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ABSTRACT

A new framework is presented for integrating satel-
lite/avionics sensors with onboard vision to support
information intensive maneuvering. Real time bind-
ings of the bird’s eye observation and the driver’s view
via GPS provides as-is basis for perception and de-
cision. Randomness-based roadway pattern model is
implemented by fractal coding scheme associating bird’s
eye and frontal views. The feasibility of the frame-
work with resquirements for vison system is discussed
through concept modeling and experimental studies.

Keywords: Interactive Mapping, Multi-Viewpoint
Image, Randomness-based Image Analysis, Fractal Pat-
tern Coding, Natural Complexity

1 INTRODUCTORY REMARKS

Via two decades of investigations intended for autonomous
mobile robots [19], [18], it has been demonstrated that
the essential capability for maneuvering arises from lo-
cation specific integration of multi-viewpoint imagery.
In fact, site-route graph associated with landmark views
as shown in Fig. 1 provides the prediction of scene
to be matched [14]. By applying search algorithms
to graph structure, associated roadway pattern can
be extracted. The introduction of inter-pattern ki-
netics completes autonomous maneuvering process as
a computer implementation of perceptual cycle [16].
The concept of information intensive maneuvering was
extended to vehicle-highway integration intended for
interactive support of joint perception-decision pro-
cesses [13].

Computational access of maneuvering process to
the site-route description requires essentially symbolic
model consisting of finite landmark objects. As a
physical entity, behavior of individual vehicle should
be situated relative to the landmark objects. To inte-
grate computational-geometric decisions, current nav-
igation systems are configured on ‘digital map’ where
the totality of geographical information is a priori
packaged.

On the basis of site-route structure, we can recon-

Figure 1: Multi Viewpoint Site-Route Map
On route representation in terms of node-path chain, ma-
neuvering process is symbolically computable. In accor-
dance with continuous positioning, multi-viewpoint map
provides geometric descriptions of landmark objects at-
tached at the next node. Vision system, then, matches the
perspectives of landmark objects with dynamically varying
view of physical world.

struct key technologies of robot vision to realize in-
teractive decision support systems. To this end, the
site-route representation should be updated interac-
tively [17]. In this interactive mapping process, vi-
sion system accepts human’s pointing on scene image
to locate the object in well-structured digital map.
Due to essential discrepancy in representation levels of
well-structured symbol system and naturally complex
scene, however, the matching of the digital map with
real scene is left to high-level understanding by human
spatial intelligence [2]. Furthermore, decision pro-
cesses for updating and customizing the digital map
on ceaselessly varying ‘real’ scene easily fall into com-
putational explosion within the framework of conven-
tional closed-logic machine [12].

Hence, it is not easy for robot vision to support hu-
man’s perception and decision. In this paper, the con-
cept of interactive mapping is re-structured within the
context of information intensive transportation. Basic
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Figure 2: Aerial Photograph as as-is Map
Advancements in remote sensing and precise imaging tech-
nology make it possible to capture as-is geometry of terrain.
By applying robot vision for ‘reading’ roadway patterns in
such bird’s eye images, exact digital map is generated au-
tomatically. Images from multi viewpoint observation are
integrated on today’s information network to support hu-
man’s decision in the scene.

idea is to coordinate robot vision and human percep-
tion through decentralized access to common digital
map. As the basis of mapping processes, in what fol-
lows, images captured by onboard camera and satellite
sensors are invoked as multi-viewpoint observation of
the scene. In reference to the symbolic structure of a
priori digital map, the multi view point imagery are
identified as consistent aspects of really existing scene
and integrated into a unified as-is map.

2 IN PROCESS MULTI-VIEWPOINT
INTEGRATION

Recent advances in avionics and space technology open
up new application of robot vision to sensing based
implementation of the interactive mapping scheme. In
this implementation, aerial photograph and/or remote
sensing data as shown in Fig. 2 are introduced as the
latest as-is representation of local terrain. In this as-
is representation, roadway pattern is imaged exactly
but corrupted by really existing background objects.

