

Sensors in Distributed Mixed Reality Environments

Felix G. HAMZA-LUP
 Computer Science, Armstrong Atlantic State University

Savannah, GA 31419

and

Charles HUGHES1, Jannick P. ROLLAND1,2

1School of Electrical Eng. and Computer Science
2School of Optics-CREOL

University of Central Florida
Orlando, FL 32816

ABSTRACT

With the advances in sensors and computer networks an
increased number of Mixed Reality (MR) applications require
large amounts of information from the real world. Such
information is collected through sensors (e.g. position and
orientation tracking sensors). These sensors collect data from
the physical environment in real-time at different locations and
a distributed system connecting them must assure data
distribution among collaborative sites at interactive speeds.

We propose a new architecture for sensor based interactive
distributed environments that falls in-between the atomistic
peer-to-peer model and the traditional client-server model.
Each node in the system is autonomous and fully manages its
resources and connectivity. The dynamic behavior of the nodes
is triggered by the human participants that manipulate the
sensors attached to the nodes.

Keywords: Mixed Reality, Distributed Systems, Sensor
Networks, 3D Visualization.

1. INTRODUCTION

In the majority of network collaborative Mixed Reality (MR)
environments information is collected from participants through
graphical user interfaces. In a limited number of cases, head
tracking information is embedded in a collaborative MR
session. Even in these cases the data is used only locally.
Advances in sensors and computer networks have triggered an
increase in the number of MR applications that entail large
amounts of information from external devices (e.g. tracking
systems). Sensor data is especially required to render the
position and orientation of the virtual components of the scene
in MR applications where a smooth blending of the real and
virtual is desired.

We propose a new architecture for sensor based interactive
distributed MR environments that falls in-between the atomistic
peer-to-peer model and the traditional client-server model. The
architecture facilitates the development of distributed MR
collaborative applications in which data collected from real-
time sensors is shared among the users. Each node in the system
is autonomous and fully manages its resources and connectivity.
The dynamic behavior of the nodes is dictated by the human
participants who manipulate the sensors attached to those nodes.

The paper is structured as follows. Section 2 reviews related
work. Section 3 presents the main paradigms used throughout
the paper and presents a formal categorization of distributed
MR application participants and system nodes. Section 4 gives
an overview of the proposed architecture representing a
distributed system node as a state machine. In Section 5 the
behavior agent is detailed together with its load balancing
capability, followed by a discussion regarding MR application
Quality of Service requirements. Section 6 presents an
application example built on the proposed architecture, followed
by concluding remarks in Section 7.

2. RELATED WORK

One of the first and most intensive efforts in building a
networked simulation was the SIMNET project started in 1983
[1] followed a few years later by the Naval Postgraduate
School's NPSNet [2]. The software architecture in both cases
was event driven, and a set of predictive modeling algorithms
(e.g., dead reckoning) were embedded to compensate for the
network delays and to allow the system to scale beyond a local
area network (LAN). Important contributions of these systems
included the protocol data unit (PDU) that allowed the
distribution of simulation data among participants and dead-
reckoning algorithms that ensured a reasonable maintenance of
dynamic shared state [6]. Later the Distributed Interactive
Simulation (DIS) project improved the PDU and this led to the
emergence of the IEEE 1278 Standards for Distributed
Interactive Simulation and its follow-on IEEE P1516 (see [3]
for a discussion of these efforts). A large number of other
systems have been created to distribute interactive graphical
applications over a set of distributed nodes (e.g. Atlas [4],
Paradise [5], DEVA3 VR [7], and MASSIVE-3 [8]).

From the perspective of the results reported here, research in
distributed VR can be divided into four categories [9]. The first
consists of approaches to optimize the communication protocol
through packet compression and packet aggregation [10]. The
second is focused on reducing the bandwidth throughout the
system, and includes data visibility management, which makes
use of area of interest (AOI) management [8] and multicasting
[11]. Taking advantage of the human perceptual limitations, like
visual and temporal perception [12], constitutes the third
category. The fourth category deals with the system
architecture. Most distributed virtual environment systems are
built on the traditional client-server architecture and are
composed of nodes with static behavior, i.e., the server node
functions as a data distributor (forwarder) while the client nodes

96 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 ISSN: 1690-4524

act as data producers and/or consumers. Once the distributed
application is deployed, the nodes cannot change their core
functionality and data distribution is often bottlenecked by the
sever capacity.

