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ABSTRACT 

 
With the advances in sensors and computer networks an 
increased number of Mixed Reality (MR) applications require 
large amounts of information from the real world. Such 
information is collected through sensors (e.g. position and 
orientation tracking sensors). These sensors collect data from 
the physical environment in real-time at different locations and 
a distributed system connecting them must assure data 
distribution among collaborative sites at interactive speeds. 
 
We propose a new architecture for sensor based interactive 
distributed environments that falls in-between the atomistic 
peer-to-peer model and the traditional client-server model.  
Each node in the system is autonomous and fully manages its 
resources and connectivity. The dynamic behavior of the nodes 
is triggered by the human participants that manipulate the 
sensors attached to the nodes. 
 
Keywords: Mixed Reality, Distributed Systems, Sensor 
Networks, 3D Visualization. 
 

1. INTRODUCTION 
 
In the majority of network collaborative Mixed Reality (MR) 
environments information is collected from participants through 
graphical user interfaces. In a limited number of cases, head 
tracking information is embedded in a collaborative MR 
session. Even in these cases the data is used only locally. 
Advances in sensors and computer networks have triggered an 
increase in the number of MR applications that entail large 
amounts of information from external devices (e.g. tracking 
systems). Sensor data is especially required to render the 
position and orientation of the virtual components of the scene 
in MR applications where a smooth blending of the real and 
virtual is desired. 
 
We propose a new architecture for sensor based interactive 
distributed MR environments that falls in-between the atomistic 
peer-to-peer model and the traditional client-server model. The 
architecture facilitates the development of distributed MR 
collaborative applications in which data collected from real-
time sensors is shared among the users. Each node in the system 
is autonomous and fully manages its resources and connectivity. 
The dynamic behavior of the nodes is dictated by the human 
participants who manipulate the sensors attached to those nodes.  
 

The paper is structured as follows. Section 2 reviews related 
work. Section 3 presents the main paradigms used throughout 
the paper and presents a formal categorization of distributed 
MR application participants and system nodes. Section 4 gives 
an overview of the proposed architecture representing a 
distributed system node as a state machine. In Section 5 the 
behavior agent is detailed together with its load balancing 
capability, followed by a discussion regarding MR application 
Quality of Service requirements. Section 6 presents an 
application example built on the proposed architecture, followed 
by concluding remarks in Section 7. 
 

2. RELATED WORK 
 
One of the first and most intensive efforts in building a 
networked simulation was the SIMNET project started in 1983 
[1] followed a few years later by the Naval Postgraduate 
School's NPSNet [2]. The software architecture in both cases 
was event driven, and a set of predictive modeling algorithms 
(e.g., dead reckoning) were embedded to compensate for the 
network delays and to allow the system to scale beyond a local 
area network (LAN). Important contributions of these systems 
included the protocol data unit (PDU) that allowed the 
distribution of simulation data among participants and dead-
reckoning algorithms that ensured a reasonable maintenance of 
dynamic shared state [6]. Later the Distributed Interactive 
Simulation (DIS) project improved the PDU and this led to the 
emergence of the IEEE 1278 Standards for Distributed 
Interactive Simulation and its follow-on IEEE P1516 (see [3] 
for a discussion of these efforts). A large number of other 
systems have been created to distribute interactive graphical 
applications over a set of distributed nodes (e.g. Atlas [4], 
Paradise [5], DEVA3 VR [7], and MASSIVE-3 [8]).  
 
From the perspective of the results reported here, research in 
distributed VR can be divided into four categories [9]. The first 
consists of approaches to optimize the communication protocol 
through packet compression and packet aggregation [10]. The 
second is focused on reducing the bandwidth throughout the 
system, and includes data visibility management, which makes 
use of area of interest (AOI) management [8] and multicasting 
[11]. Taking advantage of the human perceptual limitations, like 
visual and temporal perception [12], constitutes the third 
category. The fourth category deals with the system 
architecture. Most distributed virtual environment systems are 
built on the traditional client-server architecture and are 
composed of nodes with static behavior, i.e., the server node 
functions as a data distributor (forwarder) while the client nodes 
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act as data producers and/or consumers. Once the distributed 
application is deployed, the nodes cannot change their core 
functionality and data distribution is often bottlenecked by the 
sever capacity.  
 
