
An Adaptive Process Allocation Scheme in Grid Environment

Tibor Gyires
School of Information Technology

Illinois State University
Normal, Illinois 61790

USA

ABSTRACT

The Grid is an interconnected set of distributed compute
servers. An application running on the Grid consists of
processes, which can be executed in parallel or in a
sequential manner. An application can specify application
level and network level Quality of Service parameters
including number of processors, memory, special software,
network bandwidth, delay, jitter, packet loss, etc. We
investigate the question: Which processes are allocated to
which compute servers that collectively satisfy the
application’s resource requirements and optimize
performance and cost parameters. We describe a protocol
to identify those compute servers that can execute the
application with minimal cost and provide the required
application level and network level Quality of Service.

Keywords-Grid computing; Quality of Service; resource
discovery; heuristic search;

1. INTRODUCTION

The term Grid describes a collection of geographically
distributed resources shared by multi-institutional virtual
organizations (VOs) in a coordinated manner [1]. A VO is a set
of participants that share resources to perform some specific
tasks. For instance, the members of an industrial group
designing a new industrial unit or member institutions of a
multi-national research project form a VO. Resources can be
computers’ processing power, storage devices, software
services, special hardware (microscopes, telescopes, etc), and
data. Coordinated resource sharing means that users share
multiple resources by establishing and enforcing sharing
agreements. We briefly review the Grid architecture using the
chart from [1]:

Figure 1. The Grid Architecture [1]

• The Fabric layer encompasses the resources, computers,
software services, files, cluster of processors, etc.

• The Connectivity layer specifies the communications,
security, and authentication protocols for transactions
between resources.

• The Resource layer implements protocols for inquiring the
state of resources and negotiates access to them.

• The Collective layer is responsible for the discovery,
allocation, coordination, and scheduling of multiple
resources.

• The application layer includes the Grid applications of
VOs.

The components of the architecture depicted in Figure 1 are
implemented in the Globus Toolkit [2] as a result of the open-
source project Globus.

Our paper is relevant to the basic services of the Collective
layer: Resource discovery, allocation, coordination, and
scheduling of resources for the execution of applications. We
concentrate on the issue of when an application can be
decomposed into subprocesses which can be executed in
parallel or sequentially by multiple compute servers of the Grid.
Each process has specific application level and network level
QoS requirements, such as number of processors, memory,
special software, network bandwidth, delay, jitter, packet loss,
etc. Collectively, we call the specification of these services
Extended QoS (EQoS). Our resource discovery and allocation
protocol, discussed in the paper, satisfies the following system
properties:

a. In the Grid, services and users can join and leave a VO any
time. The changes may not be detected immediately, leading to
inconsistency between the registered data in the Grid
Information Services [3] and the actual availability of resources.
Due to this volatility of the Grid, a user should have the ability
to receive the most current information possible on the
availability of the requested EQoS without the involvement of a
third party that may insert an additional delay in the resource
discovery.

b. Resource providers charge a fee for their services. Users
specify the EQoS requested for an application. Upon receipt of
a request, the resource providers should be able to negotiate the
cost of the resources with the users and dynamically readjust
their resource allocation in order to satisfy a higher priority
request.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 118 ISSN: 1690-4524

Our protocol discovers the most suitable resource
providers for the execution of the processes that can grant the
requested EQoS with minimal cost. Section 2 describes related
works in the literature. Section 3 presents our model. Section 4
specifies our resource discovery protocol in details. We
illustrate the protocol in Section 5. A simulation model is
presented in Section 6. We conclude our paper in section 7.

2. RELATED WORKS

Many resource discovery systems, like peer-to-peer

systems, use names to identify resources [4, 5, and 6]. A well-
known resource discovery service, the Domain Name System
(DNS), is also based on names of the resources. Web search
engines, in addition to names, can locate resources using search
criteria. In MDS [7, 8] implemented in the Globus framework,
information sources can register with index servers via a
registration protocol. Index servers and users can use directory
servers to discover resources from the registered information
sources. MDS involves a communication phase with a third
party server that may not have the current data. The additional
phase increases the time of the discovery process. Other
systems, although providing faster search algorithms using
global resource identification, like in the Plaxton networks, [9]
or location-independent names assigned to resources [10], lack
the dynamics of the rapidly changing environment of the Grid
and do not satisfy the system property a. discussed above.

Resource discovery can also be implemented by resource

brokers as well as publisher/subscriber protocols. In
publisher/subscriber protocols [11] an application subscribes for
an event of a resource. An application-level scheduler could
then register for events that match some predicates. By
registering for similar events of several resources, the scheduler
can select appropriate resources for the application. These
protocols do not allow the resource providers to prioritize
among subscribers by reallocating resources to satisfy a higher
priority request. Users passively wait for resources to become
available and resource providers passively wait for incoming
requests. This approach is reactive rather than proactive and
does not satisfy our criteria a. and b either. Our approach allows
the readjustment of resources allocated for other users. That
may turn out to be a better overall solution because it triggers a
new discovery for more appropriate resources. Our approach is
proactive in the sense that a request can alter the resource
allocation at a provider to minimize some cost function.