Several research efforts have concentrated on the development
of sophisticated middleware on top of client-server models for
distributed data sharing through remote method calls using an
object oriented approach (e.g. Repo-3D [13], Avocado [14]). A
drawback of building the middleware frameworks on the
distributed object model is the additional delays caused by the
software layers, making it difficult to maintain an interactive
behavior. A few research efforts [15] have concentrated on the
fundamental system architecture attempting to define a
spectrum of communication architectures. While each point in
the spectrum offers its own performance characteristics the
participating nodes cannot change their core functionality based
on the user's interactions.

With advances in computer graphics and tracking systems the
research community has shifted attention to collaborative
environments that span the entire virtuality continuum [16], i.e.
Mixed Reality and a subset of MR, Augmented Reality (AR)
[17] [18]. AR systems were proposed in the mid '90s as tools to
assist different fields: medicine [19], complex assembly labeling
[20] and construction labeling [21]. A significant leap towards
entertainment based MR systems and applications, was
provided by the MR Project [22] developed in Japan and
presented at ISMR'99. Projects with similar goals can be found
in [23] [24]. These projects brought to life practical
collaborative applications for different domains based on MR
paradigms. As a common feature, the applications emerging
from these projects make extensive use of sensors (tracking,
haptic etc) although they are based on a local collaboration
paradigm and are built on the traditional client-server
architecture. None of the research efforts concurrent to these
projects consider the possibility of collecting and distributing
real-time sensory information from multiple remote sensors in
the collaborative environment.

Considering the preceding systems design's advantages and
disadvantages, we introduce a novel architecture in which nodes
have a dynamic behavior dictated by the participants attached to
those nodes. A prototype application following the proposed
architecture has been implemented as both a proof of concept
and as a way of investigating the efficiency of such a distributed
system in terms of capturing and sharing the sensory data at
interactive speeds.

3. SENSORS, NODES AND PARTICIPANTS

Collaborative MR applications usually involve the interaction of
several participants. While some of the participants actively
modify the shared scene, other participants are passive, in the
sense that they do not interact with the shared scene. From this
point of view we define two categories of participants: active
participants and passive participants. An active participant
triggers modifications of the virtual components of the scene
from a graphical interface or through a sensor attached to
his/her node. Passive participants do not trigger any
modifications of the shared scene. They receive visual, haptic
and/or audio feedback from the environment. The active/passive
attributes of the participants can dynamically change during
collaboration. An active participant can become passive and
vice versa depending of the collaboration needs.

In what follows, let us define a node in the distributed system as
a computing device that allows a participant to interact with the
MR environment. In a distributed collaborative environment,
participants need to exchange a wide variety of data (e.g.
position/orientation data, virtual components attributes etc.).
With the advances in sensor technology, we envision that in
future systems a significant amount of data will be collected
from sensors and devices attached to the participating nodes.
Without loss of generality, we will consider sensors that provide
position and orientation information and peripheral devices (e.g.
mouse, keyboard) that allow interaction with the virtual
components of the scene. The discussion can easily be extended
to other types of sensors (e.g. haptic) and other devices that can
be part of the distributed system's resources.

Sensors are interaction tools from the point of view of the
participant. Sensors (e.g. attached to a glove like device)
provide real-time information about the position and orientation
of the real objects (e.g. user's hand). This information may be
used by the distributed system's nodes to render the virtual
components properly registered (in 3D space) with the real
components. An interactive collaborative environment must
ensure that the data captured by sensors is distributed with
minimum delay to all participants. Moreover each node in the
system will need to exchange its sensory data with all or a
predefined subset of the system's nodes. A pure centralized data
distribution approach (e.g. client-server) would not be efficient
because of the additional delay associated with the data
collection stage followed by the data distribution. An atomistic
peer-to-peer approach would not fit either because of the
additional overhead in data distribution. Each node would have
to exchange data with all the other nodes. As a fundamental
property, the nodes in a sensor based MR system may act as
data producers, consumers and distributors, simultaneously.

