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ABSTRACT

Animation of spatio-temporal generic models for 3-D shape and
motion of objects and subjects, based on feature sets evaluated
in parallel from several image streams, is considered to be the
core of dynamic vision. Subjects are a special kind of objects
capable of sensing environmental parameters and of initiating
own actions in combination with stored knowledge. Object /
subject recognition and scene understanding are achieved on
different levels and scales. Multiple objects are tracked
individually in the image streams for perceiving their actual
state (‘here and now’). By analyzing motion of all relevant
objects / subjects over a larger time scale on the level of state
variables in the ‘scene tree representation’ known from
computer graphics, the situation with respect to decision taking
is assessed.

Behavioral capabilities of subjects are represented explicitly on
an abstract level for characterizing their potential behaviors.
These are generated by stereotypical feed-forward and feedback
control applications on a separate systems dynamics level with
corresponding methods close to the actuator hardware. This dual
representation on an abstract level (for decision making) and on
the implementation level allows for flexibility and easy
adaptation or extension. Results are shown for road vehicle
guidance based on three cameras on a gaze control platform.

Keywords: Active vision, model-based vision, vision system
architecture, autonomous vehicles, mobile robots.

1. INTRODUCTION

The third-generation dynamic vision system based on spatio-
temporal modeling, developed at UBM, has been dubbed ‘EMS-
Vision’ according to its main properties: a) Expectation-based
image sequence interpretation and behavior decision, b) Multi-
focal camera arrangement on a gaze control platform, and c)
Saccadic viewing direction control and perception capabilities
[1-4]. Though there are many vision systems for (autonomous)
vehicles under development at present, no other one seems to
have the above-mentioned properties of vertebrate-type vision
with its efficiency, flexibility and growth potential. A good
survey may be obtained from the proceedings of the yearly
International Symposium on ‘Intelligent Vehicles’xx’ [5]
(started in 1992, xx designating the last to digits of the year).

An approach of similar scope as EMS-vision but with
fundamental differences in the methods for vision and
knowledge representation is [6]. While spatial representations
are done there with the help of grids of different scales, EMS-
vision takes advantage of the standard object-oriented methods

used in computer graphics exploiting homogeneous coordinate
transformations (HCT) and scale factors directly integrated in
the HCT-framework by 4x4 transformation matrices. These also
provide for seamless inclusion of perspective projection. The
big challenge in vision (as opposed to computer graphics) is that
many of the entries into the transformation matrices are not
known beforehand, but are the unknowns of the vision process.
The 4-D approach to dynamic vision has solved this problem by
extending the Kalman filter approach to perspective imaging
introducing the adaptive fit of generic spatio-temporal models
through recursive iteration [1, 7].

2. BASIC PROCESSING STAGES FOR VISUAL
PERCEPTION AND CONTROL

In the latest stage of development, visual perception is organized
as a three-stage process, each requiring different image access,
data processing methods and attention control:

1. Schematic detection of features in a wide field of view (~
100° by 40°), covered by two wide-angle cameras with
coplanar divergent optical axes; this first stage asks the
question: ‘Is there something indicating an object of interest
to mission performance?’ (VQ1). With specific sets of
characteristic features for object detection set by the higher
system levels (or the human operator), this stage can work
without reference to temporal aspects on raw data (lower left
in figure 1).

2. Groupings of features in images are hypothesized as elements
in perspective maps of stationary or moving 3-D objects
under certain aspect conditions. In the near range, this may be
done in the wide-angle images directly; for the far range, a
fast gaze shift brings features of interest into the field of view
of the high-resolution camera (tele or zoom). These objects
are then tracked over time by prediction error feedback using
recursive estimation techniques well known in systems
dynamics [1, 7]. Here, the question is answered: ‘What type
of object is it, and what is its relative state in 3-D space
(including relative velocity components)’? (VQ2). At video-
rate, the best estimates for the state variables and parameters
of each object are sent to a ‘Dynamic Object dataBase
(DOB)’ serving as information exchange platform in the
system (see second (4-D) and third layer (left) from bottom in
figure 1).

3. For objects of special interest, especially for those capable of
perceiving part of the environment and of initiating action or
motion on their own (called ‘subjects’), the data in the DOB
are observed on a larger time scale. This allows recognizing
typical ‘maneuvers’ (like lane changing or turning-off onto
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crossroads) and behavioral skills of other subjects (like ‘lane
following’ or ‘convoy driving’). On this level the question to
be answered is: ‘What is this guy doing, and what are
(possibly) his or her intentions? (VQ3). [Note that this third
level does not rely directly on image data any more, but
makes use of symbolic descriptions of ‘subjects’ and their
attributes as well as the time histories of their states stored in
the DOB.]

