
An Ad Hoc Adaptive Hashing Technique for Non-Uniformly Distributed IP
Address Lookup in Computer Networks

Christopher Martinez
Department of Electrical and Computer Engineering

The University of Texas at San Antonio
San Antonio, TX 78249-0669, USA

and

Wei-Ming Lin
Department of Electrical and Computer Engineering

The University of Texas at San Antonio
San Antonio, TX 78249-0669, USA

ABSTRACT

Hashing algorithms have been widely adopted for fast ad-
dress look-up, which involves a search through a database
to find a record associated with a given key. Hashing algo-
rithms transforms a key into a hash value hoping that the
hashing renders the database a uniform distribution with
respect to the hash value. The closer to uniform hash
values, the less search time required for a query. When
the database is key-wise uniformly distributed, any regu-
lar hashing algorithm (bit-extraction, bit-group XOR, etc.)
leads to a statistically perfect uniform hash distribution.
When the database has keys with a non-uniform distribu-
tion, performance of regular hashing algorithms becomes
far from desirable. This paper aims at designing a hashing
algorithm to achieve the highest probability in leading to
a uniformly distributed hash result from non-uniform dis-
tributed database. An analytical pre-process on the orig-
inal database is performed to extract critical information
that significantly benefits the design of a better hashing al-
gorithm. This process includes sorting the bits of the key
to prioritize the use of them in the hashing sequence. Such
an ad hoc hash design is critical to adapting to all real-time
situations when there exists a changing database with an
irregular non-uniform distribution.

Keywords: Hashing, Computer Networks, Address
Lookup, Packet Matching, Internet, Intrusion Detection,
Network Security

1. INTRODUCTION

The computer and communication networks commu-
nity has seen extensive advancement in its research and
commercial fields in the past few decades. To fur-
ther increase the speed of networks takes more than just
physical advances in transmission speed through a given

medium. One hindrance that all network components, such
as routers, firewalls, intrusion detection, and others, have
faced and suffered from it more as the network size grows
is from the required search and lookup process through a
large address space. Fast address lookup or identification
matching has become critical to the feasibility of many
modern applications. In a general form, this problem in-
volves a search process through a large database to find a
record (or records) associated with a given key. One mod-
ern example is in that the routers in wide-area networks
have to look through a large database, a routing table, for a
forwarding link that matches the given destination address.
Another example that calls for imminent attention these
days is in the area of internet security, in which intrusion
detection demands rapid evaluation of client requests. In
this, rules are established to allow the intrusion detection
system to check for wrong-doing. Usually, packet headers
need to be matched quickly in real time with rule database.
Such a matching process usually is carried out through a
hashing process to reduce the otherwise potentially exces-
sively long search time.

There have been many schemes developed for IP ad-
dress lookup problem using a hash function. A complete
survey and complexity analysis on IP address lookup algo-
rithms has been provided in [12]. A performance compari-
son of traditional XOR folding, bit extraction, CRC-based
hash functions is given in [4]. Although most of the regu-
lar hash functions, such as the simple XOR folding and bit
extraction, are relatively inexpensive to implement in soft-
ware and hardware, their performance tends to be far from
desirable. CRC-based hash functions are proved to be ex-
cellent means but are more complex to compute and im-
plement. Some schemes are hardware based that achieve
an improvement in IP look up by maintaining a subset of
routing table in a faster cache memory [7,9], while oth-
ers are software based which improve their search per-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 11ISSN: 1690-4524

formance mainly through efficient data structures [10,13].
Waldvogel et al. [14] proposed an address look up scheme
based on a binary search of hash table, requiring an ex-
tra update process in a look up table. Other hashing algo-
rithms have also been widely adopted to provide for the ad-
dress look-up process [2,3,11,16]. All hashing algorithms
inevitably suffer from unpredictable complexities involv-
ing conflicts among the data with the same hash result. A
search for matching a given query could end up with a se-
quential search through the number of maximal conflicts
in the database. This may result in a long search process
time that exceeds the time limitation imposed by design
specifications.