Today’s global positioning system (GPS) is equipped
with the capability for associating broadcasted bird’s
eye view with individually captured frontal view of the
scene. Once the association is established, the vision
system can trace the bird’s eye imagery for predicting
roadway pattern. In addition, mutual access to the
bird’s eye – frontal view bindings expands the horizon
of individual vehicle to a community of maneuverers;
histories of maneuvering processes by individual ve-

Figure 3: GPS Signal Mapped on a Frontal Image
Fluctuation of GPS data is marked by (•) and mapped in
a scene image. As the results of various levels of error
correction, positioning residual is confined in a small area.
In this case, the deviation of positioning results is bounded
by a circle covering a roadway.

hicles are gathered and extracted to capture ‘blind’
scene.

To evaluate such cooperative expansion of decision
space, typical examples of GPS information has been
mapped on a scene image as shown in Fig. 3 [9]; though
received signal is interpolated via Kalman filtering,
approximately 0.1 sec. of longitude-latitude errors are
remained. This implies that individual vehicle can be
located with approximately ±3m drift. Dynamic be-
havior of GPS residuals is shown in Fig. 4. As shown
in this figure, the GPS residual is triggered by ran-
dom shower of X-ray (↑) from cosmos; the residual
maintains nondeterministic drift without the X-ray
burst. Through theoretical and experimental inves-
tigation of atmospherics, the main part of the drift
has been modeled in terms of the ‘ionosphere instabil-
ity’; despite essential nonlinearity, the dynamics of the
GPS residual is shown to be restored by using adap-
tive Kalman filter [11]. Thus, current version of GPS
can be exploited to select a roadway in both bird’s eye
and frontal views as shown in figure 3. This implies
that the satellite-roadway-vehicle linkage provides in-
situ basis for perception and decision.

To extend the multi-viewpoint site-route map on
the satellite-roadway-vehicle network, robot visions are
required to be re-formulated; new problem is to rec-
ognize ‘really existing objects’ bearing complex view
suffering from essentially unpredictable ‘micro dam-
ages’. Through satellite sensors and onboard camera,
such complexity can be captured as noisy reflections
of daylight at the same objects. Despite intrinsic un-
predictability, various levels of perception processes
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Figure 4: GPS Residual
GPS signal suffers from various types of disturbances
added in signal transmission process. The fluctuation in-
creases in response to random shower of X-ray from cos-
mos. By the nonlinearity of ionosphere dynamics, the time
evolution of the residual exhibits limit cycles with period 10
– 20 min.

should be supervenient to the three-dimensionality of
the objects [15]. In fact, early vision organizes skewed
texture in optical flow prior to the reconstruction of
object surfaces [3]. Simultaneously, it has been pointed
out that human perception is sufficiently sensitive to
the reflection of ‘white daylight’ even under consider-
able spectrum shift [4]. These facts imply that random
texture of object specific coloring resulted from 3D
‘roughness’ of the surfaces affords crucial cues to ac-
tivate early perception. Thus, the expansion of object
surfaces can be restored through morpho-chromatic
analysis of random reflections.

As an as-is part of unified real world, natural ob-
ject maintains essentially unpredictable consistency
within really existing ‘background noise’. Such uni-
versal mechanisms stochastically governs the image
of not-yet-identified objects. In what follows, generic
representation of object specific randomness is repre-
sented by the combination of two kinds of universal
imaging rules: chromatic diversity and self-similarity.

Let object be observed in terms of brightness dis-

tribution f in the image plane Ω. The universal rules,
i.e., chromatic diversity and self-similarity can be asso-
ciated with f via multi-scale and multi-spectral analy-
sis [7], [10]. The existence and detectability of univer-
sal rules on the information (Ω, f), imply that natural
randomness can be organized as maneuvering affor-
dance to induce subsequent decision processes [8].