The framework in [22] describes an extension of the Web

Services Description Language (WSDL) and the Universal
Description and Discovery Integration (UDDI) registry to
include QoS properties necessary for the Open Grid Services
Architecture’s (OGSA) objectives [23]. The framework
provides mechanisms for the service requesters to search for
services based on application level, middleware level, and
network level QoS criteria to provide QoS guarantees for
service execution and to enforce these guarantees by
implementing service level agreements based on a budget. This
framework, similarly to the approach above, does not satisfy
our criteria a. and b. either.

The authors of the paper [12] assume that in a VO there are

one or more servers, called nodes that store and provide access
to resource information. Users send requests to a known node

that will respond with the requested resource’s description in
case the node has the resource; otherwise it forwards the request
to another node. Intermediate nodes forward the request until
the time-to-live parameter of the request expires or the
requested resource is found. If an intermediate node has the
information, it sends it back directly to the initiating node. The
paper analyzes four protocols including ones that remember
past experience of successful resource discovery, such as the
number of answers a node replied to a similar request, the
largest number of answers a node replied, etc. Our protocol
goes beyond the mere discovery of the resources. It combines
resource discovery, process allocation, and process execution
utilizing statistical data on past performances of compute
servers.

Our protocol shows some similarities to the Globus
Architecture for Reservation and Allocation GARA [13] in the
Globus toolkit. GARA implements mechanisms that enable the
coordinated use of reservation and adaptation of resources for a
process via support for dynamic feedback among entities
involved in resource management decisions. Sensors associated
with resources and resource managers permit application-level
monitoring of resource state and reservation status, while online
control mechanisms enable adaptive control of reservations.
The main difference between our protocol and GARA is that
our protocol focuses on the whole life span of all processes of
an application including the creation, allocation, and execution
phase and a feedback mechanism after the execution phase.

Resource Discovery and Allocation
 There are several traditional research directions related to
process/processor allocation which are applicable in Grid
computing. One class of the algorithms assumes that the
resource requirements of processes are known in advance.
Related algorithms are based on known CPU and memory
requirements and the matrix of the amount of traffic between
each pair of processes. If the number of processors is smaller
than the number of processes, then several processes are
assigned to a single processor. These algorithms try to minimize
the network traffic.

 Another class of algorithms is based on centralized
decision making. A coordinator maintains a usage table with
one entry for each processor. The entries are periodically
updated by messages sent from the processors whenever some
events happen, such as the availability of some resources,
changes in the utilization of CPUs, etc. Processor allocation is
based on this table.

 According to another categorization, processor allocation
strategies can be divided in two broad classes. When a process
is created, the local processor makes the decision where to run
the process. Once the process is started it stays at that processor.
This strategy is non-migratory. In the migratory strategy a
process can be transferred to other processor even if it has
already been started to execute. Processor allocation algorithms
can further be classified if they are deterministic or heuristic,
centralized or distributed, optimal or close to optimal.

 Our algorithm belongs to another class that models a
distributed system as a computerized market economy similar
to the algorithms in [17, 18, and 19]. A processor announces
some task to execute. Other processors, upon receiving the task

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 19ISSN: 1690-4524

announcement, estimate the cost it requires to execute the task,
and send the cost estimates back to the processor announcing
the task. The task is allocated to that processor, which sent the
lowest estimated cost. A processor allocation mechanism tries
to optimize some system parameters. Our protocol tries to
optimize the overall execution time and the communication cost
of providing the requested Extended Quality of Service for
process execution.

3. OUR MODEL

A Grid application may arrive at any compute server,
which creates a process assigned to a processor for execution. A
compute server may have one or more processors, but for
simplicity, we assume that a compute server has only one
processor. A new process is generated when a running process
decides to fork or create a subprocess. Process creation is a
recursive procedure; a subprocess may create further
subprocesses until the parent process is completed. A process
may create subprocesses for several reasons, for example:

• to gain performance by executing subprocesses parallel,
• to improve the efficiency of multiprocessing in a compute

server,
• a new, higher priority process arrives,
• a compute server doesn’t have the required resources to

execute the subprocess, etc.

In all of these cases the parent process may start searching for
other compute servers to take over the subprocesses. We
characterize the Grid as a stochastic environment owing to the
following reasons:
• the system load is unpredictable,
• the kind of processes and the rate of their arrival in the

system change in time randomly,
• processor allocation decisions cannot be made in a

deterministic way,
• different compute servers have different capabilities and

resources,
• the same process can be executed by more than one

compute server, and
• there are frequent changes in the load level of a processor.