When records in the database are key-wise uniformly
distributed, any regular hashing algorithm would easily
lead to the same probabilistically expected optimal perfor-
mance in terms of search time required. On the other hand,
if these records are instead not uniformly distributed, then
even different regular hash functions would lead to differ-
ent expected performance. This paper is aimed at the es-
tablishment of a methodology following which a hashing
algorithm can be designed to achieve the highest probabil-
ity in leading to a uniformly distributed hash result from
a non-uniform database. An analytical pre-process on the
original database is first performed to extract critical in-
formation that would significantly benefit the design of a
better hashing algorithm. This process includes sorting
on the bits of the key to prioritize the use of them in the
XOR hashing sequence, or a simple bit extraction, or even
a combination of both. Significant improvement from our
simulation results has been obtained on randomly gener-
ated data set as well as real data set.

Hashing for Address Look-up

000
001
010
011
100

101

111
110

H

H

H

xxx

hash cells
subtables

: rule

: hashing operatorH

Rule Set

Figure 1: A Hashing Example

Basically, hashing is a process that allows the search to
go through a statistically smaller number of steps than a
simple sequential straightforward search would have per-
formed. A hash function, usually a mathematical one,
maps a number with a large value range into another num-
ber with a smaller range. For example, a simplified one

as shown in Figure 1, a database of eight given records
are to be matched against for any incoming record. Due
to the large size of each record and potentially large num-
ber of records in the database under real situations, search-
ing through the whole database one at a time could be
merely impractical. One may choose to use a portion of
the record (or its entirety), as a key, to hash into the target
value (a three-bit value as shown in this example) using the
hash function (operator) H . Therefore, a database of eight
records are now grouped into bins of records according to
their corresponding hash results. With this, any incom-
ing record would go through the same hashing to iden-
tify the one bin it would need to search through, instead
of the whole database. Perfect hashing would guarantee
that every bin contains exactly one record, which leads to
a search process of exactly one matching to take place. A
hash function is considered better than the other if it leads
to a smaller expected number of matching steps required.
Note that, if the records in the database follow a uniform
distribution with respect to value of the key, any regular
hash function, e.g. non-overlapped XOR, bit extraction,
etc., would simply lead to a uniform distribution of these
records onto the bins. That is, it should always lead to best
expected performance probabilistically in search time re-
quired. The goal of this paper is to develop a universal
hashing methodology applicable to all non-uniformly dis-
tributed data sets.

2. AN HOC ADAPTIVE HASHING FOR DATA SETS
WITH AN ARBITRARY pdf

One problem that may arise in the lifetime of the
database is that, as the number of entries grows and/or the
entries are constantly updated, the original hashing algo-
rithm previously designed may become obsolete and leads
to a large amount of collisions. To deal with such a situa-
tion when there exists a changing database with an irreg-
ular non-uniform pdf, it would be preferable to develop a
hashing algorithm based on an ad hoc design that can adapt
to the expanding or changing database.

To base a hashing algorithm on an ad hoc design, a pa-
rameter must be used to instruct the algorithm to adapt over
time. The database is defined as consisting of M = 2m

entries with each entry having n bits in length. In order
to render the best (uniform) distribution in the final hashed
data set, all the bits in the final hashing function H should
demonstrate a distribution as probabilistically random as
possible, i.e. evenly distributed between 0’s and 1’s. An
optimal H will have each of its bits demonstrate even dis-
tribution of 0’s and 1’s, and thus leading to the highest
probability in reaching the best hashing. The ad hoc pa-
rameter used for adaptation in this paper is identified to be
the binary distribution of each bit in the n-bit entry key
length. For bit position i, di is defined as the absolute dif-
ference between the number of 0’s and 1’s in that bit vector
across the data set. Once the d value is found for each bit
vector as shown in Figure 2(a), they are then sorted into a