3 GENERIC PALETTE

Human vision can distinguish subtle chromatic varia-
tions using only three types of receptors. This implies
that continuous variation of reflective spectral power
can be articulated into ‘trichromatic primaries.’ On
the other hand, physical aspect of coloring processes
can be observed via the brightness distribution f . Due
to geometric inconsistency, however, it is not easy to
match coloring processes associated with natural ob-
jects precisely [7]. Noticing this, let the chromatic
information conveyed by the distribution f be repre-
sented in the totality of ‘positive’ 3D vectors R3

+:

fRGB = [ R G B ]T , R, G, B ≥ 0,

where R, G, B denote the intensity of primaries. Define

φ(fRGB) =
fRGB

|fRGB| , (1)

with intensity distribution given by

|fRGB| =
√
R2 + G2 + B2.

By introducing Euclid norm |fRGB| in stead of ‘gay
level’ of conventional color representation systems, the
discrepancy of coloring process can be exactly eval-
uated via geometric computation. In R3

+, thus, we
can separates chromatic information from the inten-
sity |fRGB| precisely.

For this purpose, consider the positive unit sphere

ΦRGB =
{

φ(fRGB)∈R3
+

∣∣ |φ(fRGB)| = 1
}

,

(2)

called chromatic information space, and let the infor-
mation fRGB be mapped into ΦRGB. In ΦRGB, the
consistency of trichromatic vectors

fRGBi , fRGBj ∈ R3
+,

can be indexed in terms of the ‘inner product’

φT
i (fRGBi )φj(fRGBj ).

In R3
+, we have

φT
i (fRGBi )φj(fRGBj ) ≥ 0. (3)
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Figure 5: Palette of Samples
The chromatic consistency index induces a distance in

ΦRGB. The intersection of a positive vector φk with the

unit sphere ΦRGB is linked by that of φj with distance eval-
uation gRGB(φk|φj). The vectors φi and φ` are closely lo-
cated with less distance gRGB(φi|φ`) = gRGB(φ`|φi).

For such positive index, define

θij = cos−1(φT
i φj).

Noting the following estimate

cos θij ∼
√

1− θ2
ij ∼ e−θ2

ij/2,

for sufficiently small θij , as well as the following eval-
uation

θij ∼ |φi − φj |,
for sufficiently consistent chromatic information, we
have

φT
i φj

2π
∼ gRGB(φi|φj), (4a)

where gRGB(φi|φj) denotes 2D Gaussian probability
density

gRGB(φi|φj) =
1
2π

exp
[
−|φi − φj |2

2

]
. (4b)

The association (4) implies that the consistency index
(3) induces the maximum entropy criterion in chro-
matic consistency analysis.

By invoking the measure gRGB, we can introduce
a topology in ΦRGB as shown in Fig. 5. Let a set of
chromatic information s = {φi, i = 1, 2, . . . , ‖s‖ } with
size ‖s‖ be sampled as a ‘palette’ of object image and
mapped into the chromatic information space ΦRGB.
The diversity of the palette is indexed in terms of the
following measure:

Rs = gRGB

(
−σφφ

2α

)
, (5a)

φi

φj

φk

φ`

φ∗

Figure 6: Matching with the Palette:
The unity of the vector set s = {φi, φj . . . } is indexed by
the longest distance gRGB(φk|φj) whereas the identity as a
‘palette’ s is evaluated in terms of the minimal distance
gRGB(φi|φ`). A new vector φ∗ is included in the palette
if the minimal distance gRGB(φ∗|φ`) satisfies the condition
given by (6).

where

σ2
φφ = − 2

‖s‖(‖s‖ − 1)

× log




∏

1≤i,j≤‖s‖
i6=j

gRGB(φi|φj)


 . (5b)

In Eq. (5), Rs denotes the ‘radius of paint’ with respect
to ‘risk factor’ α. By this Rs, we can match observed
chromatic information φ∗ with the palette s as follows:

gRGB(φ∗|s) > Rs ⇒ φ∗ ∼ s. (6)

where

gRGB(φ∗|s) = max
φj∈s

gRGB(φ∗|φj).

