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ABSTRACT 

 
In supply chains, domestic and global, a producer must decide 
on an optimal quantity of items to order from suppliers and at 
what inventory level to place this order (the EOQ problem). 
We discuss how to modify the EOQ in the face of failures and 
recoveries by the supplier. This is the EOQ with disruption 
problem (EOQD). The supplier makes transitions between 
being capable and not being capable of filling an order in a 
Markov failure and recovery process.  The producer adjusts the 
reorder point and the inventories to provide a margin of safety.  

 
Numerical solutions to the EOQD problem have been 
developed.  In addition, a closed-form approximate solution has 
been developed for the zero inventory option (ZIO), where the 
inventory level on reordering is set to be zero.  This paper 
develops a closed-form approximate solution for the EOQD 
problem when the reorder point can be non-zero, obtaining for 
that situation an optimal reorder quantity and optimal reorder 
point that represents an improvement on the optimal ZIO 
solution.  The paper also supplies numerical examples 
demonstrating the cost savings against the ZIO situation, as 
well as the accuracy of the approximation technique. 

 
Keywords: Supply Chain Management, Reliability, 

Systemics, Operations Management, Optimization 
 
 
 

1. INTRODUCTION 
 
The fundamental EOQ model assumes that the supplier is 
perfectly reliable so that supply disruptions will never occur. 
Parlar and Perry [1996] presented in their paper an extension of 
this model to take supply disruptions into account. EOQ with 
disruptions has come to be labeled EOQD in the literature. 
Their model assumes that the supplier will, at any moment in 
time, be either in an “ON” state from which they will deliver an 
order instantaneously the moment the order is received, or in an 
“OFF” state from which they incapable of delivering anything 
at all. The “ON” time is exponentially distributed at a rate λ. 
The “OFF” time is exponentially distributed with a rate µ. A 
transition into the “OFF” state means a disruption of the supply 
chain. 
 

When the purchaser’s inventory reaches the re-order quantity r, 
then the purchaser will order q units from the supplier. The 
demand is D units per time period, the ordering cost is K per 
order, and the inventory holding cost is h per unit per time 
period.  If the supplier is in the “ON” state, the q units are 
instantly shipped by the supplier and received by the purchaser, 
with the inventory rising to q + r units.  
 
If the supplier is in the “OFF” state when the purchaser’s 
inventory reaches the re-order quantity r, no orders can be 
placed and the purchaser has to wait till the supplier returns to 
the “ON” state. When the supplier returns to the “ON” state, 
the purchaser’s inventory level will have been reduced to s′ ≤ r 

through sales. If the purchaser’s inventory level is reduced to 0 
and further demands occur, a stock-out penalty of π dollars per 
unit of unmet demand is incurred. When the supplier returns to 
the “ON” state, the purchaser orders a quantity adequate to 
bring inventories from s’ up to S′ = q + r units. An (s′, S′) 
policy is therefore used when the supplier returns to the “ON” 
state following a stay in the “OFF” state. No back orders are 
allowed, so s′ and S′ are both non-negative.  
 
All of this introduces a new trade-off not considered in the 
traditional EOQ model. If the purchaser decides on a small q 
and a small r, they risk stock-outs and lost sales. If the 
purchaser attempts to avoid these stock-out costs by increasing 
the re-order point r or by ordering a larger q, they will increase 
their inventories and thus their inventory carrying costs. The 
purchaser must trade off between both q and r to identify a cost 
minimizing policy (q*, r*). 
 
A sample pattern of the rise and decline in inventory levels 
over time is shown in Figure 1. 
 

 

2. BUILDING BLOCKS 

 

The Unitary-Demand Numerical Cost Model: 

Parlar et al [1996] assumed that the demand D ≡ 1. With this 
assumption, they show that the expected cost of placing orders, 
carrying inventories and incurring outage losses is given by 
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Where β0 is the probability that a supplier is in the “OFF” state 
when the purchaser’s inventories reach the re-order point r, i.e., 
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β is the fraction of time that the supplier is in the “OFF” state, 
i.e., 
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λ
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C(r) is the expected cost incurred from the time when the 
inventory reaches r and the state is “OFF” to the beginning of 
the next cycle when the supplier has transitioned into the “ON” 
state.  They demonstrated that 
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They then found the cost-minimizing pair (q, r), solving their 
model by numerical methods.   
 
The basic EOQ model (without supply disruptions) provides 
solutions in closed form, explicitly giving formulas for the 
optimal order quantity q and the re-order quantity r, thereby 
showing the interrelations among q and r, the average cost, and 
the model parameters. However, for the EOQD model (with 
supply disruptions), closed form solutions that calculate the 
minimum of the exact cost function (1) have not been 
developed in the literature, including Parlar et al [1996], with 
numerical solutions being provided instead. However, closed-
form solutions for the cost minimum as a function of the 
variables for q and r and the model parameters would have 
important and widely appreciated benefits, including the 
following: 
Explicitly showing how values of the model’s parameters and 
the independent variables q and r combine to generate the 
dependent variable of optimal cost, thereby providing a strong 
contextual explanation for the EOQD dynamics. 
Facilitating parametric analysis and sensitivity analysis for the 
optimal solution. 
Exploring the model’s asymptotic behavior for extreme values 
of the various parameters. 
Providing building blocks for richer and more complex models  
 