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 112 ISSN: 1690-4524

non-decreasing order as shown in Figure 2(b). Note that,

VBit Vector 5

1 0 1 0 1 0 1 0
DB Entry

#0

5 4 3 2 1 067

0 10 0 0 1 1 1#1
0 1 1 00 1 0 0#2
0 0 1 0 1 0 1#3
0 0 1 0 0 1 0 1#4
1 0 1 1 0 1 0 1#5
0 1 0 1 1 1 0 0#6
0 1 0 0 0 1 11#7

Bit Position

0

= 4 2 6 4 4 4 2 2d 2

1

1

1
0
0
0
0
0
1

0

2

1
1
1
1
1
1
0

4

1

3

0
0
0
0
0
1
0

4

0

4

0
0
0
0
1
1
0

4

1

7

0
0
0
0
1
0
0

4

0

0

1
0
1
1
1
0
1

2

1

5

1
1
1
1
1
0
1

6

0

6

0
1
0
0
0
1
1

2

DB Entry
#0
#1
#2
#3
#4
#5
#6
#7

Bit Position

=d

(a) (b)

Figure 2: (a) Database with d Values Found (b) Database
Sorted By d

while sorting is performed on the d values, no actual re-
arrangement of the database is needed; instead, an array of
the sorted bit indices is used as the hash function. Assume
the bit sequence before sorting is (bn−1, bn−2, . . . , b1) and
the bit sequence afterwards is (sn−1, sn−2, . . . , s0). A bit
vector Vi with di = 0 indicate that there are even number
of 0’s and 1’s; while, a d = M reflects that all the bits in
the vector have the same value. Translated to the distri-
bution from hashing, a bit of d = 0 gives an even hash-
ing distribution (i.e. evenly divided) among the entire hash
space while a d = M hashing will result in hashing to only
one half of the hash space. Intuitively, using the bits with
smaller d values for hashing would lead to a probabilisti-
cally better hash distribution, i.e. less conflict in the final
mapping. Ideally, if one can identify (or through XOR-
ing to obtain) m bits with all their d values equal to 0, it
should lead to the best potential performance, assuming no
correlation among the bit vectors.

Simulation Setup
Our simulation is devoted to finding the proposed tech-

nique on several practical performance indicators. A sys-
tem is assumed to have a database of 2m entries each of
which contains a key of n bits to be used for hashing
into m bits, and thus each such entry is then mapped to
a location in a memory of 2m locations (hashed bins) for
matching. Three different performance measurements (in-
dicators) are used to compare different hashing functions:
(1) Number of Empty Bins (NEB), (2) the Average maxi-
mum Search Length (ASL), and (3) the Maximum Search
Length (MSL). An illustrating example of these indicators
is given in Figure 3 showing the number of rules mapped
(hashed) onto each of the bins. NEB tells how many lo-
cations in memory that no rule is mapped into. ASL is
the average maximum number of matching steps needed
for any given record to match. MSL denotes the largest
number of rules that are mapped into any location in the
memory. For all of the performance measurements, the
smaller the value the better the performance is. The opti-
mal performance value will be 1 for both ASL and MSL,
and 0 for NEB, which all indicate that the keys have been
evenly distributed among the memory locations. Data sets

2
1

1
1

0

1
3

0

Hashed Bins

Maximum Searech Length (MSL) = 3

Average Maximum Search Length (ASL) = 2+1+3+1+1+1
6

Number of Empty Bins (NEM) = 2

Figure 3: Three Performance Indicators

are generated either randomly or from the real IP addresses
collected.

