirto, The GRelC

Project: Towards GRID-DBMS, Proceedings of Parallel
and Distributed Computing and Networks (PDCN) –
IASTED, February 17 to 19, 2004, Innsbruck, Austria.

[18] J. S. A, Gounaris, P. Watson, N. W. Paton, A.A.A.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 29

Fernandes, and R. Sakellariou. Distributed query
processing on the grid. In Proceedings of the 3rd
International Workshop on Grid Computing (GRID
2002),. LNCS 2536, Springer-Verlag, 2002, pages 279-290

[19] The GRelC project. [http://gandalf.unile.it].
[20] G. Aloisio, M. Cafaro, S. Fiore, M. Mirto, The GRelC

Library: A Basic Pillar in the Grid Relational Catalog
Architecture, Proceedings of Information Technology
Coding and Computing (ITCC), April 5 to 7, 2004, Las
Vegas, Nevada, Volume I, pp.372-376.

[21] Grid Forum GridFTP Introduction
[http://www.sdsc.edu/GridForum/RemoteData/Papers/gridf
tp_intro_gf5.pdf]

[22] Grid Forum GridFTP Specification DRAFT
[http://www.sdsc.edu/GridForum/RemoteData/Papers/gridf
tp_spec_gf5.pdf]

[23] GridFTP Protocol. URL: [http://www-
fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf]

[24] G. Aloisio, M. Cafaro, S. Fiore, M. Mirto, Advanced
Delivery Mechanisms in the GRelC Project to appear in the
Proceeding of 2nd International Workshop on
Middleware for Grid Computing (MGC 2004), October
18, 2004, Toronto, Ontario (Canada).

[25] M. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. 2nd edition. Prentice Hall, Upper
Saddle River, NJ, USA, 1999.

[26] Extensible Markup Language (XML),
URL:[http://www.w3.org/XML/].

[27] G. Aloisio, M. Cafaro, E. Blasi, S. Fiore, M. Mirto, A
Virtual Clinical Folder on the Grid, in Proceedings of
SCI2004, 18 - 21 July 2004, Orlando, Florida , USA

[28] M. Mirto, G. Aloisio, M. Cafaro, S. Fiore, A Gather
Service in a Health Grid Environment, CD-Rom of
Medicon and Health Telematics 2004, IFMBE
Proceedings, Volume 6, July 31 – August 05, Island of
Ischia, Naples, Italy.

[29] G. Aloisio, M. Cafaro, S. Fiore, G. Quarta, A Grid-Based
Architecture for Earth Observation Data Access, submitted
to the 20th Annual ACM Symposium on Applied
Computing (SAC-2005), Santa Fe, New Mexico, March
13 -17, 2005, Mexico.

[30] igeo project. [http://leonardo.unile.it/igeo]
[31] G. Aloisio, M. Cafaro, S. Fiore, M. Mirto, ProGenGrid: A

Grid Framework for Bioinformatics, to appear in the
Proceeding of International Meeting on Computational
Intelligence Methods for Bioinformatics and
Biostatistics (CIBB 2004), September 14-15 2004,
Perugia, Italy.

[32] G. Aloisio, M. Cafaro, S. Fiore, M. Mirto, Bioinformatics
Data Access Service in the ProGenGrid System to appear
in the Proceeding of First International Workshop on
Grid Computing and its Application to Data Analysis
(GADA 2004), October 25-29, Larnaca, Cyprus, Greece.

[33] PostgreSQL, URL: [http://www.postgresql.org/]
[34] MySQL, URL: [www.mysql.com]
[35] Oracle Grid Computing Technologies URL:

[http://otn.oracle.com/products/oracle9i/grid_computing/in
dex.html].

[36] G. Aloisio, M. Cafaro, S. Fiore, M. Mirto, Early
Experiences with the GRelC Library, Journal of Digital
Information Management, Digital Information Research
Foundation (DIRF) Press. Vol. 2, No. 2, June 2004, pp 54-
60.

[37] Zlib, URL: [http://www.gzip.org/zlib]

[38] Foster, I., Kesselman, C., Nick, J., & Tuecke, S. (2002).
The Physiology of the Grid: An Open Grid Services
Architecture for Distributed System Integration.
Technical Report for the Globus project. URL:
http://www.globus.org/-research/papers/ogsa.pdf.

[39] WS Resource Framework (WSRF). URL:
[http://www.globus.org/wsrf/].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 530