Several research efforts have concentrated on the development 
of sophisticated middleware on top of client-server models for 
distributed data sharing through remote method calls using an 
object oriented approach (e.g. Repo-3D [13], Avocado [14]). A 
drawback of building the middleware frameworks on the 
distributed object model is the additional delays caused by the 
software layers, making it difficult to maintain an interactive 
behavior. A few research efforts [15] have concentrated on the 
fundamental system architecture attempting to define a 
spectrum of communication architectures. While each point in 
the spectrum offers its own performance characteristics the 
participating nodes cannot change their core functionality based 
on the user's interactions. 
 
With advances in computer graphics and tracking systems the 
research community has shifted attention to collaborative 
environments that span the entire virtuality continuum [16], i.e. 
Mixed Reality and a subset of MR, Augmented Reality (AR) 
[17] [18]. AR systems were proposed in the mid '90s as tools to 
assist different fields: medicine [19], complex assembly labeling 
[20] and construction labeling [21]. A significant leap towards 
entertainment based MR systems and applications, was 
provided by the MR Project [22] developed in Japan and 
presented at ISMR'99. Projects with similar goals can be found 
in [23] [24]. These projects brought to life practical 
collaborative applications for different domains based on MR 
paradigms. As a common feature, the applications emerging 
from these projects make extensive use of sensors (tracking, 
haptic etc) although they are based on a local collaboration 
paradigm and are built on the traditional client-server 
architecture. None of the research efforts concurrent to these 
projects consider the possibility of collecting and distributing 
real-time sensory information from multiple remote sensors in 
the collaborative environment. 
 
Considering the preceding systems design's advantages and 
disadvantages, we introduce a novel architecture in which nodes 
have a dynamic behavior dictated by the participants attached to 
those nodes. A prototype application following the proposed 
architecture has been implemented as both a proof of concept 
and as a way of investigating the efficiency of such a distributed 
system in terms of capturing and sharing the sensory data at 
interactive speeds. 
 

3. SENSORS, NODES AND PARTICIPANTS 
 
Collaborative MR applications usually involve the interaction of 
several participants. While some of the participants actively 
modify the shared scene, other participants are passive, in the 
sense that they do not interact with the shared scene. From this 
point of view we define two categories of participants: active 
participants and passive participants. An active participant 
triggers modifications of the virtual components of the scene 
from a graphical interface or through a sensor attached to 
his/her node. Passive participants do not trigger any 
modifications of the shared scene. They receive visual, haptic 
and/or audio feedback from the environment. The active/passive 
attributes of the participants can dynamically change during 
collaboration. An active participant can become passive and 
vice versa depending of the collaboration needs. 
 

In what follows, let us define a node in the distributed system as 
a computing device that allows a participant to interact with the 
MR environment. In a distributed collaborative environment, 
participants need to exchange a wide variety of data (e.g. 
position/orientation data, virtual components attributes etc.). 
With the advances in sensor technology, we envision that in 
future systems a significant amount of data will be collected 
from sensors and devices attached to the participating nodes. 
Without loss of generality, we will consider sensors that provide 
position and orientation information and peripheral devices (e.g. 
mouse, keyboard) that allow interaction with the virtual 
components of the scene. The discussion can easily be extended 
to other types of sensors (e.g. haptic) and other devices that can 
be part of the distributed system's resources. 
 
Sensors are interaction tools from the point of view of the 
participant. Sensors (e.g. attached to a glove like device) 
provide real-time information about the position and orientation 
of the real objects (e.g. user's hand). This information may be 
used by the distributed system's nodes to render the virtual 
components properly registered (in 3D space) with the real 
components. An interactive collaborative environment must 
ensure that the data captured by sensors is distributed with 
minimum delay to all participants. Moreover each node in the 
system will need to exchange its sensory data with all or a 
predefined subset of the system's nodes. A pure centralized data 
distribution approach (e.g. client-server) would not be efficient 
because of the additional delay associated with the data 
collection stage followed by the data distribution. An atomistic 
peer-to-peer approach would not fit either because of the 
additional overhead in data distribution. Each node would have 
to exchange data with all the other nodes. As a fundamental 
property, the nodes in a sensor based MR system may act as 
data producers, consumers and distributors, simultaneously. 
  
Before we introduce the details of the hybrid nodes architecture 
let us define four types or running modes for the distributed 
system's nodes: active nodes, passive nodes, active forward 
nodes and passive forward nodes: 
• active nodes - An active node represents an active 

participant in the MR environment. Each active node 
collects data from its sensors and is responsible for 
making the data available to interested peers as quickly as 
possible. 