Before we introduce the details of the hybrid nodes architecture
let us define four types or running modes for the distributed
system's nodes: active nodes, passive nodes, active forward
nodes and passive forward nodes:
• active nodes - An active node represents an active

participant in the MR environment. Each active node
collects data from its sensors and is responsible for
making the data available to interested peers as quickly as
possible.

• passive nodes - A passive node does not inject any
information into the MR environment. The node uses the
information provided by active and forward nodes to
render the shared scene.

• active forward node - As the name indicates, a forward
node forwards data. The forward node can be active or
passive. An active forward node injects its own as well as
the forwarded data into the system.

• passive forward node - A passive forward node does not
inject new information in the system. These nodes act as
pure data forwarders.

4. ARCHITECTURE OVERVIEW

Let us introduce a novel architecture and discuss its suitability
for the development of sensor based distributed MR
applications. The design falls in-between the atomistic peer-to-
peer and client-server model. Each node is autonomous and
fully manages its resources and connectivity through a set of
software agents: a GUI agent, a sensor agent, a rendering agent,
and a behavior agent. These agents run on each node and trigger

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 97ISSN: 1690-4524

the node behavior, i.e. a node can switch among any of the four
modes described in the previous section.

The GUI agent is responsible for displaying the interface and
collecting the information given by the participant through the
GUI. The sensor agent is responsible for collecting the
information given by the participant through the sensor(s)
attached to the node (e.g. tracking sensor, haptic sensor etc).

Fig.1. MR distributed environment deployed on a LAN

The rendering agent is responsible for rendering the shared
scene on the output device (e.g. CRT, LCD, head mounted
display etc.) using the data collected from the participating
nodes. The behavior agent handles new incoming data requests
for the active nodes and allows the node to switch among the
four modes.

When a participant interacts with the shared scene, the
associated node becomes active. We consider the most
common interaction scenarios in MR applications: the
participant uses a graphical user interface (GUI) for interaction
or the participant interacts through a sensor. In the first case, the
GUI agent becomes active and makes the data available to the
behavior agent while in the second case the sensor agent pulls
data from the sensor(s) attached to the node, converts the data
into an appropriate format and makes it available to the
behavior agent. If requested by other participants, the behavior
agent will spawn a server thread making the data available to
other nodes hence propagating the local modifications to the
shared scene. Otherwise the participant's interaction will affect
only the local copy of the shared scene. Regardless of the node
mode, the rendering agent is active all the time, given that the
scene has to be continuously rendered.

A key characteristic is the architecture capability to map the
participant behavior to the distributed systems nodes. The
behavior agent is activated by the participant interaction; hence
it maps the participant behavior onto the participant's associated
node. In other words, if the participant is active, the associated
node becomes active and ready to distribute interaction data. If
the participant is passive, the associated node becomes passive.
Fig.2 illustrates the various agents' states on a passive as well as
on an active node.

Fig.2 Active, Passive nodes (dark shaded represents inactive
agent, light shaded represents active agent)

When the participant does not interact with the shared scene, the
GUI agent and the sensor agent are deactivated and the node

becomes passive. The behavior agent triggers the forward state
of a node. To clarify the possible states (i.e. modes) of a node
and the possible transitions, in the next section we describe a
state machine that approximates the hybrid node concept.

Hybrid Nodes as State Machines
Let's denote the states of a node as: {A, P, AF, PF}. "A" stands
for "active", "P" for "passive", "AF" for "Active Forwarder" and
"PF" for "Passive Forwarder". Let's denote the conditions that
trigger the change in state using a binary representation {00, 01,
10, and 11}

• 00 - means that the Sensor agent goes from inactive to
active

• 01 - means that the Sensor agent goes from active to
inactive

• 10 - means that an activation message has been sent for
forwarding on

• 11 - means that an activation message has been sent for
forwarding off

Twelve transitions may occur. Table 1 summarizes the possible
transitions, the triggering conditions, and the main operations
that are executed at the node.

 Table 1. Possible transitions for a hybrid node

Current
State

Next
State

Condition(s) Action on the
Server Thread

A P 01 Turn off
A AF 10 -
A PF 01 followed by 10 -
P A 00 Turn on
P AF 00 followed by 10 Turn on
P PF 10 Turn on

AF A 11 -
AF P 01 followed by 11 Turn off
AF PF 01 -
PF A 00 followed by 11 -
PF P 11 Turn off
PF AF 00 -

The behavior of a node can be represented as a state machine as
illustrated in Figure 3.