Each compute server has a knowledge base in the form of
process trees describing the processes it knows how to execute.
A process tree includes other processes that may not be
executed locally. The execution part of a compute server is
divided into two segments: the Resource Broker (RB) which
manages the local resources and the Cost Estimator (CE) which
can estimate the cost of process executions. The CE has
knowledge of local conditions, resources required by a process,
and local capacities. We assume that a compute server E has
the following types of knowledge:

- Process Tree: For each process T, E is able to execute, a
Process Tree is maintained. It is a list of subprocesses which
have to be completed before completing the process T at the
root of the tree. The processes are arranged along an AND tree.
The following chart depicts a partial process tree of T1:

Figure 2. Partial Process Tree Corresponding to Process T1

For each process T in the process tree, compute server E
maintains the following data in a Process Directory:

• Names of the compute servers able to execute the
process.

• The M-factor for compute server I denoted by M (I) is
a measure of the quality and efficiency of I in
executing process T based on “j” previous
performances of T as calculated by compute server E.
Small (close to zero) values of the M-factor indicate
high quality and efficiency, and high values indicate
that compute server I is a poor performer of process
T. A local Grid administrator provides initial values
of the M-factor. The calculation of the M factor will
be discussed in a subsequent sections.

• Communication cost d(T,T1): Assuming that process
T has a subprocess T1 and process T is executed by
compute server E, furthermore process T1 is executed
by compute server E1, then the communication cost
between compute servers E and E1is denoted by
d(T,T1). It includes the cost of transferring data
between E and E1with the requested network level
Quality of Service.

• Execution cost m(T (E)): The cost of executing a
process T by compute server E. It also includes the
cost of providing application level QoS, the cost of
integrating the outputs of other compute servers
executing T's subprocesses, and the cost of
preempting other processes from execution or
reassigning resources in order to execute process T.

Successor operator (Γ): The motivation for using the successor
operator at compute server E is to obtain all compute servers,
which have the potential to execute a certain process. The steps
in applying the operator at any compute server E are as
follows:

Step 1. E multicasts a message to k qualifying adjacent

compute servers with the least M-factor values
announcing the request to execute a process T. The
EQoS parameters (number of processors, memory,
special software, network bandwidth, delay, jitter,
packet loss, etc.) are also announced.

Step 2. The recipients of the multicast messages evaluate

their own capability to execute the process and

……...

T1

T5 T6

T2

T4

T7 T8

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 120 ISSN: 1690-4524

compare the origin of T to the ones currently
maintained locally. If there is a match, i.e., if the
compute server has already been involved in
executing the process, it will not respond to the
message. Otherwise the compute servers respond to
E with an estimated cost associated with the process
execution.

(Note: For simplicity, we assume that the multicast messages
are sent to adjacent, qualifying compute servers only, since the
Extended Quality of Service include QoS provisioning on the
communications lines as well. Our protocol can easily be
extended for sending multicast messages to all qualifying
compute servers, not just adjacent ones.)

The responding compute servers are the successors of

compute server E. The operator is used by every compute
server along the potential execution path to explore the next
candidate compute servers that can be assigned to processes in
the process tree. This recursive algorithm of finding the next
candidate compute server to form the execution paths of the
processes is referred to as ‘tree-expansion’. If the compute
server and network characteristics change very frequently, then
the Γ operator is applied every time a process starts execution.
Otherwise, Step 1 and Step 2 could be done in advance and then
cached for use when an actual process execution occurs.

We further assume that compute servers periodically send
information to their neighbors on the available resources, such
as number of processor available, bandwidth provided, special
software and hardware, etc. These messages do not contain the
fine granularity of the actual state of the resources.

Process Tree
 The Process Tree implicitly defines an AND/OR tree. The
root of the tree is the initial process assigned to a compute
server. The successors of the root are recursively given by the
Process Tree of the subprocesses. The processes with the same
ascendant are in AND relation. Each process is assigned to at
most one compute server. Assuming that more than one
compute server can execute a process, the candidate compute
servers are in OR relation. A branch of the example AND/OR
tree belonging to process T1 of Figure 2 and the candidate
compute servers E1 through E9 are shown in the following
figure:

Figure 3. A Partial AND/OR Tree Representing Process T1

 The subprocesses at the same level of the tree are in AND
relations, the candidate compute servers in parentheses are in
OR relations. For instance, subprocess T2 can be executed
either E2, or E3, or E4. The compute servers are selected by the
search procedure presented later. The recursive definition of a
solved node in an AND/OR tree is similar to the definition in
[20]:

1. The leaves are solved nodes. These nodes represent the

execution of processes without the involvement of further
compute servers.

2. If a non-leaf node has OR descendants, then it is solved iff
at least one of its descendants is solved.

3. If a non-leaf node has AND descendants, then it is solved
iff all of its descendants are solved.

The solution of the original process is then represented by a
subtree of solved nodes, called solution tree. A node T (E) of
the solution tree represents a process T assigned to compute
server E.