Sections 3-5 give some more details on these perception stages;
in section 6, the problem of situation assessment is addressed.
Section 7 treats behavior decision on an abstract level while in
section 8 behavior implementation with systems dynamics
methods is discussed. Section 9 gives a brief view on mission
performance and section 10 on system integration. After
discussing experimental
results in section 11,
conclusions are drawn
in section 12.

3. FEATURE
DETECTION AND
GENERATION OF

OBJECT
HYPOTHESES

This topic is the most
data-intense part of the
system. Three cameras

of standard resolution (~ 400 000 pixels per frame),
two of which are black-and-white, while one is a 3-
chip-color camera, yield a video data flow rate of 50
MB/s (at 40 ms cycle time, 25 Hz, see figure 2). A
single microprocessor and communication link of
today’s standard cannot handle this rate
continuously beside data processing. Therefore at
present, distributed processing with separate video
data input is mandatory. In our system, two to three
dual-processor systems are devoted to basic feature
extraction and recognition of special classes of
objects in video streams (a combination of levels 1
and 2). This keeps communication needs on the
feature level low. However, it is not optimal from a
methodological point of view. With increased
computing power for feature extraction, storage
capacity for rich feature data bases, and
communication bandwidth for sharing results with
little delay time among all potential users on the
next higher level, bottom-up feature and object
detection could be exhaustively concentrated on this
level. For area-based features like color and texture,
much more computing power is needed than
presently available.

This has to be an area of development for future
systems; pattern recognition methods and
corresponding hardware for iconic image processing
may find a lasting field of application on this level
right before the transition to object-oriented
methods with strongly increased top-down
components is done. Future hardware development
will shift the pattern of practical solutions in the
transition region between the vision levels 1 and 2
mentioned above.

4. OBJECT TRACKING AND RELATVE STATE
ESTIMATION

On this level, quite a gain in computing efficiency can be
achieved by resorting to spatio-temporal models as pioneered in
the 4-D approach [7]. Historical developments of
microprocessors and applications in the field of autonomous
ground vehicles have led to the object classes shown in the left
part of the 4-D level in figure 1 (second from bottom; for the
acronyms see the legend).

Road detection and tracking (RDT) can now be done on a single
standard microprocessor including all feature extraction
necessary. General 3-D surface recognition (3DS, including
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Figure 1: Overall cognitive system architecture in EMS-vision (4 layers)
RDT = Road Detection and Tracking;          ODT = Obstacle Detection and Tracking
LDT = Landmark Detection and Tracking;   3DS = 3D Surface Recognition
IBES = Inertially-Based Ego State;               NN   = Future additional capabilities

a) Fields of view and viewing ranges of  MarVEye.      b) Realization of  MarVEye4 with 3 CCD-
         cameras on a two-axis platform.

Figure 2: MarVEye system parameters (a), camera set in VaMoRs on yaw and pitch platform, large stereo
base and one mild tele-camera (b).
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real-time detection of negative obstacles like ditches) requires
powerful special processors like the ACADIA-board (Pyramid
Vision Technology) with up to 80 billion operations per second
as a plug-in card for PC’s [8, 9].

For driving on rough surface with large perturbations in angular
orientation of the own vehicle, a combination of inertial and
visual data interpretation has proven advantageous. Inertial
sensing includes the effects of perturbations on the acceleration
and angular rate level, that is with lead components in systems
engineering term. Since these signals are easily interpreted and
integrated to pose changes, the own bodily orientation (except
for drift disturbances) is more easily derived from inertial data
than from vision. Delay times in vision of several video cycles
(> 0.1 s) favor this approach, also found in vestibular-ocular
interaction in vertebrates. The process IBES (Inertially - Based
Ego State estimation) in the lower back part of figure 1 realizes
this feature of EMS-vision. Drift problems with very low corner
frequencies (as usual in inertial state estimation) are solved
visually by observing features from objects far away (horizon,
sky line).

The best estimates for object states of all units observed are
stored in the Dynamic Object dataBase (DOB, 3rd level from
bottom in figure 1). This is done with a scene tree in which each
node represents a physical object or a frame of reference; the
edges of the tree are HCT’s, linking features in 3-D space to
projected features in images [10]. This is the world of
imagination in the ‘mental’ upper part of figure 1 (left side on
level 3). Note that this framework allows computing the
Jacobian matrix of first-order derivatives (which is very rich in
information for spatial interpretation) between features in the
image and their corresponding ones in 3-D space. Prediction
error feedback in Extended Kalman Filtering (EKF) thus
substitutes perspective inversion on the 4-D level for answering
VQ2 (see section 2).