The schematics of this chromatic consistency evalua-
tion is illustrated in Fig. 6. In this figure, the infor-
mation φ∗ and the ‘nearest paint’ φ` ∈ s selectively
matched with consistency > Rs. The implication of
the generic palette is demonstrated in Fig. 7; based
on the pointing of the width and depth of the road-
way (a), samples of coloring are collected via fractal
covering (b); as the result of the matching of entire
image with the palette generated by the coloring sam-
ples, the expansion of roadway is extracted (c).

4 GENERIC PATTERN

Let F[Ω] be the totality of subsets of Ω and consider
2D dynamical system driven by contraction mappings

81SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 4ISSN: 1690-4524



(a) Specification of Width and Depth

(b) Fractal Sampling

(c) Extracted Consistent Domain

Figure 7: Complex Pattern Extraction
As-is roadway pattern is extracted in the scene image via
palette matching. Fractal imaging process generates ran-
dom samples for covering target area efficiently.

µi : Ω 7→ Ω where µi is randomly selected from fixed
set of contraction mappings ν = {µi }:

ξt+1 = µi(ξt). (7)

Following the theory of iterated function system (IFS)
[1], the snapshots of random walk ξt, t = 1, 2, . . ., are
accumulated in a image plane Ω to generate a mea-
sure χp

Ξ. It is known that the self-similarity process (7)
generates a fractal attractor if the mapping set ν sat-
isfies the open set condition [5]. In spite of geometric
singularity of such an attractor, resulted measure χp

Ξ

on F[Ω] visualizes exactly the information of complex
imaging process (7). In fact, the measure χp

Ξ is identi-
fied with a ‘gray-level distribution’ which is invariant
in the following sense [1]:

χp
Ξ(Λ) =

∑

µi∈ν̂

piχ
p
Ξ[µ−1

i (Λ)], (8)

for arbitrary Λ ∈ F[Ω]. In equation (8), pi denotes the
probability for selecting µi from ν. Since the ‘non-
zero area’ of the invariant measure specifies complex
pattern satisfying the self-similarity

Ξ =
⋃

µi∈ν

µi(Ξ), (9)

we can exploit χp
Ξ as a version of the probability for

detecting complex patterns. Due to infinite resolution
of the attractor Ξ, it is not easy to analyze resulted
measure χp

Ξ as ‘imagery’. This computational diffi-
culty has been eliminated by introducing ‘capturing
probability’ ϕ(ω|ν) which is generated as smooth im-
age via the following diffusion process [6]:

1
2
∆ϕ(ω|ν) + ρ[χp

Ξ − ϕ(ω|ν)] = 0. (10)

In this equation, the process is controlled by the ‘com-
plexity parameter’ ρ given by

ρ = log ‖ν‖.

This implies that we can generate the capturing prob-
ability ϕ(ω|ν) for not-yet-identified imaging process ν
only if the associated image χp

Ξ is provided with the
guess for the size of unknown set ν. Thus, we can eval-
uate complex behavior of imaging process (7) within
the framework of statistical analysis on the probability
space (Ω, F[Ω], χp

Ξ).
Generally, roadway patterns in the bird’s eye view

can be segmented in terms of chained rectangles. Notic-
ing this, let the randomness of the roadway image be
generated via the self-similarity process illustrated in
Fig. 8. The vestige of the imaging process (7) can be
restored as shown in Fig. 9; it is not easy to discrimi-
nate complex attractor embedded in random dots (a);
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Figure 8: Self-Similarity Process ν

Various patterns can be generated as the attractor of frac-
tal collage process. The bird’s eye view of roadway is ap-
proximated by a chain of rectangles. Each rectangle can
be identified with Sierpinski’s carpet: a fractal attractor
associated with 4 types of reduced affine mappings.

however, distribution of attractor points can be visu-
alized in terms of the capturing probability ϕ(ω|ν) as-
sociated with the mapping parameter ν (b); applying
invariant test to feature point extracted in the smooth
image ϕ(ω|ν), the imaging process is verified to gen-
erate essentially the same attractor (c).