  The ZIO Closed-Form Cost Model: Snyder [2005] 
allowed the demand D to take on other values than 1, but 
restricted the reorder point r to 0 in (4), obtaining the exact cost 
function (2).  Since r = 0 this is known as the zero-inventory 
ordering (ZIO) policy.  Equation (2) was then approximated by 
replacing β0 with β, obtaining equation (3), and closed-form 
solutions of (3) were then obtained. 
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Our Approach: In this paper, we start with the cost 

equation (2) and expand it to address the general case where r ≥ 
0, i.e., the non-ZIO reorder policy, obtaining a two-variable 
function g0(q, r).  We then obtain the corresponding version of 
equation (3), denoting the function by g(q, r), and from it 
develop cost-minimizing formulas in closed form. Specifically, 
we develop the following:  
In Section 4: Theorem 1 develops the closed form formula 
which calculates the cost-minimizing order quantity q* for a 
given r ≥ 0. 
 In Section 5: Theorem 2 develops the closed form formula 
which calculates the cost-minimizing re-order point r* for a 
given q ≥ 0. 
In Section 6:  Theorem 3 develops the closed form formula that 
calculates the unique global cost-optimal point (q**,r**) 
In Section 7: Theorem 4 proves that the approximation g(q, r) 
is an upper bound for the exact value g0(q, r), up to a critical 

value r = r̂ , above which the reverse is true. 
In Section 8: Theorem 5 proves that the goodness of the 
relative approximation of g to g0 is bounded above by the 
relative approximation between β and β0  
In Section 9: Theorem 6 proves that if q0 is the value of q that 
minimizes the exact cost function g0(q,r) for a given value of r, 
and q* is the value of q which minimizes the approximating 

function g(q,r), then q* > q0 for r up to r̂ , the critical value of 
r identified in Section 7, above which the reverse is true. 
In Section 10:  We conclude with a set of application example 
drawn from the literature and used in Snyder [2005], as well as 
a replication of the numerical example in Parlar et al [1996]. 
 

 

3. LITERATURE  REVIEW 
 
Early papers to address the effect of disruption include Meyer, 
Rothkopf, and Smith [1979].  Chao [1987] discusses dynamic 
programming to address this problem for electrical utility 
companies facing possible market disruptions.  Groenevelt, 
Pintelon, and Seidmann [1992] discuss a deterministic 
economic lot-sizing problem in view of machine breakdowns 
and corrective maintenance.  
 
Parlar and Berkin [1991], corrected by Berk and Arreola-Risa 
[1994], begin a number of articles that incorporate disruptions 
into classical inventory models. Parlar et al [1995], mentioned 
previously, extends these results.  Parlar and Perry [1996] 
extend the results in Parlar et al [1995] to the situation with two 
suppliers and provide direction for analysis with more than two 
suppliers.  Gürler and Parlar [1997] allow more general failure 
and repair processes in the two-supplier model, presenting 
asymptotic results for large order quantities.  
 
Arreola-Risa and DeCroix [1998], as well as Moinzadeh and 
Aggarwal [1997] consider (s,S) models with supplier 
disruptions.  Song and Zipkin [1996] consider a situation where 
the availability of the supplier is partially known to the 
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receiver.  In Tomlin [2005], two supply sources exist, one 
cheap and unreliable and one expensive and reliable. The above 
papers (except for Tomlin [2005]) discuss solving the models 
using a numerical approach rather than in closed form, due to 
the complexity of the model equations.   
 
As mentioned previously, Snyder [2005] developed an 
approximate closed-form model for the ZIO situation with a 
single supplier, where the demand is allowed to take on values 
other than unity.  The paper develops bounds on the 
approximation error and addresses a power-of-two ordering 
policy. 
 

 

4.  OPTIMAL REORDER QUANTITY Q* FOR GIVEN 

REORDER POINT R 

 
The average cost objective function is derived from Parlar et al 
[1995] as 
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In Parlar et al [1995], the demand is set as D ≡ 1, so the values 
H, Λ, and Μ are set in terms of demand time, e.g., M = 0.2 
means that an average of 0.2 recoveries occur in the period of 
time it takes for one unit of demand to occur, which, if the 
demand is D = 100 per year, is equivalent to 20 recoveries per 
year.  Let h, λ, and µ be the equivalent rates for H, Λ, and Μ set 
in terms of calendar time, so that h = HD, λ = ΛD, and µ = MD.  
Then equation (4) becomes 
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Let q = Q and r = R/D. Then (5) becomes
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Let g0(q,r) = G0(Q,rD)/D.  Then 
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As was done in Snyder [2005] we approximate the function 
g0(q,r) by the function g(q,r), where β0 is replaced by β as 
follows 
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Note that if r = 0, i.e., the ZIO policy, then C(r) = π/µ and 
equations (6) and (9) reduce to the equations for g0(q) and g(q) 
in Snyder [2005].  Also, if D = 1, equation (6) reduces to the 
equation for g0(q,r) in Parlar et al [1995].  In addition, if λ = 0, 
i.e., no disruptions occur, then β = β0 = 0 and both equations 
reduce to the standard EOQ formulation. 
 
We shall impose three reasonable assumptions on the problem 
parameters.  First, we assume that all costs and other problem 
parameters including q and r are non-negative.  Second, we 
assume that λ < µ, i.e., the supplier “ON” states last longer than 
the “OFF” states.  