The cost P(T (E)) of node T (E) of a solution tree is defined re-
cursively:
- If process T doesn't have any subprocesses, then P(T (E)) =
m(T (E)).
- If a process T has AND subprocesses T1, T2,…, Tn allocated
to compute servers E1, E2,…, En, then
P(T(E))=Σi [d(T,Ti) + P(Ti(Ei)) + M(Ei) + m(T(E))], i=1,2,..,n.
- If a process T has a subprocess Tj and the compute servers
able to execute Tj are E

i, then
P(T(E))= d(T,Tj) + P(Tj(Ei)) + M(Ei) + m(T(E))}, for any
i=1,2,..,n,

where d(T,Tj) is the communication cost, M(Ei) is the M factor
of compute server Ei, and m(T(E)) is the execution cost of
process T by compute server E. Our goal is to find a solution
tree with minimal cost. We call such a tree an optimal solution
tree.

The search algorithm, implemented in our protocol, is
derived from the Simple Recursive Best-First Search (SRBFS)
[24] which is an extension of the IDA* [25]. Similarly to
SRBFS we define the heuristic function P*(T(E)) as a cost
estimate of the optimal solution tree:
- If process T doesn’t have any subprocesses, then
P*(T (E)) = m*(T (E)), where m*(T (E)) is the estimate of the
execution cost of process T by compute server E.
- If a process T has AND subprocesses T1, T2,…, Tn, then
P*(T (E)) =Σi [d*(T, Ti) + P*(Ti (Ei)) + M (Ei) + m*(T (E))].
- If a process T has a subprocess Tj and the candidate compute
servers are Ei,, then
P*(T(E))= mini{d*(T,Tj) + P*(Tj(Ei)) + M(Ei) + m*(T(E))},
i=1,2,..,n, where d*(T,Tj) is the estimate of the communication
cost related to the execution of processes T and its subprocess
Tj.
 A new application is submitted to a compute server E1
along with the Extended Quality of Service parameters required
by the application’s processes. For reducing the complexity of
the examples we don’t identify the compute servers in the
charts below. If compute server E1 can execute the process T1
and its subprocesses and it is not aware of other candidate
compute servers, it starts and completes the execution of the
process. Assuming that compute server E1 can execute the
process T1 but cannot execute T1’ subprocesses, then E1 has to

T2
(E2, E3,E4)

 T1
(E1)

 …..

T3
(E1, E5, E8)

T4
(E6, E7, E9)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 21ISSN: 1690-4524

make the decision about the location to execute the second
process T2 of the application. It sends a request to k number of
qualified processors with the smallest M-values along with an
upper bound on the execution cost and the EQoS requirements
of process T2. The upper bound is the maximum cost a
compute server is willing to “pay” for the execution of the
process. It is determined by the user submitting the application
or the virtual organization the user belongs to. A compute
server is qualified if it has been able to execute similar
processes in previous cases. The selection mechanism includes
the parameter M, which is a measure of a compute server’s
inefficiency (as calculated by its predecessor compute server
along the process execution tree) based on its previous process
executions. M may be different for different processes and is
dependent on the specific process to execute. Small (close to
zero) values of M indicate high quality and efficiency, and high
values indicate that the compute server is unreliable and
unstable in executing the process. A compute server’s M value
is recalculated after each process execution by the adjacent
compute server that sent a process execution request to it.
After each process execution it is determined how realistic a
compute server’s cost estimate has been with respect to the
recalculated cost. By testing a statistical hypothesis it can be
determined if it has been unrealistic. If the corresponding
hypothesis H0 is rejected no process execution request messages
will be sent to this compute server in the future for process
execution. If a compute server’s cost estimate has been
realistic, i.e., the corresponding hypothesis H0 is accepted, the
M value is recalculated. The closer the estimated cost is to the
actual cost, the smaller is the M value. Subsequent values of M
for each compute server are calculated using the statistical
sampling method given in the Appendix. The motivation for
using M is to enable the search process to learn from past
performances and use this knowledge to select the most
efficient compute servers for a given process tree.

 The compute servers compute the estimated cost of each of
the activities associated with execution of T2, such as the
allocation or reallocation of resources, preempting existing but
lower priority processes, etc. These cost estimates are sent back
to E1, which will select the compute server with the smallest
cost estimate. The procedure continues recursively. At each
recursive step a compute server uses three arguments: The name
of the compute server, an upper bound on the execution cost,
and a subprocess. Each step expands the execution path by
those children through which the estimated execution costs do
not exceed the upper bound. (The first step assumes an upper
bound of infinity at E1.) Each step returns the estimated cost
along the path to a child, replacing parent values with the
minimum of the estimated costs via the last children expanded,
going backward along the path, until a better cost estimate is
reached. Then, the procedure continues along that path.
Generally, the upper bound on a child is equal to the minimum
of the upper bound on its parent and the current value of its
lowest cost sibling. Initially, a compute server is assigned an
estimated cost by itself. After a recursive step this cost value
will be equal to the minimum estimated cost path to the last
child along the expanded subtree. We call it the compute
server’s stored value after the SRBFS algorithm in [24]. In the
charts below the figures at the nodes of the tree denote the cost
estimates of the compute servers. The upper bounds are in
parentheses. We assume the process tree in Figure 2 and d=1
for simplicity. Compute server E1 announces T2 to k number of
qualified processors with the smallest M-values. Assuming that