Due to perspective projection, the roadway pat-
terns are observed as a part of triangle specified in
terms of two parameters: width at the foot and van-
ishing point. Despite the uncertainty of these param-
eter due to instability of view angle, skewed pattern
can be identified with a ‘generic’ pattern which yields
geometrically non-unique view in scene images. As the
representation of such generic pattern, consider frac-
tal attractor specified in terms of a set of contraction
mappings

ν = {µi, i = 1, 2, 3, 4 },

with fixed points

fν =
{

ωf
µi

, i = 1, 2, 3, 4
}
,

as illustrated in Fig. 10. The feature set fν should be
adapted to generate a view of roadway encountered in
observed scene image.

The feature set fν is identified on a specific scene
by estimating the invariant measure χp

Ξ on the scene
image. For this purpose, the ‘frequency shift’ due to
the perspective projection is extracted in the following
gray scale image:

‖f‖NTSC = 0.299R + 0.587G + 0.114B. (11)

Let ‖f‖NTSCσ (ω) be the decomposition of ‖f‖NTSC into
the component with scale σ:

‖f‖NTSCσ (ω) ∼ gσ ∗ χp
Ξ(ω) + b(ω), (12a)

where

gσ(ω) =
1

2πσ2
exp

[
−|ω|

2

2σ2

]
,

(a) Attractor in Noisy Image

(b) Capturing Probability ϕ(ω|ν)

(c) Restoration of Fractal Attractor

Figure 9: Detection of Fractal Imaging Process
Noisy Sierpinski’s carpet can be separated from background
noise in capturing probability to restore mapping set.
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Figure 10: Fractal Representation of Generic Road
Roadway pattern is modeled by rectangle skewed through
perspective projection. Skewed carpet can be modeled as a
fractal attractor which is observed with random patterns on
the surface.

and b(ω) denotes nonnegative bias satisfying

|∆b| ¿ |∆gσ|. (12b)

Suppose that the local scale is evaluated in terms of
the following biased correlation

σ2

∣∣∣∣
1
2
∆‖f‖NTSCσ (ω̃)

∣∣∣∣ ∼ ‖f‖NTSCσ (ω̃)− b(ω̃),

(13)

where ω̃, denotes the local maximum point of ‖f‖NTSC.
Furthermore, we notice that

‖f‖NTSCσ+ε (ω)
‖f‖NTSCσ (ω)

= Re

[
exp

[
2πj

ε(x + y)
σ(σ + ε)

]]

∼ 1
2π

exp
[
−|ε|

2

2

]
, (14)

for ω = (x, y). With the evaluation (13) an (14), the
scale deviation ε conditioned by a priori scale model
σ can be indexed by the following Gaussian measure
gσ given by

gσ =
1
2π

exp
[
−|ε|

2

2

]
.

By introducing the following association

χ̂p
Ξ ∼ gσ(ε)gRGB(θij)‖f‖NTSC,

we have the probability for capturing Ξ in observed
image (Ω, fRGB) as the steady state of the following
system:

∂

∂t
ϕt(ω|ν̂) =

1
2
∆ϕt(ω|ν̂) + ρ[χ̂p

Ξ − ϕt(ω|ν̂)],

(15)

Figure 11: Concept Model
Image processor and robot simulator are integrated for sys-
tem level simulation of proposed mapping process. Simu-
lated robot is controlled on the roadway model by using
road edge sensor which imitate the performance of onboard
camera. The roadway model is associated with bird’s eye
photograph via GPS data.

where ϕt(ω|ν̂), t > 0, is convergent sequence of mea-
sures conditioned by a mapping set

ν̂ =
{

µ̂f
i , i = 1, 2, 3, 4

}
.

To detect roadway patterns, generic model illustrated
in Fig. 10 is matched with the steady state of the
sequence ϕt(ω|ν̂) via the following steps:

• First, select local maximum point of ϕ̂(ω|ν̂) as
stochastic features of generic roadway.

• Next, estimate the direction of the roadway on
which the vanishing point ωf

µ̂0
should be located.

• Finally, compute the variance of the stochastic
features to evaluate the boundary parameter
(ωf

µ̂1
, ωf

µ̂2
).

The generic roadway specified in terms of vanishing
points and boundaries can be generated as the fractal
attractor with the following set of fixed points.

fν̂ =
{

ωf
µ̂i

, µ̂i ∈ ν̂
}

.