Third, we assume that DhrDKhD π<+2 .  If there 

were no disruption, the model would reduce to the classical 
EOQ model with a reserve inventory of r, whose optimal 

annual cost is hrDKhD +2 .  This optimal annual cost is 

therefore a lower bound on the optimal cost of the system with 
disruptions.  A feasible solution for the system with disruptions 
is never to place an order and maintain the reserve of r, instead 
stocking out on every demand; the annual cost of this strategy 
is πD.  Since a lower bound for the optimal cost is clearly a 
lower bound for one of the feasible costs, this establishes the 
assumption. 
With these parameters, formulations, and assumptions, we 
address the question of, for a given reorder point r ≥ 0, what 
quantity q*(r) the purchaser should order so as to minimize the 
average cost.  The closed-form result is given in Theorem 1 
below: 
 
Theorem 1: The optimal reorder value q*(r) for a given value 

of r ≥ 0, i.e., the value of q where g(q,r) is a minimum, is given 

by 
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If the argument of the “ln” function in (11) is negative, then 

(10) is true for all non-negative values of r. 

 

Remark:  If λ = 0 then β = 0 and (10) reduces to the standard 
EOQ result.  If r = 0 then (10) reduces to the result shown in 
Snyder [2005]. 
 
Proof:   To find the optimal reorder value q*(r) for a value of r 
we differentiate (9) with respect to q and equate to zero.  
Differentiating: 
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Equating to zero and using the quadratic formula, the value for 
q* becomes 
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Since q* must be nonnegative, the “±” in (10) is actually “+”.   
In order for q*(r) to be real and positive, we must have that 
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Solving the above for the quantity 
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The numerator of the right-hand side of (15) is clearly less than 

the denominator.  Therefore, r~  is positive and so q*(r) is 

positive for all values of r from zero to r~ . 
 
To establish that the value of q*(r) defined in (10) is in fact a 
minimum, we need to establish that the second derivative of 
g(q,r) with respect to q is positive.  Differentiating (12) with 
respect to q, we have that 
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From the discussion above, the numerator of (16) is positive for 
all r where Theorem 1 holds so that q*(r) is indeed a minimum. 
QED 

 
Remark The value of having a closed-form formula for q*(r) 
can be seen by noting the effect on q*(r) of small values of h.  
From inspection of (13) we have that 
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showing not just that q*(r) increases as h → 0 but also showing 
the asymptotic properties of this increase. 
 
 

5.  OPTIMAL REORDER POINT R* FOR A GIVEN 

ORDER QUANTITY Q 

 
We next address the question of, for a given order quantity q ≥ 
0, at what inventory point r* the purchaser should reorder so as 
to minimize the average cost.  The closed-form result is given 
in Theorem 2 below: 
 
Theorem 2: For a given reorder quantity q ≥ 0, the reorder 

inventory point r*(q) that minimizes the cost function g(q,r) is 

given by  
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If q > πβD/h, then r*(q) = 0. 
 

Proof: We differentiate g with respect to r and equate to zero, 
so that 
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Equating the numerator to zero and solving for r we obtain 
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Differentiating (18) with respect to r we obtain the second 
derivative as 
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which is positive.  Therefore r* minimizes the cost function 
g(q,r). 

If q > πβD/h, then 
r

g

∂

∂
 > 0 for all nonnegative r, so that 

 r*(q) = 0. 
 

QED 

 

 

6. GLOBAL MINIMUM COST POINT (Q**,R**) 

 
The previous sections addressed optimal values of q for 
specified values of r, and vice versa.  The manager for the 
purchaser may instead wish to fully optimize the average cost 
by determining and using the pair of values (q**,r**) that 
provides the global optimum.  We now address that question, 
i.e., the optimal solution for the overall EOQD problem.  The 
closed-form result is given in Theorem 3 below: 
 
Theorem 3: The global minimum for the EOQD function g(q,r) 

occurs at  
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if r** ≥ 0.  If r** < 0 then the minimum occurs at (q*(0),0), 

i.e., the ZIO policy (r = 0) is optimal. 

 
Proof: To determine the global minimum for g(q,r) we need to 

set the two partial derivatives 
q

g

∂

∂
 and 

r

g
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∂
, given by 

equations  (12) and (18) respectively, to zero and solve 
simultaneously for q and r.   
The numerators for (12) and (18) are quadratic in q and linear 
in e-µr.  Let s = e-µr.  Then equation (10), which sets (12) to 
zero, can be expressed as 
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Furthermore equation (17), which sets (18) to zero, can be 
expressed as 
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Solving (20) for s in terms of q we obtain 
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Substituting into (21) we obtain 
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Using the quadratic formula, we have that 
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real and positive and its value is governed by the “+” part of 
the ± sign.  After some algebra, 
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Taking ½ XZ = D/µ and XY = 2βD2/ µ2 and substituting into 
(22) 
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Since s** is positive, r** is real.   

From equations (16) and (19) we have that 
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clearly nonnegative, so that equations (23) and (24) do yield a 
minimum for g(q,r). 
 