only three compute servers responded with their estimated cost
for T2 (10, 7, and 6), process T2 is tentatively assigned to the
compute server with the smallest estimate, 6. A partial solution
tree is shown in Figure 4.a. (For simplicity we also omit the
identification of the subprocesses from the example figures.) At
each level of the search tree a subprocess is tentatively assigned
to a compute server. The compute server, which sent the
smallest estimate (6) is selected to continue the search with the
upper bound of the next lowest cost estimate 7. Similarly to E1
it announces the next processes in the process tree, T3 and T4, to
eligible compute servers with the smallest M-values. Figure 4.b
shows the resulting partial solution tree. This path of the search
tree exceeds the upper bound 7 and costs more than the other
paths (7+5+2=14, 14+1=15), therefore the search stops on this
branch of the tree and continues with the compute server with
the smallest cost estimate 7 and the upper bound 10, as it is
shown in Figure 4.c.

(a) (b) (c)

Figure 4. Partial Solution Tree

Since the upper bound 10 has not been exceeded on this
branch, the processes T3 and T4 are tentatively assigned to the
compute servers with estimated costs 3. The search continues
from these compute servers announcing the processes T5, T6,
and T7, T8 to eligible processors with the smallest M-factors.
Figure 4.d depicts the new estimated solution tree. The resulting
cost estimate (13) exceeds the upper bound 10, hence the search
continues with the compute server with cost estimate 10 and
upper bound 13. Figure 5.e displays the final estimated tree.
Processes T5, T6, T7, T8 have been tentatively assigned to the
compute servers at the leaves of the tree with cost estimates 2,
2, 1, and 1, respectively. The process execution tree is along the
return path of the recursive steps:

 (d) (e)

Figure 5. Building a Tentative Solution Tree.

7

 10 7 6 (≤ 7)

10 7 (≤ 10) 14

 15

7 5

9

10 8 (≤ 10) 14

3 3

13

2

14

10 13 (≤ 10) 14

5

1 3

12(≤ 13) 13

6 4

2 121 1

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 122 ISSN: 1690-4524

Execution Phase
 When the estimated solution tree T* has been found, the
compute server E at the root node T(E) of the solution tree
activates the actual execution of the subprocesses of T: It sends
the message 'Perform' to the selected compute servers that in
turn do the same along the solution tree. After executing the
processes at the leaves, each compute server transmits the result
to its predecessor, which in turn, acts similarly. This procedure
continues toward the root of the tree, where the final result is
presented to the user. Along with the intermediate results all
compute servers in the hierarchy also transmit the actual cost P
to their predecessor. Each processor recalculates the M factor of
its successors based on P and P*.

4. GRID PROCESS ALLOCATION PROTOCOL
(GPAP)

 The goal of our process allocation protocol is to find the
compute servers that can execute the process tree with the least
cost. The process allocation protocol is initiated by the
compute server E receiving a new process to execute or
discovering that a subprocess cannot be executed locally.
Assume that the subprocesses are T1,T2,..,Tn.

 We introduce the lists L(E) at a compute server E, a list of
compute servers generated by applying the Γ operator at
compute server E sorted by their stored values. Let’s denote
compute server E’s stored value by S(E), then L(E)={(E1,
S(E1)), (E2, S(E2)),.., (Ek, S(Ek))}, k = # of children of E, and
S(E1)≤ S(E2)≤ ..., ≤ S(Ek). Whenever Γ is applied at a compute
server, the successor compute servers are put in L(E) for later
expansion. The protocol can be formulated as a recursive
algorithm as follows:

GPAP (compute_server E, upper_bound B, process Tj)
1. if S(E) > B then return S(E);
2. If Tj can be executed by E then exit;
3. Apply the Γ operator to generate E’s children;
 if E has no children then return “The process cannot be

executed”;
4. Let S(Ei) = h*(Tj(E,Ei) and construct the list
 L(E)={(E1, S(E1)), (E2, S(E2)),.., (Ek, S(Ek))};
5. While(S(E1) ≤ B)

 S(E1) = GPAP (compute server E1,
upper_bound min{B, S(E2)}, process Tj);
 Insert E1 and S(E1) to L(E);

 S(E) = min{S(E1), S(E2),.., S(Ek)}, S(Em) ∈
L(E), m = 1,2,..,k;

 Tentatively assign Tj to E1.
6. Return S(E1)

 Similarly to [24] it can be shown that the process
allocation protocol always finds the least-cost execution tree, if
the following condition h*(Ti(E) ≤ h(Ti(E) is satisfied for all
compute servers in the lists L(E).