5. MANEUVER AND INTENT RECOGNITION

Handling VQ3 requires a different knowledge base. Here, the
notion of typical behavioral capabilities on an extended time
scale has to be available. Since this is the same background
knowledge as needed for own decision making, these purely
‘mental’ activities requiring no direct image data input are
organized on the uppermost level 4 in figure 1. Typically,
information about several different objects / subjects has to be
interpreted in conjunction, like one or more other vehicles and
their orientation relative to lanes. For deeper understanding of
what is happening in the environment, the notion of maneuvers
(like lane changing, transition to convoy driving, turning off
onto a crossroad) or behavioral modes (like lane keeping,
convoy driving) has to be available. The former ones are
generated by typical feed-forward time histories for some
control variables; the latter ones result from linking control
output to some state variables (applying feedback control laws).

In the latest step towards cognitive (EMS-) vision, these
behavioral capabilities are represented on two levels in the
system: 1. For actual implementation, they are coded on the 4-D
level (right part of level 2 in figure 1); this is done in the
conventional control engineering approach. 2. The effect of the
behavioral capability is represented on the decision level (top)
as a state transition taking a certain amount of time; however, no
dynamics are involved here. This corresponds to the usual AI-
approach, but the lower level being triggered from the higher

ones (in general) takes care of symbol grounding. Subjects may
be characterized by their behavioral capabilities, both for
perception, for decision making and for locomotion. Observing
the onset of a typical maneuver, the system can now infer the
likely continuation of it and can adjust its own behavior to it
(defensive style of driving).

6. SITUATION ASSESSMENT

The integrated view of all objects of relevance in connection
with the own mission plan yields the situation. This process is
called ‘situation assessment’ and may have different aspects for
the purpose of viewing direction (gaze) control [2f), 11] or
locomotion control [2e), 2g), 13 - 15]. Situation aspects are
assigned in a fuzzy manner [12] so that their combination allows
good rules for behavior decision. Figure 3 symbolizes this
approach; the center and left parts have been realized while the
right part is an extension for future more versatile assistance
systems (the left branch BDL then is passive).

7. BEHAVIOR DECISION

A distinction is made between tactical and strategic decision
making in order to avoid too large a single knowledge base and
too heavy communication loads. There are a central unit for
strategic decisions (‘Central Decision’ CD) concerning mission
aspects, and two local decision units (three in the future).

Behavior Decision for Gaze and Attention (BDGA)

The purpose of gaze control is to achieve maximal information
gain over time by splitting and sequencing attention according
to the actual collection of objects / subjects of interest. BDGA
collects all requirements with respect to vision from the
perception specialists and figures out the best gaze program for
achieving maximal information gain over time from all cameras
together. This may include periodic saccades with time-slices of

Figure 3: Hierarchically structured, distributed decision
agents based on competencies: For visual perception (lower
center), locomotion (lower left), driver assistance (lower
right), and for overall systems aspects (center top); a
common representation of the situation is desirable [after 12].
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attention on different objects or on different parts of a large
object. The interpretation is done in a unified framework. When
no new visual input is available (usually for a few tenths of a
second during fast saccadic motion) predicted states are filled in
exploiting spatio-temporal models. Demand of attention
(potential information gain) is computed from the significance
of the object / subject for mission performance and from its
uncertainty in state [12]. The latter one increases over time
during prediction phases.

Behavior Decision for Locomotion (BDL)

The goal of locomotion control is to safely achieve the mission
by following the mission plan as good as possible and by
avoiding obstacles whenever they occur. BDL performs all
tactical decisions during mission performance, like transition
into convoy driving mode when running up to a slower vehicle
in front, or evading an obstacle by a local maneuver [2g), 8, 15].
When drawbacks for mission performance are likely or when
conflicting requirements from BDGA and BDL occur, Central
Decision is called and has to come up with harmonizing
solutions [14].

Central Decision (CD)

CD is the agent with direct access to overall mission
representation. It initiates mission planning and re-planning
when the nominal list of mission elements, which is the
reference for mission performance by BDL, has become
outdated due to some unforeseen event. Monitoring of mission
progress and of proper functioning of all system components as
well as serving as
interface to the human
operator are the main
tasks of CD (see
central cylindrical top
in figure 1).