If s** > 1, implying a negative value for r**, then consider the 
function where r*(q) is defined in (17). 
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Substituting (12), (18), and (26) into (25) 
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From equation (23), q** is a root of the numerator of (27), so 

that 0
~

=
dq

gd
 at q = q**.  Let q^ be defined such that 

 r*(q^) = 0, i.e., q^ = πβD /h > 0.  Then since 0
*

<
dq

dr
 from 

equation (26) and r*(q**) = r** < 0, we have that q^ < q**.  
From inspection of (27) we have that the two roots of (27) are 

q** and a negative value, with 0
~

<
dq

gd
 for q in between 
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those values, and therefore 0
~

<
dq

gd
 for all 0 < q < q^ (note 

that this is the interval in which q > 0 and r*(q) > 0), so that the 

minimum of g~  in this interval occurs at q = q^, or 

equivalently at r = r*(q^) = 0. 
 

QED 
 
Remark: Note that q** is independent of the stockout cost π.  
The purchaser’s optimal order quantity therefore does not 
depend on the stockout cost (though the reorder point does 
depend on it) 
 
 

7.  ABSOLUTE DEGREE OF APPROXIMATION 
 
Having established the minimizing properties of the 
approximate cost function g(q,r), we wish to examine its 
relationship to the exact cost function g0(q,r).  In this section 
we establish that g is an upper bound for g0 for all values of r 
below a specified critical value that is greater than the global 
optimum r**.  Therefore, using q and r based on g(q,r) as 
against g0(q,r), and especially using the globally-optimizing 
values (q**,r**) for g(q,r), will not result in cost “surprises” 
due to cost underestimates.  
 
We prove three lemmas, followed by the overall theorem (for 
brevity in each lemma and the theorem, the value q*(r) is 
denoted by q*): 
 

Lemma 1: 

*))))((((* 122
hqhheDKq

r

h
D βπµβµ µ

µµ −−++= −  (28) 

Proof: Equate the numerator of (12) to zero and solve for ½hq* 
and then q*. 
 

QED 

 

Lemma 2: 

    g(q*,r) = h(q*+Dr)                  (29) 
 
Proof: Substituting (28) into (9) 
 

µ

β

µ
µµ

ββπµβµ

+

++−−+++
=

−

D

q

r

K
D

D
rDCrhqhqhheDKhK

rqg
*

10
12

2
1 )(**)))))(((((

)*,(

 

Dq

DqhrDhqDhqDhheDDK r

βµ

βµββπµβµ µ
µ

+

+++−−++
=

−

*

)*(**)))(((2 21  

 

Dq

DqhrDhqDqh

βµ

βµβµ

+

+++
=

*

)*(**2

 (from Lemma 1) 

 

Dq

DqhrDDqhq

βµ

βµβµ

+

+++
=

*

)*()*(*
 

 

)*( Drqh +=  

 

QED 
 
Lemma 3: 

DKhhrrC /2)( >−µ ,                  (30) 

for 














+

+
−=<

h

DKhh
rr

πµ

µ
µ

/2
ln1)  and  

 

DKhhrrC /2)( <−µ                 (31)

  

for rr
)

> , with both (30) and (31) being equations when 

rr
)

= . 
 

Remark: Note that rr ~<
)

, where r~ is given in Theorem 1, 

so that Theorem 1 applies for all rr
)

< .  Note also that since 
by assumption λ < µ so that β < ½, it also follows that 

rr
)

<** , where r** is given Theorem 3.  Therefore it is the 
first parts of Lemma 3 and the other lemmas below including 
Theorem 4 (as well as the second part of Theorem 5) that apply 
at the global minimum r = r** (and q = q**). 
 
Proof: From equation (7), and using some algebra, we have 
that 

)()( µ
µ

µ πµ hrh ehrrC ++−=− −
                            (32) 

 
The right-hand side of (32) is when r = 0 , equal to π, which by 

assumption is greater than DKh /2 ,  a decreasing 

function of r, when r = ∞, equal to µ
h− , which is less 

than DKh /2 . 

   

There is therefore a unique value 0>r
)

where (30) and (31) 

are equalities when rr
)

= , where (30) holds for all 

rr
)

< ,and where (31) holds for all rr
)

> .  Equating (32) to 

DKh /2  and solving for r we obtain r
)

as 












+

+
−=

h

DKhh
r

πµ

µ
µ

/2
ln1)

 

QED 
 
Lemma 4: 
 

 )()*,(2 rCDrqghrDKhD µ<<+                 (33) 

for rr
)

< , and 
     

)()*,(2 rCDrqghrDKhD µ>>+                 (34) 

for rr
)

> . Both (33) and (34) are equations when rr
)

=  

 

Proof: For rr
)

< , )(/2 rChrDKh µ<+  by Lemma 

3.  Substituting the definition of C(r}and carrying out some 
algebra, we have 
 

)(/2 hehDKh r ++−< − πµµ µ
 

 
Multiplying both sides by 2 βh, adding 2Khµ2/D+ (βh)2 to both 
sides, completing the square on the left-hand side and 
rearranging terms on the right-hand side, 
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( ) ))]((/[2)(/2 22
hehDKhhhDKh

r ++−++<+ − πµµµββµ µ
µ
β . 