5. COMPLEXITY ANALYSIS

 The algorithmic complexity of our Grid Process Allocation
Protocol is defined by the expected number of sites expanded.
The Iterative-Deepening-A* (IDA*) [25] performs a sequence
of depth-first searches, pruning branches when their cost

exceeds a threshold for the current iteration. The initial
threshold is determined by the cost estimate at the root and
increases for each iteration of the algorithm. Each subsequent
threshold for each iteration is the minimum cost of all values
that exceeded the previous threshold. IDA* expands the same
number of nodes asymptotically, as A* [20]. It is shown in [25]
that IDA* is asymptotically optimal in terms of time for tree
searches. The important property of A*, that it always finds the
lowest-cost solution path if the heuristic is admissible, also
holds for IDA*. Although it is easier to implement than A* (as
there are no open and close lists to be managed), it uses a global
threshold, that is difficult to maintain in a distributed system.

 Our protocol is a modification of the Simple Recursive
Best-First Search (SRBFS), which is an extensions of the IDA*.
Therefore, the complexity of our algorithm can be derived from
the complexity of this algorithm. While iterative-deepening
uses a global threshold, SRBFS uses a local cost threshold for
each iteration with two parameters: a site and an upper bound
on cost. It explores the branch below the node as long as it
contains expanded nodes, whose costs do not exceed the upper
bound. Each iteration returns the minimum cost of the newly
expanded nodes. Although the space complexity of our
algorithm is O(db) (similarly to SRBFS), where b is the
branching factor and d is the maximum search depth, the worst-
case time complexity is O(b2d) depending on the cost function.
With a monotonic cost function, it finds an optimal solution
while expanding fewer nodes than iterative-deepening. The
method in SRBFS and in our protocol reduces the space
complexity of best-first search from exponential to linear
(assuming a constant branching factor). The reason is that the
recursive procedure only maintains the path to the best frontier
nodes of the explored subtree and the siblings of all nodes along
the path. While in IDA* each new iteration regenerates the
entire previous tree, our algorithm only explores the branches of
sibling nodes on one of the last paths of the most recent
iteration. The algorithm increases the time complexity by only
a constant factor [24].

Simulation Results

We constructed the following simplified model in the
Comnet modeling tool:

Figure 6. Model of a Grid of Compute Servers

E1-E8 represent the compute server objects connected by high-
speed links. The model simulates the assignment of processes

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 23ISSN: 1690-4524

T1, T2, T3, T4, and T5 to compute servers according to the
protocol discussed above. Each compute server is connected to
two application source objects Ph1 and Ph2 corresponding to
the two phases of the process execution. The Ph1 and Ph2
objects are programmed using a simple language as shown
below for illustration purposes only:

In order to measure the performance of the process
assignment protocol we collected the following statistic:

• The run time of Ph1 can be considered as a factor

representing the protocol’s time complexity. The
simulation showed that the run time of Ph1 to find the
execution paths is very small relative to execution of the
process tree Ph2, i.e. the protocol does not add significant
overhead to the processing time of the application.

• Another measurement characterizing the protocol’s
performance is the link utilization. A low link utilization

indicates that the protocol doesn’t generate excessive
traffic on the network. The simulation proved that the
protocol requires only insignificant portion of the
bandwidth.

• Similarly, the number of messages created during the
protocol can be considered as a measure of performance.
Low number of messages in the simulation indicates low
protocol overhead.

For interested readers the details are available from the

author.

6. CONCLUSION

 We presented a protocol for resource discovery and
process allocation and execution in the Grid of compute servers.
An application can specify application level and network level
Quality of Service parameters including number of processors,
memory, special software, network bandwidth, delay, jitter,
packet loss, etc. The protocol assigns processes of Grid
applications to compute servers that collectively satisfy the
application’s resource requirements and minimize the execution
time and communication cost We modeled the resource
discovery and process assignment as a heuristic search
algorithm using a tree structure. The execution of the processes
was formulated by the a search for a solution tree. The compute
servers calculated the estimated cost of the solution tree as a
heuristic function of the search algorithm. After process
execution the actual cost of the solution tree could be
calculated. Based on statistical measurements of the compute
servers’ performance in past process executions the protocol
could identify the minimal solution tree. The paper also
presented the complexity analysis of the algorithm along with a
brief discussion of the simulation of the protocol.