8. REALIZATION
OF BEHAVIORS

All behavioral capabi-
lities of the system are
represented internally
on two separate levels.
The ‘Vehicle Compu-
ter’ close to the
actuators does the
implementation on a
lower level. Here,
control - engineering
methods predominate
with control feed-
forward and feedback
loops. Parallel to this,
the effects of these
activities and all
possible transitions
depending on specific
events are represented
on the higher decision
levels in explicit form
(Harel state charts)
[14]. This allows a
clean separation
between (quasi-static)

‘Artificial Intelligence’- and (dynamic) control-engineering
methods. Behavioral capabilities are grouped in a network
according to a) the actuators involved and b) their level of
sophistication [12, 13, 15].

Simple skills (bottom line in dotted area of figure 4), usually
realized by parameterized control time histories or feedback
control laws, form the basic layer. Stereotypical basic behaviors
(central horizontal line in dotted area of figure 4) may consist of
parallel or properly time-triggered sequences of simple skills.
Before a behavior is activated, the decision level is informed
about the actual state of availability of all components required.
After activation it can monitor the progress of the maneuver
instantiated and take corrective action when expectation and the
real trajectory differ by more than a threshold value specified.
This high-level supervision is an essential step towards reliable
mission performance. The downward looking arrows in the
upper right corner of figure 1 symbolize this realization of
behavior decision and behavior implementation detailed in
figure 4. One of the advantages of this separation is that high
data rates to and from the upper levels can be avoided. Handling
of usual perturbations is thus removed from the decision level.

9. MISSION PERFORMANCE

When a task is given, a specialist process taking the actually
available behavioral capabilities into account generates
alternative mission plans, triggered by CD, each consisting of a
sequence of mission elements. CD then is in charge of selecting

Figure 4: Activation, prioritization and monitoring of some stereotypical capabilities by Central Decision
(CD) exploiting the capability network and special decision units for Gaze and Attention (BDGA) and for
locomotion (BDL). Capabilities for perceiving roads and obstacles from the image stream delivered are
provided by specialist processes for certain object classes (not detailed here).
Legend: OVB = Optimization of Viewing Behavior; 3-DS = Search in 3-D space; RDT = Road (or lane) Detection and
Tracking, this is achieved with different algorithms (basic skills) for the near and the far range; CRDT = CrossRoad
Detection and Tracking; ODT = Obstacle Detection and Tracking, both stationary and moving, above the ground
(positive) and missing support for the wheels (deep potholes and ditches = negative obstacles); RLR = Road (or Lane)
Running (lateral guidance with appropriate speed; WPN = WayPoint Navigation when driving off the road (based on
GPS). {For a complex maneuvering capability like turning-off onto a crossroad see [12].}
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one according to the performance measures preferred. BDGA
and BDL start implementing the plan after being triggered by
CD.

Figure 4 shows the internal dependencies of complex behavioral
capabilities on more basic ones (arrows) and their activation as
they occur during dynamic mission performance. Note that
optimization of complex maneuvers does not require individual
re-coding but adjusting parameters and activation rules
(triggering).

10. SYSTEM INTEGRATION

Figure 1 gives a coarse visualization of the overall system
architecture. The dashed curved arrow from the left on the 4-D
level (running through all specialist processes for object
recognition towards control implementation) is intended to
demonstrate the flexibility of the architecture with
respect to behavior generation. The arrow is meant
to indicate that any object of these classes can be
assigned by ‘Behavior Decision’ as reference for
feedback control loops in gaze or locomotion on the
lower level. This allows very flexible behaviors like
view fixation on an object in gaze control, road
tracking and lane keeping, range estimation and
distance keeping to the vehicle in front (convoy
driving) or crossroad recognition and turning off
onto it in locomotion control.

Systems with three to four cameras for vision have
been implemented on a cluster of four DualPentium
PC. Beside Ethernet for booting they were linked by
a ‘Scalable Coherent Interface’ (SCI) with an
effective data rate of close to 100 MB/s (upper bar
in figure 5 across all four PC’s). PC’s 1 to 3 are
devoted to image processing and visual perception
from specific video data streams. The fourth PC
(labeled ‘behavior’ PC to the right in figure 5) is
connected to two subsystems running under hard
real-time constraints. The ‘gaze’ subsystem
implements inertial gaze stabilization (at 500 Hz) and active
gaze control (at video rate of 25 Hz). The ‘vehicle’ subsystem is
the interface computer to conventional sensors and actuators. In
addition, a GPS-receiver is connected to the ‘behavior’-PC
which also serves as the Human-Machine Interface (HMI) for
the operator. All other PC’s of the system are handled through
the embedded PC demon process EPC in each system.