Fig.3 State machine representing the hybrid node behavior

In what follows, we will focus our attention on the component
that encapsulates the key characteristic of the proposed design,
the behavior agent.

5. THE BEHAVIOR AGENT

Our design gravitates around the idea that every node has equal
responsibilities. There is no central administration or connection
arbiter. Each node renders its local scene based on the data that

GUI
agent

Sensor
agent

Rendering
agent

 Behavior
agent

Passive node

GUI
agent

Sensor
agent

Rendering
agent

Behavior
agent

Active node

Node 1

LAN
 MR app. Agent

Sensor
Node 2

 MR app.

Sensor

Agent

Node n

Agent MR app.

Sensor

00,11 01,11

A P

AF PF

01

00

11 10 11 10

01

00
10,00 01,10

98 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 ISSN: 1690-4524

it receives from its peer nodes. On the other hand each node,
while in active or active forward mode, acts as a server
multicasting data to the interested nodes. Therefore the design
falls in between the atomistic peer-to-peer model and the
traditional client-server model.

The behavior agent spawns a thread that controls the activation
of the server component of the node. A passive node runs in
client mode "consuming" incoming data from the participating
nodes. When a passive node becomes active, it means that it
acts as a data producer and distributor for the local node and for
the other nodes interested in the data.

The atomistic peer-to-peer model has a fundamental bootstrap
problem: how to join. Without a central server there is no easy
way of determining resource availability in advance. To solve
the peer-discovery situation, a new node broadcasts a query to
join and awaits response. A complementary problem is: how
does a node register itself to receive data from a peer node? It is
the responsibility of the behavior agent to advertise that the
node has available data from a particular sensor by a short
broadcast to all the nodes. If a new peer is interested in the data
it will be added by the behavior agent to the node's consumers
list. In the next subsection we detail further the producers and
consumers list mechanism.

Consumers and Producers, Load Balancing
Each node keeps two lists, producers and consumers as shown
in Fig.4. The producers list contains the node's data providers.
The consumers list contains the node's current consumers and
their connection attributes. An active forwarder adds itself to its
producers list because it inserts data in the environment.

Fig.4 Producers/Consumers list for each node

When a new node requests data from an active node, the
behavior agent checks if a direct connection could be
established between the two nodes (e.g. application level quality
of service QoS considerations might be used). If a direct
connection can be established, a client-server relationship is
established between the two nodes and the simulation continues.
If a direct connection can not be established, the load balancing
component of the behavior agent tries to find another potential
forwarder node for the data by searching the node's consumers
list. If a candidate is found, it becomes the data forwarder (i.e. a
forward node). The behavior agent on this node starts a server
thread, if it does not have one already, and adds the new client
to its consumers list. At the same time, the current node updates
its producers list. On the other hand, if a candidate is not found,
the node can not handle the request at this time. It will reject the
request and will invite the new node to join the collaborative
MR environment at a later time.

Another approach in finding an appropriate forwarder would be
to let the search execute in a recursive manner when a node gets
a request that it cannot handle. The node will delegate the
request to one of its consumers. If none of the consumers can
handle it, they will delegate the request to the next lower level

and so on. A depth-first search approach would be more
efficient in finding a server for a newly arrived node; however
this might lead to a path of considerable depth. Each level on
this path would imply additional delays leading to an
unacceptable behavior since the system has to respond to the
participant's action at interactive speeds. Therefore we choose to
search only among the node's direct consumers limiting the
length of the virtual path from a data producer to a data
consumer to at most two.

Discussion on Quality of Service for MR/VR Applications
Allocating sufficient resources to different applications in order
to satisfy various requirements is a fundamental problem in
distributed systems. Mixed Reality applications deployed on a
distributed system infrastructure call for specific quality
requirements. With the evolution of wireless networks we
experience an increased interest in applications [25] deployed
on a wireless infrastructure. Quality of Service is an emerging
research area that has developed several approaches to manage
application specific quality requirements. These approaches can
be grouped in three categories: network QoS [26], utility based
QoS [27] and QoS brokers [28]. The Network QoS deals with
the management of network resources to provide the QoS
guarantees in WANs. In utility based approaches, finite system
resources are allocated to multiple QoS dimensions to maximize
the overall utility of the application. In the third group, QoS
brokers trade the system resources globally and locally to
satisfy the application QoS requirements.

