

 Pattern-Oriented Reengineering of a Network System

Chung-Horng LUNG
 Department of Systems and Computer Engineering, Carleton University

Ottawa, Ontario K1S 5B6, Canada

and

Qiang ZHAO
Department of Systems and Computer Engineering, Carleton University

Ottawa, Ontario K1S 5B6, Canada

ABSTRACT

Reengineering is to reorganize and modify existing systems to
enhance them or to make them more maintainable.
Reengineering is usually necessary as systems evolve due to
changes in requirements, technologies, and/or personnel.
Design patterns capture recurring structures and dynamics
among software participants to facilitate reuse of successful
designs. Design patterns are common and well studied in
network systems. In this project, we reengineer part of a
network system with some design patterns to support future
evolution and performance improvement. We start with reverse
engineering effort to understand the system and recover its high
level architecture. Then we apply concurrent and networked
design patterns to restructure the main sub-system. Those
patterns include Half-Sync/Half-Async, Monitor Object, and
Scoped Locking idiom. The resulting system is more
maintainable and has better performance.

Keywords: Reverse Engineering, Reengineering, Design
Patterns, Networked and Concurrent Software, Refactoring.

1. INTRODUCTION

Software architecture has become a major topic in the past
several years because of the increasing complexity of software
systems. Software architectures also play a crucial role for
managing the changes. It is common in practice to reconstruct
architecture from the existing design and modify the system to
accommodate changes through reengineering. The need for
software reengineering has increased significantly, as heritage
software systems have become obsolescent in terms of their
architecture, the platforms on which they run, or their
suitability and stability to support maintenance and evolution.

Reengineering consists of two main phases: reverse
engineering and forward engineering. Reverse engineering is
the process of extracting system abstractions and design
information out of existing software systems to facilitate
program comprehension. Forward engineering, in this context,
deals with the subsequent re-design and implementation from
the recovered system to meet the evolutionary objectives.
Restructuring or refactoring [3] may be needed in this stage to
improve the quality, maintainability, or performance of the
existing design.

Design patterns are proposed as a way to produce more
reusable and adaptable designs. Design patterns capture
recurring structures and dynamics among software participants
to facilitate reuse of successful designs. They provide a
common vocabulary for talking about design solutions among
designers. The basic idea behind design patterns is that similar
idioms are found repeatedly in software designs and that these
patterns should be made explicit, codified, and applied
appropriately to similar problems.

cgNet is a network system and application based on MPLS
protocols (Multi-Protocol Label Switching) [2] developed at
Nortel Networks. The system was designed to realize basic
functional requirements under timing constraints for concept
demonstration. As a result, some portions of the system were
not well designed and there was no documentation.
Furthermore, there was a need to enhance the system to support
research in QoS (Quality of Service) and other areas at
Carleton University.

cgNet was not originally designed based on patterns.
Nevertheless, it shared similarities with other network systems,
because the original designers were mostly experienced in the
network area. The system shares similarities with other
network systems. Concurrent and networked design patterns
are common in network systems and applications, and are well
documented [9].

Hence it is logically reasonable to assume that cgNet shares
some similar concepts with the design patterns for concurrent
and networked objects. We began with reverse engineering
effort with an aim to understand the system. The reverse
engineering process starts with studying well-known patterns in
network applications together with code review to help better
understand the system. By studying the relevant design patterns
and reviewing the code, we realized that the core the system
could be restructured with some design patterns to facilitate the
addition of new QoS features. In addition, we found that some
design patterns had the potential to increase system
performance.

We adopted the Half-Sync/Half-Async design pattern as the
overall structure for the main software process. The pattern is
used together with the Monitor Object pattern and Scoped
Locking for handling the request queue in the Half-Sync/Half-
Async pattern. A multi-read/single-write mechanism is
provided to realize the synchronization among threads. The
resulting system has better code and faster system performance.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 19

The rest of the paper is organized as follows. Section 2
describes the original cgNet structure through a reverse
engineering effort. Section 3 demonstrates the restructured
design based on the design patterns. Section 4 discusses the
effort spent on the reengineering effort and briefly presents
some performance comparisons. Finally, Section 5 summaries
the paper with conclusions and provides suggestions for future
related works.