5 SIMULATIONS AND EXPERIMENTS

The schematics of in-process multi-view point integra-
tion has been demonstrated via experimental studies.
In these experiments, the implications of randomness
based image analysis is evaluated on a concept model
as shown in Fig. 11; symbolic roadway model is visu-
alized as ‘arena’ (background) to associate bird’s eye
view (upper-right) and frontal view (lower-left); po-
sitioning results based on two image are fed back to
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Figure 12: Roadway Pattern Detection
In Bird’s Eye Imagery, roadway pattern is segmented in
terms of chained rectangles. The direction of each rectan-
gle is extracted in a region confined by the estimate of GPS
residual by using Hough voting; (origin-direction) pair of
the roadway model is specified through the maximization of
chromatic consistency index. Detected segment is indicated
in local window and, simultaneously, the consistency index
of each candidate model is displayed in the direction-offset
plane

robot model to shift the location in the arena; on-
board sensing processes are simulated on the arena to
evaluate the control algorithm and to generate pre-
dicted lane (lower-right).

Figure 12 illustrates the results of segment detec-
tion in a bird’s eye image; for covering positioning er-
ror by the GPS residual, the system open a small win-
dow in which all possible segments are matched with
generic palette to select candidates of the roadway
pattern (a); matching results are visualized to evalu-

(a) Scene Image

6
Depth

-¾
Expansion

6
y∞

(b) Detected Attractor

Figure 13: Generic Pattern Detection
Invariant measure χ̂p

Ξ is estimated based on the evalu-
ation of the scale sift gσ(ε) and chromatic consistency
gRGB(φi|s). The estimate χ̂p

Ξ conveys sufficient informa-
tion for specifying fixed points ωf

µi
to identify the self-

similarity process. Resulted attractor is indicated on the
scene image for verification.

ate the risk of the segmentation (b). As shown in these
results, generic palette can extract chromatic com-
plexity even in considerably diluted observations. By
the introduction of the topology indexed by Gaussian
measure, the matching allowance is reduced to 1/10
of conventional variance-based classification method.

Figure 13 shows the results of experiments for iden-
tifying generic roadway in complex scene imagery fRGB

as shown in (a); the generic model fν̂ is extracted
based on the estimate χp

Ξ ∼ gσgRGB‖f‖NTSC (b). These
results implies that the introduction of generic palette
can reduce the disturbance due to shadow pattern un-
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der full daylight. The method was extended to various
roadways with complex background and/or random
texture successfully.

As the result of these simulations and experiments,
the morpho-chromatic randomness was demonstrated
to provide significant information for roadway segmen-
tation both in bird’s eye and frontal scene imagery.
The feasibility of the interactive mapping scheme was
verified by prototyping on the concept model. Through
test operations, the following requirements for image
and signal analysis were clarified.

• GPS with drift correction yields sufficient in-
formation for direct coupling of bird’s eye and
frontal views.

• Piecewise rectangle segmentation provides con-
sistent basis for both prediction and detection of
roadway pattern.

• Morpho-chromatic randomness sampled on skewed
rectangle attractor restores as-is expansion of
roadway area.

• Pallet based expansion is sufficiently ‘clear’ for
fractal coding scheme to identify generic road-
way model.

• Randomness based coding is insensitive to light-
ing and coloring noise.

• On the randomness based expansion, we can ex-
tract iconic information for tracking sensors to
as-is roadway pattern.

• By this online-onboard precise tracking, GPS
drift is relatively canceled in turn to generate
bias-free prediction for obstacle scanning and
risk evaluation on generated arena.

6 CONCLUDING REMARKS

It has been demonstrated that real time bindings of
satellite/avionics sensors with onboard vision via GPS
can afford to support as-is basis for autonomous ma-
neuvering. The introduction of piecewise rectangle
segmentation integrates bird’s eye and frontal views
via randomness-based fractal coding of natural com-
plexity. Through simulation and experimental studies,
the feasibility of the framework with requirements for
image processing was clarified.
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