 
Further algebra leads to 
 

( ) hrDhehKDhDhDhhrDKhD
r +++−+++−<+ − ))](([2)(2 2

2 πµµ

µ

β

µ

β

µ

β

 
By equation (13), therefore, 
 

hrDrhqhrDKhD +<+ )(*2 , 

 
and by Lemma 2, 
 

)*,(2 rqghrDKhD <+  

 
establishing the left-hand inequality of Lemma 4. 
 
For the right-hand inequality of Lemma 4, again by Lemma 3, 

hrrCDhK −< )(/2 µ .  Multiplying both sides by µ, 

squaring, and completing the square on the right-hand side, we 
have 
 

2222

222

)())((2))((

))((2/2)(

hrhrChrhrC

rhrChDhKh

βµµβµµ

µµβµβ

+−+−<

−++
 

 
or after some algebra 
 

( )
))(

)])((/[2)( 21

hrrC

hrrCDKhhh

−<

−+++−

µ

µβµµββµ  

 
From equation (13) and the definition of C(r), this implies that 
hq*/D + hr < µ C(r).  By Lemma 2, hq* + hrD = g(q*,r), so 

the right-hand inequality of Lemma 4 is established. 
 

If rr
)

> , a similar argument establishes the reverse 
inequalities. 
 

If rr
)

= , a similar argument establishes the equations (note 

that since DrhhqrqgDrhKhD ˆ*)ˆ*,(ˆ2 +==+ , 

it follows that hKDrq /2)ˆ(* = , i.e., the EOQ value 

for q). 
 

QED 

 

Theorem 4: 

g(q*,r) - g0(q*,r)> 0 for rr
)

< , and                     (35) 

g(q*,r) - g0(q*,r)< 0    for rr
)

> .                           (36) 

If rr
)

= , then g(q*,r) - g0(q*,r)= 0. 
 
Proof: From equations (6) and (9), the approximation 
difference is given by 

)*)(*(

))**()(*)((

0

2
2
1222

0
0

DqDq

rhqhqKDrCDq
gg D

βµβµ

µµββ

++

++−−
=−

 (37) 

 

If rr
)

< , we need to establish that 

0)**()(* 2
2
1 >++− rDhqhqKDrCDq µ  

 
This is equivalent to 
 

0*2*22 <+− XhYqqh  

where X = 2KDh and Y = hrDrCD −)(µ .  Completing the 

square, this is equivalent to 
 

YXYhq >−+ 2*  

 
and 
 

YXYhq <−− 2*  

 
so that 

h

XYY
q

h

XYY −+
<<

−− 22

*  

 
Therefore, q* must lie between the two values 
 

h

KhDhrDrCDhrDrCD 2))(())(( 2 −−±− µµ
 (38) 

 

From (29) and (38) the condition 
)*,()*,( 0 rqgrqg >

is 
satisfied if and only if 
 

KhDhrDrCDhrDrCD

hrDrqgKhDhrDrCDhrDrCD

2))(())((

)*,(2))(())((

2

2

−−+−<

−<−−−−

µµ

µµ  

 
The right-hand inequality is satisfied by the right-hand 
inequality of (33).  To prove the left-hand inequality, we note 
that for any a, b, and c such that a < b and c ≤ a2, 

caacbb −−<−− 22

by the concavity of the square-root 
function.   
 
Setting 

KhDchrDrCDbKhDa 2,)(,2 =−== µ , we 

have that a < b by Lemma 4 and noting the two inequalities in 
(33) establishes the left-hand inequality and therefore the 
theorem. 
 

If rr
)

> , then we need to establish 
 

0)*2*( 22 >+− XhYqqh                  (39) 

 
From Lemma 3 we have that Y2 – X < 0, establishing (39) and 
proving the theorem. 
 

If rr
)

=  then )()*,( rCDrqg µ=  by Lemma 4, so that 

))((* 1 hDrrCDq
h

−= µ  by Lemma 3.  Therefore 
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hq*=Y.  Since Y2 = X by Lemma 4, we have that 

0*2*22 =+− XhYqqh ,  and therefore  

 

0)**()(* 2
2
1 =++− rDhqhqKDrCDq µ , 

 
establishing that g(q*,r) = g0(q*,r) and proving the theorem. 
 

QED 
 
 

8.  RELATIVE DEGREE OF APPROXIMATION 

 
We wish to investigate the relative degree of approximation of 
g to g0, i.e.,  

)*,(

)*,()*,(

0

0

rqg

rqgrqg −

 
in particular the degree to which the quantity (β- β0)/ β0 is an 
upper bound to this degree of approximation.  Since, for many 
values of λ, µ, and q*, the values β and β0 are very close to 
each other, such an upper bound will be a powerful statement 
on the value of the approximation. 
 

Theorem 5: Let gE(q,r) = hr
hq

q
KD ++ 2 be the classical 

EOQ cost function with a nonnegative reorder point.  Then:   

 

a) For all q>0 such that gE(q,r) < DµC(r), 
 

)/)((

)/)((

0

0

0

0

0

0

1

)(

),(
1

),(

),(),(

Dq

Dq

E

e

e

rCD

rqg

rqg

rqgrqg
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β

ββ
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ββ
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+−

−
=

−
<









−

−
<

−

 

 

b) If rr
)

< then  gE(q*,r) < DµC(r), so that 

 

 

)/*)((

)/*)((

0

0

0

0

0

0

1

)(

)*,(
1

)*,(

)*,()*,(

Dq

Dq

E

e

e
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ββ

+−

+−

−
=

−
<









−

−
<

−

 

 

c) If rr
)

> then 

  

)/*)((0

0

0

0

)*,(

)(
1

)*,(

)*,()*,(

Dq

E

e

rqg

rCD

rqg

rqgrqg

µλ

β

ββ

µ

β

ββ

+−=
−

<









−

−
<

−

 

 

If rr
)

= then (g(q,r) – g0(q,r))/ g0(q,r) = 0. 
 