2. REVERSE ENGINEERING OF CGNET

The cgNet software consisted of about 30,000 lines of code and
contained complicated operations, algorithms, and domain
knowledge in networks and traffic management. The system
was written in C++, but some parts were written in C style.
There was no design documentation for the software except the
user’s guide. From the user’s guide and the executable software
processes, we have the high-level process view of the design
shown in Figure 1.

As shown in Figure 1, cgNet is composed of software routers.
Routers are symmetrical and identical except possibly that the
neighbors and number of connections to other routers may be
different. These router processes can be run on the same
machine concurrently or on separate machines.

Figure 1. System level view of cgNet

A router consists of a traffic generator, a sink, a statistics sink,
an ONC (intelligent network controller) and a node. A
generator process randomly generates data packets that will be
forwarded to other router processes. A sink process consumes
data packets received from other router or its own generator. A
statistics sink process consumes statistic reports generated
periodically by the node process. A manual controller process
is the user interface that receives commands from the user and
sends the commands to the node processes. An ONC process
automatically sends the appropriate commands to the network
to formulate the necessary network changes required to
improve network status. These commands are based on
network status from real-time network statistics. A node

process forwards traffic (control and data) towards the
destination sink along the MPLS paths or along Layer 3 routes
that use the OSPF protocol.

Among all the processes, the node process is the most
complicated one and plays a crucial role in the system. A node
process consists of about 10,000 lines of code and 90 methods
or so. It was written in C++, but mostly in C style. In fact, the
key to recover the structure and design of cgNet was to analyze
and understand the node process.

The reverse engineering process is an extension of the
approach described in [6]. More precisely, the process is an
iterative effort of walking through the program and studying
the patterns for concurrent and networked applications.
Studying and comparing those patterns actually helped us
better understand the system, even though the system was not
built with patterns in the first place. The main reason probably
was because the system was built by a few very experienced
software designers. In other words, those designers had seen or
applied similar concepts in previous projects.

Another reason that studying patterns helped the process was
the problem domain. Identifying potential design patterns that
may exist in the structure of an analyzed system is an important
complement to improve the comprehension of how determined
parts of the system were designed and the relationships with
some other components. Although cgNet was not written based
on design patterns, it is in the area of communications that is a
well-studied domain. Numerous articles on design patterns in
networks and telecommunications have been published in the
literature [8, 9].

It is, therefore, logically reasonable to assume that cgNet
shared similar concepts of design patterns for concurrent and
networked objects. The strategy was to study design patterns
listed in [9] and review the code based on the concept of those
patterns. By studying the patterns and comparing them with
cgNet, we also better understood the system.

Figure 2 demonstrates the structure of the node process which
consists of multiple threads: a main thread, a statistics thread,
and multiple destination threads.

The main thread first initializes the node, connects to its
generator, sinks and neighboring nodes, and creates the
statistics thread and destination threads. After the initialization
stage, the main thread repeatedly reads a packet from one of its
sources, processes it, and enqueues it according to the first-
come first-served principle.

The statistics thread collects statistics on all sources,
destination links and MPLS paths at the end of each statistics
interval. Then the thread generates statistics packets and puts
them into the appropriate destination thread’s queue.

There are a thread and a queue for each destination. A
destination could be a data sink, a statistics sink or a
neighboring node process. A destination thread removes a
packet at a time from the corresponding queue and sends the
packet out through the destination link.

The main thread and the statistics thread also access the shared
data including network link topology, routing table, and MPLS
table synchronously.

data

 Router

Router

Router

Router

Controll

Generator

Node ONC

Stats Sink

Bi-directional link, data & control

control process

Router

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 420

3. RESTRUCTURING OF CGNET WITH
DESIGN PATTERNS

After the reverse engineering process, the main tasks were
identified in the subsequent phase. The original cgNet did not
support QoS. So, the first objective was to restructure the
system with design patterns to facilitate multiple queues
management to classify received packets and process them
according to their priorities with an aim to support QoS.

As we conducted the reverse engineering process, we also
identified a software performance bottleneck in the node
process. The processing tasks for a packet may include route
lookup, routing table update, MPLS table lookup, MPLS path
setup/reroute/change/delete, traffic policing, topology update or
data forwarding. It takes a long time to execute a sequence of
tasks just mentioned for each packet before reading the next
one.