• passive nodes - A passive node does not inject any 
information into the MR environment. The node uses the 
information provided by active and forward nodes to 
render the shared scene. 

• active forward node - As the name indicates, a forward 
node forwards data.  The forward node can be active or 
passive. An active forward node injects its own as well as 
the forwarded data into the system. 

• passive forward node - A passive forward node does not 
inject new information in the system. These nodes act as 
pure data forwarders. 

 
4. ARCHITECTURE OVERVIEW 

 
Let us introduce a novel architecture and discuss its suitability 
for the development of sensor based distributed MR 
applications. The design falls in-between the atomistic peer-to-
peer and client-server model. Each node is autonomous and 
fully manages its resources and connectivity through a set of 
software agents:  a GUI agent, a sensor agent, a rendering agent, 
and a behavior agent. These agents run on each node and trigger 
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the node behavior, i.e. a node can switch among any of the four 
modes described in the previous section.  
 
The GUI agent is responsible for displaying the interface and 
collecting the information given by the participant through the 
GUI. The sensor agent is responsible for collecting the 
information given by the participant through the sensor(s) 
attached to the node (e.g. tracking sensor, haptic sensor etc).  

Fig.1. MR distributed environment deployed on a LAN 
 
The rendering agent is responsible for rendering the shared 
scene on the output device (e.g. CRT, LCD, head mounted 
display etc.) using the data collected from the participating 
nodes. The behavior agent handles new incoming data requests 
for the active nodes and allows the node to switch among the 
four modes. 
 
When a participant interacts with the shared scene, the 
associated node becomes active.  We consider the most 
common interaction scenarios in MR applications: the 
participant uses a graphical user interface (GUI) for interaction 
or the participant interacts through a sensor. In the first case, the 
GUI agent becomes active and makes the data available to the 
behavior agent while in the second case the sensor agent pulls 
data from the sensor(s) attached to the node, converts the data 
into an appropriate format and makes it available to the 
behavior agent. If requested by other participants, the behavior 
agent will spawn a server thread making the data available to 
other nodes hence propagating the local modifications to the 
shared scene. Otherwise the participant's interaction will affect 
only the local copy of the shared scene. Regardless of the node 
mode, the rendering agent is active all the time, given that the 
scene has to be continuously rendered. 
 
A key characteristic is the architecture capability to map the 
participant behavior to the distributed systems nodes. The 
behavior agent is activated by the participant interaction; hence 
it maps the participant behavior onto the participant's associated 
node. In other words, if the participant is active, the associated 
node becomes active and ready to distribute interaction data. If 
the participant is passive, the associated node becomes passive. 
Fig.2 illustrates the various agents' states on a passive as well as 
on an active node.  
 

  
 

Fig.2 Active, Passive nodes (dark shaded represents inactive 
agent, light shaded represents active agent) 

 
When the participant does not interact with the shared scene, the 
GUI agent and the sensor agent are deactivated and the node 

becomes passive. The behavior agent triggers the forward state 
of a node. To clarify the possible states (i.e. modes) of a node 
and the possible transitions, in the next section we describe a 
state machine that approximates the hybrid node concept. 
 
Hybrid Nodes as State Machines 
Let's denote the states of a node as: {A, P, AF, PF}. "A" stands 
for "active", "P" for "passive", "AF" for "Active Forwarder" and 
"PF" for "Passive Forwarder". Let's denote the conditions that 
trigger the change in state using a binary representation {00, 01, 
10, and 11}  

• 00 - means that the Sensor agent goes from inactive to 
active   

• 01 - means that the Sensor agent goes from active to 
inactive  

• 10 - means that an activation message has been sent for 
forwarding on 

• 11 - means that an activation message has been sent for 
forwarding off 

 
Twelve transitions may occur. Table 1 summarizes the possible 
transitions, the triggering conditions, and the main operations 
that are executed at the node. 
 
 Table 1. Possible transitions for a hybrid node 

Current 
State 

Next 
State 

Condition(s) Action on the 
Server Thread 

A P 01 Turn off 
A AF 10 - 
A PF 01 followed by 10 - 
P A 00 Turn on 
P AF 00 followed by 10 Turn on 
P PF 10 Turn on 

AF A 11 - 
AF P 01 followed by 11 Turn off 
AF PF 01 - 
PF A 00 followed by 11 - 
PF P 11 Turn off 
PF AF 00 - 

 
The behavior of a node can be represented as a state machine as 
illustrated in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 State machine representing the hybrid node behavior 
 
In what follows, we will focus our attention on the component 
that encapsulates the key characteristic of the proposed design, 
the behavior agent. 
 