Proof: 

 
a) From (37) 

))((

))()(()(
),(),(

0

2
2
1

0
0

DqDq

hqDrhqKDrCqDD
rqgrqg

βµβµ

µµββ
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++−−
=−

 
Therefore, 
 

qrCDhDrhqqKD

hDrhqqKD

hDrhqqKDDq

hDrhqqKDrCD
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)/)(/(

))/()()((

),(

),(),(

0
2

2

1

2

1

2

1

2

1
0

0

0

ββµ

µββ

+++

++

+++

++−−
=

−

 

))/)((exp(1

))/)((exp()(

)(

),(
1

)(

1
),(

)(

)),(/)()(/(

)(

1
),(

)(

)),(/)(1)(/(

)(

/)(),(

),(

),()/(

)),()()((

0

0

0

0

0
2

0

0
2

0

0
2

0

Dq

Dq

rCD

rqg

rqg

rCD

rqqgrCDDq

rqg

rCD

rqqgrCDDq

qrCDrqg

rqg

rqgDq

rqgrCD

E

EE

EE

E

E

E

E

µλ

µλ

β

ββ

µβ

ββ

µ

βµ

ββ

µ

ββµ

ββ

ββµ

µββ

+−−

+−
=

−
<







−

−
=









−

−
<









−

++

−
=

++

−−
=

 

 
 
b) From the quadratic formula, (38) is equivalent to 
 

)()*,(
2

*

*
rCDrqghrD

hq

q

KD
E µ<=++  

    
The result therefore follows from part (a). 
 
 
c) From part (a) we have that 
 






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Therefore, 
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d) This part follows directly from Theorem 4 
 

QED 

 
 

9.  UPPER (OR LOWER) BOUND ON THE EXACT 

REORDER LEVEL 

 
In addition to the approximating cost function g being an upper 
bound for the exact cost function g0, we can also establish for 
what values of the reorder point r the optimal order quantity q* 
for the approximating cost function is an upper (or lower) 
bound for the optimal order quantity q0 for the exact cost 
function. 
 

Theorem 6: If rr ˆ< , then q* > q0, where q0 minimizes 

g0(q,r).  If rr ˆ> , then q* < q0., and if  rr ˆ=  then q* = q0. 
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Proof: Since from equation (8) 
)/)((0 Dq

e
Ddq

d µλλβ +−= , the 

first derivative of g0 with respect to q is given by  
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The numerator can be rewritten as 
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and further rewritten as 
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The expression in (40a) is the numerator for q

g

∂

∂

and the 
parenthetical term in (40b) is its negative, so that when q = q* 
both of these terms are zero.  Using (29), the second factor of 
(40c) can be rewritten as 
 
( ))1()()))(()(1(1

µ
λ

µ
λλ

µ
λ

µ ββµµ +−−+−−+−
D
K

D
hr

DD
qqrChqhrrCK

 
= ( ))))((2())()(1( qrChqhrrC

D
hr

DD
K

D
−+−+−−− µ

µ
λ

µ
λ

µ

β µ   (41) 

 

We assume that λ < µ, so that 
0)1( >− µ

λ

.  If rr ˆ<  , then 
by Lemma 3, hDr + hq* = g(q,r*), and by Lemma 1, g(q,r*) < 
DµC(r), so that DµC(r) - hDr - hq* > 0.  Similarly, DµC(r) - 
hDr > hq*, so that q*(DµC(r) – hDr) > hq*2.  Also by Lemma 

2 and Lemma 3,  hDrhqhDrKhD +<+2 , so that 

KDhq 22 > .  Hence the expression in (41) and therefore 

the second term of (40c) are both positive.  Therefore 

qg ∂∂ /0 is positive when  
q = q*.  Since g0 is unimodal (by a similar argument as 
Proposition 2b in Berk et al [1994], it must attain its minimum 
to the left of q*, therefore q* > q0. 
 

If rr ˆ> , then a similar argument shows that qg ∂∂ /0 is 

negative when q = q*, so that g0 must attain its minimum to the 
right of q*, so that q* > q0. 
 

If rr ˆ= , then a similar argument shows that qg ∂∂ /0 is 

zero when q = q*, so that q* = q0. 
 

QED 
 
 

10.  COMPUTATIONAL RESULTS 
 
We tested our formulas using the 10 sets of parameters h, K, π, 

and D adopted in Snyder [2005], which are in turn derived 
from sample problems for the “(Q,R)” model found in 

production and inventory textbooks.  These parameter sets are 
displayed in Table 1.  For each pair of failure rate λ and 
recovery rate µ, we therefore have 10 sets of parameters.  We 
selected 16 failure and recovery rate pairs, using 4 values of λ 
(i.e., 0.5, 1, 2, and 5) and 4 values of µ (i.e., 2λ, 4λ, 10λ, and 
20λ) for each value of λ.  This results in 160 total application 
examples. 
 