Generally speaking, performance is not directly related to
patterns, as performance depends on where the performance
bottlenecks are and how patterns are implemented. However,
performance will benefit from patterns is concurrency and
locking patterns [8, 9]. These patterns tend to have a very
broad affect on application performance. Therefore, the second
objective was to increase performance by adopting a concurrent
design pattern.

We adopted the Half-Sync/Half-Async design pattern as the
overall structure for the node process. The pattern is coupled
with the Monitor Object pattern and the Scoped Locking for
handling the request queue in the Half-Sync/Half-Async pattern.
A multi-read/single-write mechanism is provided to realize the
synchronization among threads. Figure 3 shows the
restructured design.

The input thread deals with the asynchronous input and output
with peers. The input thread stores the incoming messages into
the input queue. The queuing layer has an input queue which
actually consists of multiple sub-queues; each having a priority
and being used for one type of messages or packets. The
property is used to store different types of packets into different
sub-queues. QoS can then be realized with this design.
Supporting QoS was the main objective of this project.

The input queue was implemented with the Monitor Object
pattern in which object synchronization corresponds to method
invocations. Synchronized methods (put and get) use their
monitor conditions to determine the circumstances under which
they should suspend or resume their execution. Scoped
Locking idiom was adopted in the implementation to acquire
and release locks automatically when control enters and leaves
critical sections.

A multi-read/single-write mechanism was used to implement
the synchronization of worker threads and the statistics thread
to protect shared data. Multiple threads are allowed to read the
shared data concurrently. But other threads are excluded to
access the shared data when one thread is updating the shared
data.

Multiple worker threads remove messages in the input buffer
and handle them according to message type. Synchronization
among the input thread and worker threads are supported with
the Monitor Object pattern and the Scoped Locking
mechanism. In the new design, the input thread and the worker
threads are working concurrently. As opposed to the main
thread described in Section 2, the input thread performs much
less work in the new design. Most of the tasks are actually
delegated to the worker threads. Therefore, the performance
bottleneck is removed. Next section will present some
performance results for comparison.

Node

…

Routing table

MPLS table

Topology

Destination 1 Destination 2

Main Thread

statistics

Destination n

Socket
Event React or

…

bi-directional link, data and control queue
process shared data data

thread

Shared data

control

 Figure 2. Recovered software architecture of the Node process

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 21

4. EVALUATION OF THE REENGINEERING EFFORT

This section presents assessments of the reengineering task.
The first phase of this project included reverse engineering of
the code and review of design patterns discussed in [9]. This
phase play ed a crucial role to the success of the subsequent
restructuring task. As mentioned in section 2, cgNet involves
many technical areas, including complicated operations,
algorithms, concurrent programming, and domain knowledge
in networks protocols, signaling, and traffic management.
Roughly, 4.5 man-months were spent in this phase.

The second phase was restructuring of the design with patterns
discussed in the previous section. Approximately, this phase
took 4 man-months. Design patterns helped shorten the
development time for this stage. The third phase was the
postmortem analysis for performance based on various traffic
parameters Performance characterization of a network system
is a complicated task, which is not directly related to this paper.

We did not conduct rigorous change impact analysis [1] or
software architecture sensitivity analysis [5] before the project
started. Here, we just provide some assessment data after the
restructuring effort for reference purpose. The main process
that was modified had about ninety methods. Twenty-six of
them were modified, all with minor changes; one method was
removed; and sixteen new methods were added. Many changes
were related to synchronization, which spread over all the
places. With the incorporation of those patterns, the sensitivity
will be reduced due to similar changes, because those changes
will be confined to some patterns only in the new design.

We also conducted performance evaluations based on the
software performance engineering approach [4, 10].
Performance has improved substantially for most scenarios
with the new design primarily due to the parallelization of the
input thread and the worker threads. Table 1 illustrates some
performance results for one scenario on Pentium (R) IV with
1.7 GHz CPU and 256 MB of memory and Linux kernel
2.4.18-3. However, the number of worker threads does not
have significant differences. This paper emphasizes on
software reengineering. Detailed discussion on performance
analysis is beyond the scope of this paper.