5. THE BEHAVIOR AGENT 
 
Our design gravitates around the idea that every node has equal 
responsibilities. There is no central administration or connection 
arbiter. Each node renders its local scene based on the data that 
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it receives from its peer nodes. On the other hand each node, 
while in active or active forward mode, acts as a server 
multicasting data to the interested nodes. Therefore the design 
falls in between the atomistic peer-to-peer model and the 
traditional client-server model. 
 
The behavior agent spawns a thread that controls the activation 
of the server component of the node. A passive node runs in 
client mode "consuming" incoming data from the participating 
nodes. When a passive node becomes active, it means that it 
acts as a data producer and distributor for the local node and for 
the other nodes interested in the data.  
 
The atomistic peer-to-peer model has a fundamental bootstrap 
problem: how to join. Without a central server there is no easy 
way of determining resource availability in advance. To solve 
the peer-discovery situation, a new node broadcasts a query to 
join and awaits response. A complementary problem is: how 
does a node register itself to receive data from a peer node? It is 
the responsibility of the behavior agent to advertise that the 
node has available data from a particular sensor by a short 
broadcast to all the nodes. If a new peer is interested in the data 
it will be added by the behavior agent to the node's consumers 
list. In the next subsection we detail further the producers and 
consumers list mechanism. 
 
Consumers and Producers, Load Balancing 
Each node keeps two lists, producers and consumers as shown 
in Fig.4. The producers list contains the node's data providers. 
The consumers list contains the node's current consumers and 
their connection attributes. An active forwarder adds itself to its 
producers list because it inserts data in the environment. 
 

 
 

Fig.4 Producers/Consumers list for each node 
 
When a new node requests data from an active node, the 
behavior agent checks if a direct connection could be 
established between the two nodes (e.g. application level quality 
of service QoS considerations might be used). If a direct 
connection can be established, a client-server relationship is 
established between the two nodes and the simulation continues. 
If a direct connection can not be established, the load balancing 
component of the behavior agent tries to find another potential 
forwarder node for the data by searching the node's consumers 
list. If a candidate is found, it becomes the data forwarder (i.e. a 
forward node). The behavior agent on this node starts a server 
thread, if it does not have one already, and adds the new client 
to its consumers list.  At the same time, the current node updates 
its producers list.  On the other hand, if a candidate is not found, 
the node can not handle the request at this time. It will reject the 
request and will invite the new node to join the collaborative 
MR environment at a later time. 
 
Another approach in finding an appropriate forwarder would be 
to let the search execute in a recursive manner when a node gets 
a request that it cannot handle. The node will delegate the 
request to one of its consumers.  If none of the consumers can 
handle it, they will delegate the request to the next lower level 

and so on. A depth-first search approach would be more 
efficient in finding a server for a newly arrived node; however 
this might lead to a path of considerable depth. Each level on 
this path would imply additional delays leading to an 
unacceptable behavior since the system has to respond to the 
participant's action at interactive speeds. Therefore we choose to 
search only among the node's direct consumers limiting the 
length of the virtual path from a data producer to a data 
consumer to at most two.  
 
Discussion on Quality of Service for MR/VR Applications 
Allocating sufficient resources to different applications in order 
to satisfy various requirements is a fundamental problem in 
distributed systems. Mixed Reality applications deployed on a 
distributed system infrastructure call for specific quality 
requirements. With the evolution of wireless networks we 
experience an increased interest in applications [25] deployed 
on a wireless infrastructure. Quality of Service is an emerging 
research area that has developed several approaches to manage 
application specific quality requirements. These approaches can 
be grouped in three categories: network QoS [26], utility based 
QoS [27] and QoS brokers [28]. The Network QoS deals with 
the management of network resources to provide the QoS 
guarantees in WANs. In utility based approaches, finite system 
resources are allocated to multiple QoS dimensions to maximize 
the overall utility of the application. In the third group, QoS 
brokers trade the system resources globally and locally to 
satisfy the application QoS requirements.   