We also tested our formulas on the numerical example given in 
Parlar et al [1995], shown in the last rows of each of the tables 
that follow. 
 

Table 1 – Problem parameters 

 

Set h K π D 

1 0.8 30 12.96 540 

2 15.0 10 40.00 14 

3 6.5 175 12.50 2000 

4 2.0 50 25.00 200 

5 45.0 4500 440.49 2319 

6 5.0 300 50.00 3000 

7 0.0132 20 0.34 1000 

8 5.0 28 80.00 520 

9 0.005 12 0.12 3120 

10 3.6 12000 65.73 8000 

Parlar & 
Perry 

5 10 260 1 

 
For each application example, we computed  
 

• The optimal ZIO (i.e., r = 0) order quantity q*(0), using 
the closed-form approximating function g, and the value 
of g and the exact function g0 for q = q*(0) and r = 0 

• The optimal reorder inventory point r*(q) for the order 
quantity q = q*(0), and the value of g and g0 for  

• q = q*(0) and r = r*(q*(0)) 

• The globally optimal point (q**,r**) using the closed-
form approximating function g, and the value of g and g0 

at (q**,r**) 

• The globally optimal point (q0,r0) using the exact function 
g0 (obtained via numerical methods) 

 

 
A Sample Cost Analysis: Figure 2 shows a sample plot of 

the approximate and exact cost functions g and g0 for one of the 
sample sets (λ = 2, µ = 20, and the sixth set of parameters in 
Table 1).  The upper set of curves shows the approximate and 
exact cost functions g and g0 using the ZIO policy (i.e., R = 0 
for each value of Q), while the lower shows the two functions 
using the optimal reorder policy (i.e., R = R*(Q) for each value 
of Q). 

• Text box 0 shows the EOQ policy in the absence of 
supplier failures. 

• Text box 1 shows the EOQ policy in the presence of 
supplier failures 

• Text box 2 shows the ZIO policy (Q = Q* and R is zero) 
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• Text box 3 shows the ZIO order quantity with the optimal 
reorder point (Q = Q* and R = R*(Q*)). 

• Text box 4 shows the overall optimum (Q**,R**) using 
the function g. 

• Text box 5 shows the overall optimum (Q0,R0) using the 
function g0 (solved numerically). 

 
We obtain the following significant conclusions: 
 

• The cost of unreliability is significant.  With a perfectly 
reliable supplier the average costs would have been 
$3000.  Because of the unreliability, the costs become 
considerably higher. 

• Ignoring the failure situation by ordering only the EOQ 
and not maintaining a positive reorder inventory results in 
significantly higher costs ($6267). 

• By increasing the order quantity from the EOQ level of 
600 to the ZIO level of 1072, the manager of the purchaser 
garners definite savings (the costs become $5359).  This is 
the improvement shown in Snyder [2005]. 

• While keeping the order quantity at the ZIO level of 1072, 
significant savings beyond the ones in Snyder [2005] can 
be generated by maintaining a positive reorder inventory 
of 139 units.  This is the result shown in Theorem 2 (the 
costs become $4910) 

• By using the closed-form optimal order quantity and 
reorder point in Theorem 3, the manager of the purchaser 
can gain still further savings beyond any ZIO-level order 
quantity policy.  With the optimal order quantity of 752 
and reorder point of 191, the costs become $4715. 

• Using numerical methods to obtain the exact global 
optimum generates only a negligible amount of further 
savings (the costs become $4712 instead of $4715).  
Generally, the approximate and exact cost functions are 
very close to each other. 

 
Accuracy of the Approximation: Table 2 addresses the 

accuracy of the approximate cost function g against the exact 
cost function g0 at the global minimum for g (i.e., g(q**,r**) 
vs. g0(q**,r**)).  The approximation is at its most accurate 
when the supplier is at their most unreliable and/or can recover 
quickly. The average relative accuracy is under 1%, with the 
best average accuracy virtually exact and the worst 3.1%.  The 
approximate function is always an upper bound for the exact 
function.   

Figure 2 -- Average Cost Function
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Table 2 – Relative Accuracy of Cost Function 

(Approximating cost function g vs. exact cost function g0 at 

g’s global minimum (q**,r**)) 

 

λ µ Best Average Worst 

0.5 1 0.4% 3.7% 11.6% 

0.5 2 0.1% 3.3% 11.3% 

0.5 5 <0.1% 1.7% 7.0% 

0.5 10 <0.1% 0.5% 2.1% 

1 2 <0.1% 1.8% 5.5% 

1 4 <0.1% 1.4% 4.9% 

1 10 <0.1% 0.4% 1.9% 

1 20 <0.1% 0.1% 0.3% 

2 4 <0.1% 0.8% 2.6% 

2 8 <0.1% 0.4% 1.6% 

2 20 <0.1% <0.1% 0.2% 

2 40 <0.1% <0.1% <0.1% 

5 10 <0.1% 0.1% 0.5% 

5 20 <0.1% <0.1% 0.1% 

5 50 <0.1% <0.1% <0.1% 

5 100 <0.1% <0.1% <0.1% 

Average 0.1% 0.9% 3.1% 

Parlar & Perry 

0.25 2.5 Relative Accuracy<0.1% (0.02%) 

 
 