Table 1. Comparison of packet loss ratios

Base engineered
rate multiplier

OSPF packet
loss in the

original design

OSPF packet loss
in the new design
with one worker

thread

1 0.0% 0.0%
1.3 2.4% 0.0%
1.5 6.3% 0.0%
1.55 7.2% 0.0%
1.6 8.0% 0.0%
1.7 9.5% 0.0%
2 14.0% 3.8%

2.25 17.8% 0.0%

2.5 22.4% 2.1%

Node

…

Routing table

MPLS table

Topology

Destination 1 Destination 2

Input
Thread

Destination n

Socket
Event Reactor

bi-directional link, data and control queue
process shared data data

thread

Shared data

control

… Statistics Worker 1 Worker m

Input
queue

Synchronous
Service
Layer

Queuing
Layer

Asynchronous
Service

…

Monitor Scoped Lock

…

Figure 3. Structure of the new Node process

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 422

5. CONCLUSIONS

This paper analyzed and reengineered a network traffic
engineering system. We recovered its high level architecture
and then restructured part of it using concurrent and networked
design patterns. The design patterns adopted in the restructured
cgNet included Half-Sync/Half-Async pattern, Monitor Object
pattern, and Scoped Locking idiom.

With the pattern-oriented restructuring, we achieved the
following benefits:

• Support of QoS. Packets can be inserted into
different sub-queues for processing according to their
QoS priorities. The numbers of sub-queues and
worker threads are also configurable for different
requirements.

• Performance improvement. In the original cgNet,
packets/commands processing, including MPLS path
setup/change/reroute/delete/policing, routing lookup,
command executing, happened in a single thread
which caused a bottleneck for the performance.
Multi-threaded packets/commands processing of the
restructured cgNet improves the performance
considerably.

• Better code. The restructured code with well-known
design patterns has better structure and common
vocabularies. This will also support future evolution.

The concept of some other design patterns is also used in the
system. For example, Reactor pattern, Accept-Connector
pattern, and Active pattern. We are also planning to further
refactor the system with some of those design patterns to make
the code better.

6. REFERENCES

[1] R. S. Arnold and S. A. Bohner, Software Change Impact

Analysis, IEEE Computer Society Press 1996.

[2] B. Davie and Y. Rekhter, MPLS Technology and
Applications, Morgan Kaufmann Publishers, 2000.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,
Refactoring: Improving the Design of Existing Code ,
Addison-Wesley, 1999.

[4] C.-H. Lung, A. Jalnurpukar, and A. El-Rayess,
"Performance-Oriented Software Architecture Analysis",
Proc. of the International Workshop on Software
Performance Engineering (WOSP), 1998, pp. 191-196.

[5] C.-H. Lung and K. Kalaichelvan, "A Quantitative
Approach to Software Architecture Sensitivity Analysis",
International Journal of Software Engineering and
Knowledge Engineering, vol. 10, no. 1, Feb 2000, pp.
97-114.

[6] C.-H. Lung, “Agile Software Architecture Recovery
through Existing Solutions and Design Patterns”, Proc. of
6th IASTED International Conf. on Software
Engineering and Applications (SEA), Nov. 2002, pp.
539-545.

[7] P.E. McKenney, “Selecting locking primitives for parallel
programming”, Communications of the ACM, vol. 39,
no. 10, Oct. 1996, pp. 75-82.

[8] L. Rising and D.G. Firesmith (editors), Design Patterns

in Communication Software, Cambridge University
Press, 2001.

[9] D. Schmidt, M. Stal, H . Rohnert , and F. Buschmann,

Pattern-Oriented Software Architecture, Volume 2,
Patterns for Concurrent and Networked Objects, John
Wiley and Sons, 2000.

[10] C. U. Smith, Performance Engineering of Software

System, Reading, MA, Addison-Wesley, 1990.

ACKNOWLEDGEMENTS

We are thankful for Nortel Networks for granting us permission
to use cgNet for research and education. We are particularly
grateful for cgNet and ONC designers: Gord McLennan, Chris
Hobbs, Geroge Young, Michel Dallaire, Gwenda Lindhost-Ko,
and Anthony Van Alphen.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 23