An in-depth discussion of the QoS parameters is beyond the 
scope of this paper. Our goal here is merely to emphasize the 
architecture's flexibility with regard to the application level QoS 
parameters. These parameters are considered by the behavior 
agent for each node when it joins the specific distributed MR 
application. To maintain a consistent view of the shared scene 
over all the participants, scene synchronization approaches [29] 
can be employed up to a certain threshold. Beyond this 
threshold, application specific QoS requirements are considered.  

One of the parameters that has an important effect on distributed 
applications is the Average Round Trip Time (ARTT) between 
two participating nodes. Each participating node contains a 
round trip time table that is frequently updated. This table 
contains the ARTTs between the node and each of its data 
consumers. Another parameter that we will consider in future 
versions is the computational load on each node. The 
computational load on each node is a factor of the number of 
sensors it has to manage, the number of producers and 
consumers it handles, and the rendering complexity of the 
virtual components in the scene. Each node can measure its 
average computational load based on the number and 
complexity of the threads it is executing. Moreover, this takes 
into consideration the hardware components of the node since 
the nodes in the system are heterogeneous. The rendering agent 
is the most sensitive because it directly influences the frame 
rate. A drop in the frame rate will decrease the quality of the 
virtual components of the scene and will have negative effects 
on the user task performance [30]. 
 

6. APPLICATION 
 
To investigate the efficacy of the hybrid node concept we have 
developed a prototype application using the Distributed 
Artificial Reality Environment DARE [31] and VESS [32] 
frameworks.   
 

Consumers list 

Producers list 
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System Setup 
The application was deployed in a distributed system containing 
five nodes interconnected on a 100Mbps local area network. 
Additionally two optical tracking sensors were used to insert 
tracking information into the environment regarding the 
position and orientation of the virtual objects in the scene.  
 
 
 
 
 
 
 
 

 
 

Fig.5 System setup 
 

The participants at nodes N1 and N3, respectively, interact on 
the shared scene through optical tracking sensors attached to the 
nodes as shown in Fig. 5. The participant at node N1 can also 
manipulate particular objects in the shared scene through a 
graphical interface. At last, participants at nodes N2, N4 and N5 
only visualize the virtual shared scene. From the hardware point 
of view each site consists of one head-mounted display [33], a 
Linux based PC and an ARC display [34].  
 
Distributed Interactive 3D Visualization 
At each location, the real environment is augmented with 
floating 3D objects seen through the head-mounted display as 
illustrated in Fig.6.  
 

 
Fig.6 Interactive 3D Visualization participant and virtual 3D 

cross.  
 

Participants can interact with the 3D models in two ways. Using 
a graphical user interface they can point in the virtual space to 
different parts of the virtual objects and they can manipulate 
them. An alternative interaction method is using a tracking 
probe attached to an optical sensor (e.g. NDI Polaris Tracking 
system). By manipulating the probe the user can change the 
position and orientation of the 3D cross. The application 
captures the information form the tracking sensors at their 
update rate (i.e.60 Hz).  
 
The distributed visualization application implemented on a 
hybrid node infrastructure is a simple example of a distributed 
interactive environment that utilizes sensors. We plan to 
experiment with other interactive distributed mixed reality 
applications in the near future. One of our goals is to provide a 
new implementation of the distributed 3D AR training tool for 
endotracheal intubation [35].   
 
 

7. CONCLUSION 
 
It is clear that distributed collaborative applications involving 
physically distributed multiple real-time sensors are inherently 
very complex. It is also clear that interactive distributed MR 
applications and environments are becoming increasingly 
common. Thus, the architectural issues in building and 
organizing the software for such systems must be closely 
examined. 
  
We have proposed a novel architecture for managing distributed 
sensors as part of an interactive distributed MR application. The 
proposed approach allows a dynamic behavior for the 
distributed systems nodes based on the participants’ behavior 
allowing interactive data capturing and distribution. 
Furthermore we avoid a complex architecture as we believe 
simplicity is a key component in developing interactive 
applications. A subjective assessment of the Distributed 
Interactive 3D Visualization application interactivity confirmed 
our expectations.  We are in the process of developing a 
monitoring system that will allow an objective assessment of 
the proposed architecture performance.  
 
Future work involves refining the architecture and studying its 
scalability. If the number of remote participants increases we 
anticipate the need of some centralized control and additional 
dynamic shared state management techniques to maintain the 
environment interactivity.  
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