Sorting-Based Bit Extraction Hashing
Bit extraction is a commonly adopted hashing process

for its simplicity. Immediate benefit from the sorting pro-
cess is, when employing simple bit extraction for hashing,
significant performance gain can be easily achieved com-
pared to the regular (random) bit extraction process. After
the sorting, the first m bits which have the m smallest d
values become obvious candidates for bit extraction. That
is, the final hash keys are (sn−1, sn−2, . . . , sn−m). From
probabilistic point of view, bit extraction using these m
bits would lead to the best expected performance among
all bit extraction hashing choices. Figure 4 gives the per-
formance comparison between the proposed bit extraction
hashing and the random bit extraction approach (i.e. using
the first m bits before sorting), when n = 32 and m is set
to various values. Two data sets are used for simulation,

0

20

40

60

80

100

4 5 6 7 8 9 10 11

m

p
er

fo
rm

an
ce

 g
ai

n
 (

%
)

NEB
MSL

0

20

40

60

80

100

8 9 10 11
m

p
er

fo
rm

an
ce

 g
ai

n
 (

%
)

NEB

MSL

(a) (b)

Figure 4: Performance Improvement from Bit-Extraction
Hashing on (a) Random Data Set (b) Real IP Data Set

one being a data set randomly generated (in (a)) such that
the d value for each bit position is uniformly distributed,
and the other being the real network traffic subnet ID data
set (in (b)). This shows that a very significant improve-
ment margin is obtained by using this simple bit-extraction
approach. A close-to-50% reduction in MSL is achieved,
thus drastically reducing the search time required by al-
most one half.

Hybrid XOR Hashing
XOR operator has been widely used for hashing and

known to be an excellent operator in enhancing random-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 13ISSN: 1690-4524

ness in distribution. It also possesses a nice characteristic
allowing for analytical performance analysis and thus bet-
ter algorithm design. XOR-folding is a commonly used
hashing technique by simply folding the n-bit key into m-
bit hash result through a simple process XORing every n

m
key bits into a final hash bit. In some cases, simple extrac-
tion may outperform XOR hashing, while in other cases
outcome goes the opposite. A combination of both would
very likely outperform both if the information from the
sorted sequence is properly analyzed and utilized. All-key
hashing techniques, i.e. all the bits in the key are used in
XORing as in all known XORing hashing techniques, have
the benefit in its simplicity, thus easy to implement; how-
ever, they tend to over-generalize the data set without fully
exploiting the d values from the sorted result. To precisely
quantify the benefit in using two bits for XORing with their
d values being di and dj , a formula can be derived to find
the expected resultant d for the new bit after XORing, de-
noted as d[di⊕dj]:

d[di⊕dj] =
∑xj

k=0 |M − 2∆ − 4k| · C
xi
xj−k

·CM−xi
k

CM
xj

where xi = M−di

2 , xj = M−dj

2 , ∆ = xi − xj

(1)

Note that the term Cxi

xj−k ·CM−xi

k /CM
xj

indicates the prob-
ability for the resultant vector to have a d value equal to
|M − 2∆ − 4k|. In order not to degrade the hash perfor-
mance, every intended XOR operation to be taken between
two bits si and sj after sorting, with di ≤ dj , should lead
to a d[di⊕dj] value such that

d[di⊕dj] < di

assuming no correlation exists in between bit vectors V i

and Vj ; otherwise, simply retaining (extracting) the bit
si for hashing would yield better performance than using
XORing of the two bits si and sj .

A complete spectrum of d[di⊕dj] for all possible inte-
gral values of di and dj for M = 32 is given in Figure 5.
Figure 6 displays, for each di, the cutoff dj (≥ di) value
that would lead to d[di⊕dj] < di, i.e., the smallest dj that
can still be a candidate to be XORed with di for better per-
formance. For example, when M = 64, a d = 0 will
never achieve any more improvement when XORing with
any d value, i.e. its cutoff is dj = 64. On the other hand,
a d = 6, with its cutoff equal to dj = 36, is allowed to
XORed with a bit with its d value at least equal 36. Note
that, for hashing a database, multiple bits (i.e. more than
two bits) can be XORed together. That is, when more than
two bits are to be XORed, their final d value would require
some additional process. It can be shown that the process
in determining the d value among three bits is a process
with the property of associativity, that is,

d[d[di⊕dj]⊕dk] = d[di⊕d[dj⊕dk]] (2)

Note that, d[di⊕dj] (or d[dj⊕dk]) may not be an integer any-
more, thus the formula in Equation 1 is no longer applica-
ble. We have chosen a simple “interpolation/extrapolation”