APPENDIX

Calculation of the M-factor

 Assume that a compute server E sends a request to capable
compute servers for executing process T. The compute servers
compute the estimated cost P* based on the activities,
procedures, requested Quality of Service and other resources
associated with the process execution. Compute server Q cost
estimate is calculated as follows: To perform process T
compute server Q has to perform the subprocesses T1, T2,.., Tn,

2≥n . In the cost estimate Q plans ja cost for subprocess Tj,

where nj ,..,1= Assume that Q's offer is the smallest cost
estimate; therefore it is accepted by compute server E. After
performing process T the costs of the subtasks T1, T2,...,Tn are
recalculated. Let these values be: nccc ,...,, 21 . We can
further assume that the
 (1)),..,1(, njc j =

values are random variables with expectations.
 Our goal is to decide whether Q’s cost estimate can be
accepted with respect to the recalculated cost, or in other words,
the hypothesis
(2)),..,1(,)(:0 njacEH jj ==

is acceptable or not with respect to the quantities (1).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 124 ISSN: 1690-4524

In order to give a decision procedure for this problem we
assume that quantities (1) are normal distributed, independent
random variables, i.e,

(3)),..,1(),,(2 njeNc jjj =∈ σ

where

),..,1(,)(,)(22 njcDecE jjjj === σ

Based on the central limit theory this assumption is plausible.
Namely, each of the random variables (1) can be interpreted as
a superposition of independently distributed random variables.
If the hypothesis 0H fulfills then the random variables

(4)),...,1(),1,0(
)(

njN
ac

Y
j

jj
j =∈

−
=

σ

form a sample of random variable)1,0(NY ∈ .
 Thus we can use the Student test to accept or to reject
the hypothesis 0H . For this reason we use the following
notations:

∑
=

−

=
n

j j

cj

n
c

1

1

σ

 , ∑
=

=
n

j j

aj

n
a

1

1

σ

2

1

2)(
)1(∑

=

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=−

n

j j

j
n

cc
sn

σ

From the definition of the random variables (4) we obtain that

)1,0(1
n

NacY
n

Y k ∈−==
−−

∑ , and

2
1

2

1

2)1(−
=

−

∈⎟
⎠
⎞

⎜
⎝
⎛ −=− ∑ n

n

j
jn YYsn χ

where 2
1−nχ is the Chi square distribution with degree of

freedom 1−n , and it is well-known that these random
variables are independent. Consequently, if the hypothesis H0
holds, then

1−

−

∈ n
n

t
s
nY ,

where 1−nt is the student distribution with degree of freedom

1−n .
Then, the decision procedure is as follows:
Let 0>ε be the significance level. Let)(),(21 εε hh be
positive values satisfying the equality:

 ε
ε

ε

−=∫
−

1)(t
)(

)(
1-n

2

1

dxx
h

h

where Rxxtn ∈−),(1 is the density function of the Student

distribution with degree of freedom 1−n .

Hypothesis 0H is accepted on the level ε if

n
s

hY
n

s
h nn)()(21 εε ≤≤−

−

In other words processor Q's cost estimate is acceptable with
respect to the recalculation. Otherwise, if

 (5)
n

s
hY n)(2 ε>

−

or

 (6)
n

s
hY n)(1 ε<

−

then Q’s preliminary calculation is unacceptable with respect to
the recalculation. In the case of (6) we say that the preliminary
calculation is strongly underestimated, and in the case (5), it is
strongly overestimated on the �level.
This method has a disadvantage. Namely, the random variable

ns
nY

−

depends on the parameters),..,1(, njj =σ and usually these

values are unknown. However if
(7)),..,1(, njj == σσ

the method is independent of the variances of the random
variables),...,1(, njc j = .

The condition (7) is obviously very strong assumption, and can
be verified only if we compare the result obtained under
condition (7) with the reality.

The difference
−

− ca is an appropriate measure of the
deviation between the estimated and the recalculated cost. In
the case of the acceptance of hypothesis 0H the

−

− ca value satisfies the inequality:

 (8)
n

s
hca

n
s

h nn)()()(21 εε ≤−≤−
−

Let ii ca − denote the estimated and recalculated costs in the
last ith circuit restoration satisfying inequality (8). Then, for the
last j restorations Q’s uncertainty related to a process T is
calculated by processor E as follows:

 (9)
−

=

−

≤−= ∑ cacaQR i

j

i
i |,|)(

1

 A compute server’s M-factor is recalculated after each
process execution by the compute server that sent the request.
After each process completion it is determined how realistic a
compute server’s cost estimate has been with respect to the
recalculated cost. If it has been unrealistic, i.e., the hypothesis
H0 above is rejected, no request messages will be sent to this
compute server in the future for process execution. If a compute
server’s cost estimate has been realistic, i.e., the hypothesis H0
is accepted, its M-factor is recalculated. The closer the
estimated cost is to the actual cost, the smaller is the M-factor.
The GPAP protocol discussed in this paper can find an optimal
solution tree if the cost estimates at each compute server are
close lower bounds of the actual costs. It follows from the
calculation of the heuristic function P* and the M-factor that it

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 25ISSN: 1690-4524

is a higher possibility for a compute server to perform a
process, if it can estimate the execution cost close to the actual
cost.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of

the Grid: Enabling Scalable Virtual Organizations,
International Journal of High Performance Computing
Applications, 15(3), 2001.