An in-depth discussion of the QoS parameters is beyond the
scope of this paper. Our goal here is merely to emphasize the
architecture's flexibility with regard to the application level QoS
parameters. These parameters are considered by the behavior
agent for each node when it joins the specific distributed MR
application. To maintain a consistent view of the shared scene
over all the participants, scene synchronization approaches [29]
can be employed up to a certain threshold. Beyond this
threshold, application specific QoS requirements are considered.

One of the parameters that has an important effect on distributed
applications is the Average Round Trip Time (ARTT) between
two participating nodes. Each participating node contains a
round trip time table that is frequently updated. This table
contains the ARTTs between the node and each of its data
consumers. Another parameter that we will consider in future
versions is the computational load on each node. The
computational load on each node is a factor of the number of
sensors it has to manage, the number of producers and
consumers it handles, and the rendering complexity of the
virtual components in the scene. Each node can measure its
average computational load based on the number and
complexity of the threads it is executing. Moreover, this takes
into consideration the hardware components of the node since
the nodes in the system are heterogeneous. The rendering agent
is the most sensitive because it directly influences the frame
rate. A drop in the frame rate will decrease the quality of the
virtual components of the scene and will have negative effects
on the user task performance [30].

6. APPLICATION

To investigate the efficacy of the hybrid node concept we have
developed a prototype application using the Distributed
Artificial Reality Environment DARE [31] and VESS [32]
frameworks.

Consumers list

Producers list

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 99ISSN: 1690-4524

System Setup
The application was deployed in a distributed system containing
five nodes interconnected on a 100Mbps local area network.
Additionally two optical tracking sensors were used to insert
tracking information into the environment regarding the
position and orientation of the virtual objects in the scene.

Fig.5 System setup

The participants at nodes N1 and N3, respectively, interact on
the shared scene through optical tracking sensors attached to the
nodes as shown in Fig. 5. The participant at node N1 can also
manipulate particular objects in the shared scene through a
graphical interface. At last, participants at nodes N2, N4 and N5
only visualize the virtual shared scene. From the hardware point
of view each site consists of one head-mounted display [33], a
Linux based PC and an ARC display [34].

Distributed Interactive 3D Visualization
At each location, the real environment is augmented with
floating 3D objects seen through the head-mounted display as
illustrated in Fig.6.

Fig.6 Interactive 3D Visualization participant and virtual 3D

cross.

Participants can interact with the 3D models in two ways. Using
a graphical user interface they can point in the virtual space to
different parts of the virtual objects and they can manipulate
them. An alternative interaction method is using a tracking
probe attached to an optical sensor (e.g. NDI Polaris Tracking
system). By manipulating the probe the user can change the
position and orientation of the 3D cross. The application
captures the information form the tracking sensors at their
update rate (i.e.60 Hz).

The distributed visualization application implemented on a
hybrid node infrastructure is a simple example of a distributed
interactive environment that utilizes sensors. We plan to
experiment with other interactive distributed mixed reality
applications in the near future. One of our goals is to provide a
new implementation of the distributed 3D AR training tool for
endotracheal intubation [35].

7. CONCLUSION

It is clear that distributed collaborative applications involving
physically distributed multiple real-time sensors are inherently
very complex. It is also clear that interactive distributed MR
applications and environments are becoming increasingly
common. Thus, the architectural issues in building and
organizing the software for such systems must be closely
examined.

We have proposed a novel architecture for managing distributed
sensors as part of an interactive distributed MR application. The
proposed approach allows a dynamic behavior for the
distributed systems nodes based on the participants’ behavior
allowing interactive data capturing and distribution.
Furthermore we avoid a complex architecture as we believe
simplicity is a key component in developing interactive
applications. A subjective assessment of the Distributed
Interactive 3D Visualization application interactivity confirmed
our expectations. We are in the process of developing a
monitoring system that will allow an objective assessment of
the proposed architecture performance.

Future work involves refining the architecture and studying its
scalability. If the number of remote participants increases we
anticipate the need of some centralized control and additional
dynamic shared state management techniques to maintain the
environment interactivity.