Cost Savings of Optimal Reorder Point vs. ZIO 

Option: Table 3 shows the improvement, in terms of percent 
decline in cost, when the reorder inventory point r is allowed to 
move to its optimum r* instead of the ZIO assumption for the 
order quantity q*(0) value under consideration, i.e., replacing 
g(q*(0),0) by g(q*(0),r*(q*(0)).  The results show that the 
situation does improve when one keeps a reserve inventory on 
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reordering.  The average improvement is 5.2%, an appreciable 
cost savings. 
As might be expected, the most significant improvement takes 
place in the most adverse situation, when the supplier is the 
most unreliable and least recoverable.  For the strongest such 
situation, i.e., λ = 5 and µ =10, i.e., the supplier is “OFF” one-
third of the time, the average cost savings is 14.2%, e.g., a 
savings of $1420 in a supply chain with $10000 of costs. 

 
Table 3 – Cost Savings (optimal reorder point vs. zero 

reorder point, for a ZIO-based optimal reorder quantity) 

 

λ µ Least Average Most 

0.5 1 0% 4.2% 7.7% 

0.5 2 0% 3.8% 6.7% 

0.5 5 0% 1.9% 6.8% 

0.5 10 0% 0.8% 5.6% 

1 2 0% 7.8% 11.8% 

1 4 0% 6.5% 12.5% 

1 10 0% 3.3% 11.9% 

1 20 0% 1.3% 8.9% 

2 4 1.0% 11.2% 17.7% 

2 8 0.3% 8.5% 18.3% 

2 20 0% 4.0% 16.1% 

2 40 0% 1.5% 10.1% 

5 10 4.0% 14.2% 24.8% 

5 20 0.9% 9.5% 24.3% 

5 50 0% 3.7% 18.0% 

5 100 0% 1.1% 8.3% 

Average 0.4% 5.2% 13.1% 

Parlar & Perry 

0.25 2.5 Cost Savings = 2.5% 

 
 

Cost Savings of Globally Optimal Reordering vs. 
ZIO Option: Table 4 shows the improvement, in terms of 
percent decline in cost, when the globally-optimal pair of 
reorder quantity and reorder inventory is used in place of the 
ZIO policy (i.e., g(q**,r**) vs. g(q*(0),0)).  The results show 
that adjusting the reorder quantity as well as the reorder 
inventory point adds to the cost savings.  The average cost 
savings is 8.5%, which is more than a 50% improvement from 
that obtained by simply adjusting the reorder inventory point 
(i.e., Table 3).  
Again, as might be expected, the most significant improvement 
takes place in the most adverse situation, when the supplier is 
the most unreliable and least recoverable.  For the situation 
where λ = 5 and µ =10, the average cost savings is 22.7%, e.g., 
a savings of $2270 in a supply chain with $10000 of costs.  
Since the overall supply chain costs in this adverse situation are 
likely to be higher than normal, the higher cost savings occur in 
precisely the situation where these savings probably are 
urgently needed. 
 

Table 4 – Cost Savings (globally optimal reorder point  

vs. zero reorder point) 

 

λ µ Least Average Most 

0.5 1 0% 8.5% 14.3% 

0.5 2 0% 6.8% 13.9% 

0.5 5 0% 3.2% 13.0% 

0.5 10 0% 1.3% 9.6% 

1 2 0% 14.6% 24.6% 

1 4 0% 11.2% 25.1% 

1 10 0% 5.2% 21.5% 

1 20 0% 1.9% 13.7% 

2 4 2.1% 19.7% 35.9% 

2 8 0.5% 13.8% 35.0% 

2 20 0% 5.7% 26.4% 

2 40 0% 1.9% 13.8% 

5 10 5.7% 22.7% 47.5% 

5 20 1.1% 14.0% 42.5% 

5 50 0% 4.7% 25.4% 

5 100 0% 1.3% 9.9% 

Average 0.6% 8.5% 23.3% 

Parlar & Perry 

0.25 2.5 Cost Savings = 3.2% 

 

11. SUMMARY AND CONCLUSIONS 

 
In this paper, we have extended the state of the art in modeling 
supply chain performance in the face of reliability disruptions, 
i.e., the EOQD situation, to provide closed-form closely-
approximate solutions that go beyond the ZIO-policy or 
numerical approaches currently in the literature.  The results 
allow managers to carry out tradeoffs between the order 
quantity and the reorder point, as well as to determine the best 
order-quantity/reorder-point pair in terms of minimizing 
average total cost.  With the results in closed form, managers 
and analysts can carry out parametric, asymptotic, and extreme-
value analyses of the EOQD situation, as well as incorporate 
the cost models into broader supply-chain and overall business 
analysis evaluations. 
 
Specifically, we have developed closed-form equations for the 
optimal order quantity given an inventory reorder point, the 
optimal inventory reorder point given an order quantity, and the 
globally optimal order-quantity/inventory-reorder point.  We 
have shown that the closed form results provide a close upper 
bound to the exact cost for a range of reorder-point values from 
zero on up.  We have established these results on application 
examples appearing in the EOQD literature. 
 
Possible further research includes extending the results in this 
paper to address multiple supplier sources, multiple-component 
supply chain, and multi-echelon supply chains.  Additional 
research includes incorporating the results into broader models, 
exploiting their closed-form nature. 
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