[2] Globus Project. http://www.globus.org.
[3] http://www.gridforum.org.
[4] Gnutella protocol specification,

http://www.clip2.com/articles.html.
[5] I. Clarke, O. Sandberg, B. Wiley, and Theodore W.

Hong. Freenet: “A Distributed Anonymous Information
Storage and Retrieval System,” in Proc. of the ICSI
Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, CA, International Computer
Science Institute, 2000.

[6] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H.
Balakrishnan,”Chord: A Scalable Peertopeer Lookup
Service for Internet Applications,” SIGCOMM’01, San
Diego, California, pp. 149-160, August 2001.

[7] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman,
“Grid Information Services for Distributed Resource
Sharing,” in the Proceedings of the IEEE Symposium on
High Performance distributed Computing, 2001.

[8] http://www.globus.org/toolkit/docs/4.0/info/key/index.ht
ml#id2763255.

[9] C. Plaxton, R. Rajaraman, and W. Richa, “Accessing
nearby copies of replicated objects in a distributed
environment,” in ACM Symposium on Parallel
Algorithms and Architectures, 1997.

[10] M. Van Steen, P. Homburg, and A. Tanenbaum, “Globe:
A Wide-Area Distributed Systems,” IEEE Concurrency,
pp. 70-78, 1999.

[11] H. Casanova, “Distributed Computing Research Issues
in Grid Computing,” ACM SIGACT News Distributed
Computing Column 8, July, pp. 50-70, 2002.

[12] A. Iamnitchi and I. Foster, “On Fully decentralized
Resource Discovery in Grid Environments,” In the
Proceedings of the International Workshop on Grid
Computing, Denver, Colorado, November 2001.

[13] I. Foster and A. Roy, “A Quality of Service Architecture
that Combines Resource Reservation and Application
Adaptation,” in Proceedings of the Eight International
Workshop on Quality of Service (IWQOS 2000), pp.
181–188, June 2000.

[14] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S.
Graham, C. Kesselman. “Grid Service Specification”,
Argonne National Laboratory, Argonne, IL. Draft3
(7/17/2002).

[15] I. Foster, C. Kesselman, C. Lee, B Lindell, K. Nahrstedt,
A. Roy , “A Distributed Resource Management
Architecture that Supports Advance Reservation and
Co-Allocation”, Proceedings of the International
Workshop on QoS, pp.27-36, 1999.

[16] Ian Foster, Carl Kesselman, Jeffrey M. Nick, Steven
Tuecke, “The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration”. Downloadable as:
http://www.globus.org/research/papers/ogsa.pdf, 2002.

[17] J. Gomoluch and M. Schroeder, “Performance
Evaluation of Market-based Resource Allocation for
Grid Computing,” Concurrency and Computation:
Practice and Experience, 00:1–6, 2004.

[18] R. Buyya and S. Vazhkudai, “Compute Power Market:
Towards a Market-Oriented Grid,” in Proc. of the 1st
Int. Conf. on Cluster Computing and the Grid,
CCGrid’01. IEEE, 2001.

[19] D. Abramson, R. Buyya, and J. Giddy, “A
Computational Economy for Grid Computing and its
Implementation in the Nimrod-G Resource Broker,”
Future Generation Computer Systems, (FGCS) Journal,
18(8), pp.1061–1074, October 2002.

[20] N. J. Nilsson, “Principles of Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., pp. 99-109, 1980.

[21] Dongyan Xu, Klara Nahrstedt, Duangdao Wichadakul,
“QoS-Aware Discovery of Wide-Area Distributed
services”, Department of Computer Science, University
of Illinois at Urbana-Champaign, fd-
xu,klara,wichadakg@cs.uiuc.edu, Technical Report
UIUCDCS-R-2000-2189, Nov. 2000

[22] Al-Ali, R.; Rana, O.; Walker, D.; Jha, S. & Sohail, S.
“G-QoSM: Grid Service Discovery Using QoS
Properties.” Computing and Informatics Journal, (4),
pp. 363-82.21, 2002.

[23] I. Foster, C. Kesselman, J. Nick, S.Tuecke, “The
Physiology of the Grid: AnOpen Grid Services
Architecture for Distributed Systems Integration”,
http://www.globus.org/research/papers/ogsa.pdf, 2002.

[24] R. Korf, “Linear-Space Best-First Search: Summary of
Results,” Proceedings of the Tenth National Conference
on Artificial Intelligence, San Jose, California, July 12-
16, pp. 533-538, 1992,.

[25] R. Korf, “Iterative-Deepening-A*: An Optimal
Admisible Tree Search,” Proceedings of the Ninth
International Joint Coference on Artificial Intelligence,
UCLA, August 18-23, pp. 1034-1036, 1985.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 126 ISSN: 1690-4524

	P476683