11. EXPERIMENTAL RESULTS

Experimental results in road vehicle guidance have been
achieved with the two test vehicles VaMoRs (5-ton van) and
VaMP (Mercedes 500 SEL) of UBM. Detecting a crossroad in a
network of minor roads without lane markings and turning off
onto it as well as convoy driving at normal highway speeds have
been demonstrated.

Figure 6 shows test results from detecting, tracking and turning-
off onto a crossroad. Figure 6a shows the yaw (pan) angle time
history of the platform during this maneuver. From second ~ 90
to 110, a saccading maneuver in gaze is performed in order to
alternatively collect data on the crossing (distance and speed of
approach) and on the geometry of the crossroad (width and
angle of intersection). In 6b the saccade bit is shown telling the

image evaluation processes whether it makes sense to process
images or whether the images are blurred and they should stick
to prediction with spatio-temporal models (when the bit is up).
From sub-figures 6c - e the objects observed can be seen. The
crossroad is inserted into the scene tree at around 90 seconds
and becomes the new reference road (split into local (near) and
distant) at around 115 seconds (s). During approach of the

intersection (6f), the gaze angle in yaw increases up to ~
60° (6g, 6h), telling that the vehicle turns its viewing
direction ‘over the shoulder’ while driving still straight
ahead on the old road. At ~ 116 s reorganization of the
scene tree is finished, with the old crossroad now being
the new reference road. The gaze angle of MarVEye is
constantly in direction of this new reference while the
vehicle turns underneath it until at ~ 130 s gaze is almost
in direction of the body longitudinal axis again (6i, 6j).
(These figures show the best viewing ranges (VR) as
evaluated by BDGA. Small offsets from zero may stem
from the fact that the system is preparing for leaving the
road and turning onto the grass surface; since only one
boundary of the road can be tracked by the tele-camera at
the range specified, the gaze angle selected is 2° (6i,
right).

Figure 5: Hardware realization on a cluster of PC’s plus two subsystems
for hardware interfacing (gaze and vehicle control).
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Figure 6: Detection, recognition and turn-off onto a crossroad with VaMoRs
and Expectation-based, Multi-focal, Saccadic (EMS-) vision.
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As final demonstration of the development contract, in October
2001 a coherent mission consisting of many arcs has been
performed for an international audience:

1) crossroad recognition and turning off onto the left-hand side,
2) leaving the driveway to the right and entering grassy terrain

for cross-country driving along a route fixed by several
(virtual) way-points (GPS-coordinates),

3) while driving on uneven grassy ground, recognize a sealed
road under ~ a right angle,

4) entering this road with an appropriate 90° turn to the left,
5) road following and crossing of another road,
6) turning off to the left and entering grassy terrain again,
7) detect a ditch (~ 0.8 m wide) sufficiently early for
8) stopping in front of it.

In the meantime, autonomous dodging of the ditch and driving
around its near corner with gaze fixation of the corner has been
demonstrated [9].

12. CONCLUSIONS

The general cognitive system architecture based on dynamic
vision for motion control has proven efficient in an
implementation on a cluster of standard DualPentium PC. Its
implementation in C++ has brought about easy portability.
Multi-focal scene recognition with active (including saccadic)
vision has been realized for the first time in road vehicles.
Visual perception is partitioned into three stages: 1. for detection
of visual features indicative of objects of interest, 2. hypothesis
generation, tracking and relative state estimation for single
objects (for n of those in parallel), and 3. recognition of
maneuvers performed by subjects and inference of their
intention(s). The results of stage 2 are collected in a dynamic
object database (DOB) exploiting a scene tree representation
with homogeneous coordinate transformations. This dynamic
knowledge base underlying imagination of the actual situation is
shared among all cognitive processes by a wide-bandwidth
communication network (SCI).
A situation assessment process for central decisions, and other
ones specialized for gaze and locomotion control, analyze the
motion state including maneuvers under performance for all
objects / subjects of relevance. This final visual perception stage
does not rely on image data directly but looks at state variable
time histories on a larger scale. Only with special type of
knowledge on behavioral capabilities of subjects can cognitive
entities as maneuvers or intentions be recognized. This is why
situation assessment and own behavior decision are grouped
together on this higher level relying on a similar knowledge
base. Explicit representation of perceptual and behavioral
capabilities has been introduced for this purpose. Behavioral
capabilities have a dual representation with quite different
aspects. The abstract (quasi-static) transitions effected by the
capability serve as base for decision making on the higher level.
Real-world implementation is done on the lower level with
direct access to a broad data stream exploiting control-
engineering methods (both feed-forward and feedback control
components). The approach has been verified, among others,
with the test vehicle VaMoRs in a small but complex mission.
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