0 4 8

12 16 20 24 28 32

0

10

20
30

0

5

10

15

20

25

30

35

d
[d

i

 d
j]

d i

d j

30-35
25-30
20-25
15-20
10-15
5-10
0-5

Figure 5: Spectrum of d[di⊕dj] Values

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24

d i

C
u

to
ff

 d
j

V
al

u
e

M=16
M=32
M=64
M=128
M=256
M=512
M=1024

Figure 6: Cutoff Points for Each Integral d i for Different
M

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 114 ISSN: 1690-4524

approach to approximate the result when non-integral d
values are involved when using the formula in Equation 2.

After the bit vectors are sorted with their d values, our
proposed hybrid hashing technique is to adopt a folding
hash approach in finding suitable candidate bits to XOR.
During each folding cycle, at most m more bits from the
right end of the sorted bit sequence are XORed with the
current m-bit intermediate hash result with their current
d values denoted as (Dm−1, Dm−2, . . . D0). Initial hash
result is simply an extraction of the first m bits of the sorted
sequence, thus,

(Dm−1, Dm−2, . . .D0) = (dn−1, dn−2, . . . , dn−m)

Groups of bits hashed so far are
recorded as (Gm−1, Gm−2, . . . , G0), and it is initialized
to the first m bits:

(Gm−1, Gm−2, . . . , G0) = ({sn−1}, {sn−2}, . . . , {sn−m})

Essentially, in each folding cycle, each intermediate hash-
ing bit-group result with an intermediate d value equal
to Di, starting with the one with the smallest d value,
is XORed with the rightmost bit sj with a d value of
dsj if d[Di⊕dsj

] < Di; otherwise it has reached its cut-
off point. Folding continues until no more bits are left
for XORing. Once cutoff point is reached for an in-
termediate hash bit, it is automatically excluded for fur-
ther XORing in subsequence folding cycles since the se-
quence is already a sorted one. The complete algorithm
is shown in Figure 7. For example, given a database
with 16 entries with each entry 12 bits long, the database
key will be hashed into four bits. An example is given
in Figure 8. In this example, the d values for the bit
vectors are {2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 10, 14} after sort-
ing. Initial hash result is simply (D3, D2, D1, D0) =
(2, 2, 4, 4) and the bit-grouping is (G3, G2, G1, G0) =
({s11}, {s10}, {s9}, {s8}). In the first folding cycle, bit
s0 is XORed with bit s11 since d2⊕14 = 1.75 < 2, while
for bit s10, the next candidate, bit s1 has a d value of
10 already passing the cutoff point of ds10 = 2. Bits s9

and s8 subsequently take their corresponding XOR can-
didates, bit s1 and s2, to wrap up the first folding cy-
cle with (D3, D2, D1, D0) = (1.75, 2, 3.36, 3.36) and
(G3, G2, G1, G0) = ({s11, s0}, {s10}, {s9, s1}, {s8, s2}).
In the second folding cycle, D3 runs into its cutoff from
ds3 = 8, and therefore bit s3 is XORed with D1 and bit
s4 is XORed with D0, ended with (D3, D2, D1, D0) =
(1.75, 2, 2.99, 2.99) and (G3, G2, G1, G0) =
({s11, s0}, {s10}, {s9, s1, s3}, {s8, s2, s4}). In the third
folding cycle, all D’s have their cutoff met and thus end-
ing the process. Note that, this greedy algorithm requires
a very economic pre-processing time complexity of O(n)
in terms of the number of bits to visit, while an optimal
algorithm using an exhaustive search would require a time
complexity of O((2n)m) by allowing all the n bits to po-
tentially contribute to each of the m hash bits.