8. ACKNOWLEDGEMENTS

We wish to thank our sponsors: The Link Foundation, NSF/ITR
IIS-00-820-16, Office of Naval Research Grant
N000140310677, and the US Army Simulation, Training, and
Instrumentation Command (STRICOM) for their invaluable
support for this research.

9. REFERENCES

[1] D. Miller and J.A. Thorpe, "SIMNET: The advent of

simulator networking", Proceedings of IEEE Vol.83,
No.8, 1995, pp.1114-1123.

[2] M. Zyda,, D. R. Pratt, J.G. Monahan, and K.P.Wilson,
"NPSNET: Constructing a 3D Virtual World",
Proceedings of ACM Symposium on Interactive 3D
Graphics, 1992, pp.147-156.

[3] S. Singhal and M. Zyda, "The origin of Networked
Virtual Environments", in Networked Virtual
Environments: Design and Implementation, Addison
Wesley Pub., 1999, pp.19-53.

[4] M. Fairen, and A. Vinacua, "ATLAS, A Platform for
Distributed Graphics Applications", Proceedings of sixth
Eurographics Workshop on Programming Paradigms in
Graphics, 1997, pp.91-102.

[5] H.W. Holbrook, S.K. Singhal and D.R. Cheriton, "Log-
Based Receiver-Reliable Multicast for Distributed
Interactive Simulation", in Proceedings of ACM
SIGCOMM, 1995, pp. 328-341.

[6] S. Singhal and D.R. Cheriton, "Exploiting position history
for efficient remote rendering in networked virtual
reality", PRESENCE: Teleoperators and Virtual
Environments, Vol. 4, No.2, 1995, pp.169-193.

[7] S. Pettifer, J. Cook, J. Marsh, and A. West, ”DEVA3:
Architecture for a Large-Scale Distributed Virtual
Reality System”, in Proceedings of ACM Virtual Reality
Software and Technology (VRST), 2000.

N1

GUI

Sensor 1

Sensor 2N2

N3

N5

LAN

N4

100 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 ISSN: 1690-4524

[8] C. Greenhalgh, J. Purbrick, and D. Snowdon, ”Inside
MASSIVE3: Flexible Support for Data Consistency and
World Structuring”, in Proceedings of ACM
Collaborative Virtual Environments (CVE), 2000.

[9] S. Singhal and M. Zyda, "Resource Management for
Scalability and Performance", In Networked Virtual
Environments: Design and Implementation, Addison
Wesley Pub., 1999, pp. 181-148.

[10] J.O. Calvin, D.C. Miller, and J. Seeger, "Application
control techniques system architecture", Technical
Report RITN-1001-00, MIT Lincoln Lab., Lexington,
MA, 1995.

[11] M. Macedonia , M. Zyda , D. Pratt , P. Donald , P.
Brutzman, and P. Barham, "Exploiting Reality with
Multicast Groups", in IEEE Computer Graphics and
Applications, Vol.15, No.5, 1995.

[12] P.M. Sharkey, M.D. Ryan, and D.J. Roberts, "A local
perception filter for distributed virtual environments",
in Proceedings of the IEEE Virtual Reality Annual
International Symposium, Atlanta, GA, 1998, pp.242-249.

[13] B. MacIntyre and S. Feiner, "A Distributed 3D Graphics
Library", in Proceedings of ACM SIGGRAPH, 1998,
pp.361-370.

[14] H. Tramberend , "Avocado: A Distributed Virtual
Reality Framework", in Proceedings of IEEE Virtual
Reality, Houston, TX, 1999.

[15] S.K. Singhal, B.Q. Nguyen, R. Redpath, M. Fraenkel, and
J. Nguyen, "InVerse: Designing an interactive universe
architecture for scalability and extensibility", in
Proceedings of the Sixth IEEE International Symposium
on High-Performance Distributed Computing, IEEE
Computer Society, Portland, OR, 1997.

[16] P. Milgram and D. Drascic, "Perceptual issues in
Augmented Reality", in SPIE Vol. 2653, 1996, pp.123-
134.

[17] D. Schmalstieg and G. Hesina, "Distributed Applications
for Collaborative Augmented Reality", in Proceedings
of IEEE Virtual Reality, Orlando, FL, 2002, pp.59-66.