0j

i m−1

j = j+1; i = i −1

j < n−m ?

i < 0 ?

end

sn−1 ,{ }

?iD<

Y

N

Y

Y

N

N

re
st

ar
t

a
fo

ld
in

g
cy

cl
e

cutoff

(... G0Gm−2,Gm−1,)(
... d n−md n−2 ,d n−1 ,()... D0Dm−2,m−1,)(D

Di

sn−2 ,{ } ... sn−m{ })

Gi Gi { }js

d[]Di dsj

d[]Di dsj

Figure 7: The Algorithm to Determine a Hybrid XOR
Hashing Function

2.992.99

: XOR

: cutoff 1.75 2 3.36 3.36

1.75 2

= 2 2 4 6 8d 4 6 8 10 10 14
Bit Position

8
11s 10s 9s 8s 7s 6s 5s 4s 3s 2s 1s 0s

Figure 8: An Example of the Hybrid XOR Process

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 15ISSN: 1690-4524

Figure 9 shows the performance improvement from us-
ing the proposed Hybrid XOR approach over the straight-
forward all-key XOR on random data set, and Figure 10(a)
shows the performance improvement on a real IP data set.
Figure 10(b) gives breakdowns of MSL improvement on

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10

m

p
er

fo
rm

an
ce

 g
ai

n
 (

%
)

n=32
n=40
n=48

(a)

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10

m

p
er

fo
rm

an
ce

 g
ai

n
 (

%
)

n=32
n=40
n=48

(b)

Figure 9: Performance Improvement in (a) MSL and (b)
ASL with Hybrid XOR on Random Data Set

three different types of IP addresses. Very respectable
gains are reached in both results. Performance improve-
ment is very significant when m is small, that is, when
more folding is allowed. When m becomes larger, the pro-
posed ad hoc algorithm gradually loses its advantage until
m passes a threshold value. This is most likely due to the
fact that, on MSL, the original XOR-folding approach is
incapable of limit the search length (the maximal number
of data mapped to the same bin) as well as the proposed
technique when m is increased. From (b), type-A IP ad-
dresses lead to more improvement with the proposed tech-
nique than the other two types. This could be due to the
scenario that more subnet addresses in this type are more
aggregated (i.e. imbalanced) than the other two types,

3. CONCLUSION

The wide applicability of the proposed methodology is
clearly demonstrated by our preliminary application re-
sults. General applications include: (1) IP Address Lookup
(2) Intrusion Detection Systems (3) General Database
Query (4) String Matching. The success of this develop-
ment will benefit many more application engineers, scien-
tists and system designers/analysts. There are still many
potential extensions along this line of research, including:

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10

m

p
er

fo
rm

an
ce

 g
ai

n
 (

%
)

MSL
ASL

(a)

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10

m

p
er

fo
rm

an
ce

 g
ai

n
 (

%
) Type-A

Type-B

Type-C

(b)

Figure 10: Simulation Results of Improvement Using Real
Work Loads with n = 32: (a) Aggregate Results (b)
Breakdown on Types

• Precise calculation of d values: we plan to extend our
analytical work to find an even more reliable approxi-
mation of the d value calculation when the composing
d values are not integers.

• Effect of d values and their combinations on perfor-
mance: Exact effect on performance from a hashing
with a group of final d values still remains unsolved.
For example, for m = 2 (or even larger m), between
two final hashing results, (D1, D0) and (D′

1, D
′
0), if

D1 < D′
1 but D0 > D′

0, how to determine on the
better one requires more a complex analysis and the
analysis becomes harder when m becomes larger. A
thorough understanding of this is critical to the find-
ing of the best hashing function.

• Correlation among bit vectors: when there exists cor-
relation among bit vectors as most real data sets ex-
hibit, the best hashing produced by relying solely on
the d values may turn out to be far from the best.
How to come up with a standard and reliable cal-
ibration mechanism to quantify the correlation be-
tween the two bit vectors (cij) and derive a function
F (cij , di, dj) to decide whether or not the intended
XOR is beneficial.

• Effect of bit re-using: Once bit(s) are re-used, corre-
lation between bit positions sharing the bit(s) arises.
How to decide on whether the ensuing correlation is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 116 ISSN: 1690-4524

too big an investment to compensate from the gain
through using the misleadingly smaller d values re-
mains a challenge for this project.