[18] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin and H.
Fuchs, "The Office of the Future : A Unified Approach
to Image-Based Modeling and Spatially Immersive
Displays", Proceedings of ACM SIGGRAPH, Orlando
FL, 1998.

[19] H. Fuchs, A. State , M. Livingston, W. Garrett, G. Hirota,
M. Whitton and E. Pisano, "Virtual Environments
Technology to Aid Needle Biopsies of the Breast: An
Example of Real-Time Data Fusion", in Proceedings of
Medicine Meets Virtual Reality, Vol.4, IOS Press,
Amsterdam, 1996.

[20] T.P. Caudell and D.W. Mizell, "Augmented Reality: An
Application of Heads-Up Display Technology to
Manual Manufacturing Processes", in Proceedings
IEEE Hawaii International Conference on Systems
Sciences, 1992, pp.659-669.

[21] A. Webster, S. Feiner, B. MacIntyre, W. Massie and T.
Krueger, "Augmented Reality in Architectural
Construction, Inspection and Renovation", Proceedings
of ASCE Third Congress on Computing in Civil
Engineering, Anaheim, CA, 1996, pp.913-919.

[22] H. Tamura, "Overview and final results of the MR
project", in Proceedings of International Symposium on
Mixed Reality (ISMR), 2001, pp.97-104.

[23] ARVIKA http://www.arvika.de/www/e/home/home.htm
[24] C.B. Stapleton, C. E. Hughes, J. M. Moshell, P.

Micikevicius and M. Altman, “Applying Mixed Reality

to Entertainment”, IEEE Computer Vol.35, No.12,
2002, pp. 122-124.

[25] M.A. Livingston, L. Rosenblum, S. Julier, D. Brown, Y.
Baillot, J.E. Swan, J.L. Gabbard, D. Hix, "An
Augmented Reality System for Military Operations in
Urban Terrain" in Interservice/Industry Training,
Simulation & Education Conference, Orlando, FL, 2002.

[26] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin,
"Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification", in RFC 2205, September
1997.

[27] C. Hoover, J. Hansen, P. Koopman, and S. Tamboli, "The
Amaranth Framework: Probabilistic, Utility-Based
Quality of Service Management for High-Assurance
Computing", in 4th IEEE International Symposium on
High-Assurance Systems Engineering, 1999.

[28] N. Klara and J.M. Smith, "The QoS Broker", in IEEE
Multimedia Magazine, Vol.2, No.1, 1995, pp. 53-67.

[29] F. G. Hamza-Lup and J. P. Rolland, "Adaptive Scene
Synchronization for Virtual and Mixed Reality
Environments", in IEEE Virtual Reality 2004, Chicago,
IL, March 2004.

[30] B. Watson, V. Spaulding, N. Walker, and Ribarsky W.
"Evaluation of the Effects of Frame Time Variation on
VR Task Performance", in IEEE Virtual Reality Annual
Symposium (VRAIS), 1997, pp.38-44.

[31] F. G. Hamza-Lup, L. Davis, J. P. Rolland, and C. Hughes,
"Where Digital meets Physical – Distributed
Augmented Reality Environments", in ACM
Crossroads, Vol. 9, No.3. [online], 2003.

[32] J. Daly, B. Kline, and G. Martin, "VESS: Coordinating
Graphics, Audio, and User Interaction in Virtual
Reality Applications", in Proceedings of IEEE Virtual
Reality, 2002.

[33] J.P. Rolland, F. Biocca, H. Hua, Y. Ha, C. Gao, and O.
Harrisson, "Teleportal Augmented Reality System:
Integrating virtual objects, remote collaborators, and
physical reality for distributed networked
manufacturing." [in press] Springer-Verlag, 2003.

[34] L. Davis, J. Rolland, F. Hamza-Lup, Y. Ha, J. Norfleet, B.
Pettitt, and C. Imielinska, "Enabling a Continuum of
Virtual Environment Experiences", in IEEE Computer
Graphics and Applications, Vol.23, No.2, 2003, pp.10-12.

[35] J.P. Rolland, L. Davis, and F. Hamza-Lup, "Development
of a training tool for endotracheal intubation:
Distributed Augmented Reality". in Medicine Meets
Virtual Reality (MMVR), Vol. 11, 2003, pp. 288-294.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 101ISSN: 1690-4524

	P476633