4. REFERENCES

[1] Ole Amble and Donald E. Knuth, “Ordered Hash Ta-
bles. Chapter 7 in D.E.Knuth Selected Papers on
Analysis of Algorithms,” CSLI Stanford CA,, 2000.

[2] A. Broder and M. Mitzenmacher, “Using Multiple
Hash Functions to Improve IP Lookups”, IEEE IN-
FOCOM, 2001.

[3] Sang-Hun Chung, J. Sungkee, Hyunsoo Yoon, Jung-
Wan Cho, “A Fast and Updatable IP Address Lookup
Scheme”, International Conference on Computer
Networks and Mobile Computing, 2001.

[4] Raj Jain, “A Comparison of Hashing Schemes for Ad-
dress Lookup in Computer Networks,” IEEE Trans-
actions on Communications,, Vol. 40, No. 10, Oct
1992.

[5] Donald E. Knuth, “The Art of Computer Program-
ming,” Vol 3: Sorting and Searching. 2nd Ed.,
Addison-Wesley, Reading MA, 1998.

[6] Christopher Martinez, Wei-Ming Lin and Parimal
Patel, “Optimal XOR Hashing for A Linearly Dis-
tributed Address Lookup in Computer Networks”,
Symposium on Architectures for Networking and
Communications Systems, Oct., 2005, Princeton,
New Jersey

[7] Andreas Moestedt, Peter Sjodin, “IP Address Lookup
in Hardware for High-speed Routing”, Proc. IEEE
Hot Interconnects 6 symposium, Stanford, California,
pp.31-39, August 1998.

[8] P. Newman, G. Minshall, T. Lyon, and L. Hutson, “IP
Switching and Gigabit Routers,” IEEE Communica-
tions Magazine, January 1997, p.64-p.69.

[9] Xiaojun Nie, David J. Wilson, Jerome Cornet, Gerard
Damm, Yiqiang Zhoa, “P Address Lookup Using A
dynamic Hash Functio”, IEEE Electrical and Com-
puter Engineering, Canadian Conference, Page(s)
1646 - 1651, May 1-4, 2005.

[10] Stefan Nilsson and Gunnar Karlsson, “IP Address
Lookup Using LC-Tries”, IEEE Journal on Selected
Areas in Communications, pp. 1083-1092, June 1999.

[11] D. Pao, C. Liu, L. Yeung and K.S. Chan, “Efficient
Hardware Architecture for Fast IP Address Lookup”,
IEEE INFOCOM, 2002.

[12] M.A. Ruiz-Sanchez, E.W. Biersack, and W. Dab-
bous, “Survey and Taxonomy of IP Address
Lookup Algorithms”, IEEE Network, Vol.15, pp.8-
23, Mar./Apr.2001.

[13] V. Srinivasan and G. Varghese, “Faster Ip Lookups
Using Controlled Prefix Expansion”, Proceedings of
SIGMETRICS 98, pp. 1-10, Madison, 1998.

[14] M. Waldvogel, G. Varghese, J. Turner and B. Plattner,
“Scalable High Speed Ip Routing Lookups”, in Proc.
ACM SIGCOMM’97, pp. 25-35, Sept. 1999.

[15] G.B. White and M.I. Huson, “A Peer-based Hardware
Protocol for Intrusion Detection Systems”, Military
Communications Conference (MILCOM) 1996.

[16] P.A. Yilmaz, A. Belenkiy, N. Uzun, N. Gogate and
M. Toy, “A Trie-based Algorithm for IP Lookup
Problem”, Global Telecommunications Conference
(GLOBECOM) 2000.

[17] Daxiao Yu, Brandon Smith, and Belle Wei, “Forward-
ing Engine for Fast Routing Lookups and Updates,”
Global Telecommunications Conference,, Globecom
’99, p.1556-p.1564.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 17ISSN: 1690-4524

	P589975

