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ABSTRACT 

 
This paper is concerned with two methods, one based on 
eigenvalue analysis, and the other, a modified version of 
singular value decomposition (SVD) called pseudo-SVD, for 
detecting outliers in high-dimensional data sets.  The 
eigenvalue analysis approach examines the spatial relationship 
among the column vectors of object-attribute matrix to obtain 
an insight into the degree of inconsistency in a cluster of data. 
The pseudo-SVD method, in which the singular values are 
allowed to have a sign, looks at the direction of vectors in the 
object-attribute matrix and based on the degree of their 
orthogonality detects the outliers. The pseudo-SVD algorithm is 
formulated as an optimisation problem for clustering the data 
on the basis of their angular inclination. The methods have been 
applied to two case studies: one pertaining to a dermatological 
dataset and the other related to an engineering problem of state 
estimation. Further research directions are also discussed. 
 
Keywords: Eigenfunction, Pseudo-SVD, Spatial, Orthogonal, 
Data Mining, Optimisation. 
 
 

1. BACKGROUND 
 
Outlier detection is an important data-mining aspect that aims 
to find exceptional behaviours of certain objects or data from 
the bulk of the source data. Outliers in the data arise from either 
recording errors, known as statistical bad data, or from noisy 
data of various kinds. Extracting these behaviours poses 
extraordinary attention when revealed. Therefore, detecting 
outliers may be as significant as discovering general patterns. 
Outlier detection [3] is used in various applications such as 
credit card fraud detection, customer and market segmentation, 
computer intrusion, discovering criminal behaviours, detection 
of bad-data and outliers from SCADA (supervisory control and 
data acquisition) database used in large distribution systems 
like Power and Water [8, 9].  
 
The problem of mining outliers from large data sets lies in 
computational costs. For instance, the singular value 
decomposition (SVD) algorithm has been used in data mining 
for extracting clusters in high dimensional data sets [2]. Several 
outlier mechanisms are categorised as distance-based, depth-
based, distribution-based, clustering-based and density-based 
[6]. Our method can be considered as clustering-based (in this 
case the metric is angular-based), as objects or vectors of 
similar angular (or spatial) inclination can be grouped together. 
Most algorithms, for example, those presented in [7, 10], which 

define outliers by using full dimensional distances between 
points, suffer from dimensionality and therefore present 
performance costs that ultimately has an impact on the quality 
of the clustered data.  
 
Eigenvalue problems arise in number of applications of 
computational science for biological and engineering systems; 
they are useful mainly for two reasons: firstly because the 
matrices can be transformed in terms of a basis of 
eigenfunctions (thus speeding up the computational solution) 
and secondly because eigenvalues can provide an insight, by 
graphically visualising the values into the behaviour of an 
evolving matrix systems [11]. Brown [1] proposed 
eigenanalysis based method to solve the ‘optimal meter 
placement’ problem (also known as observability analysis), for 
large power distribution systems, by studying the spatial 
orientation of the observability matrix. The eigenvalue analysis 
approach makes use of the well established fact in linear 
algebra that if the coefficients of any pair of equations are 
approximately proportional, we will encounter difficulty 
solving the equations – if there are small measurement errors 
then this will be reflected as large errors in the unknowns. In 
other words, small errors in the measurements will render the 
object-attribute matrix as ill-conditioned. This can be seen in 
terms of analytical geometry as amounting to oblique 
intersection of lines, planes, or hypersurfaces as the case may 
be. Thus, it can be seen that if we have fuzzyness or outliers or 
error of uncertainty in our recording of data or measurements, 
the corresponding error in the output (or solution) is rendered to 
a minimum if the lines, or surfaces intersect are orthogonal; 
conversely, the outliers (or fuzzyness) gets more pronounced 
with the degree of obliqueness of the intersecting angle. In 
higher dimensional matrices, this amounts to spatial 
relationship among the vectors of the object-attribute matrix. 
Orthogonality amongst these vectors corresponds to right-angle 
intersections and leads to minimum fuzzyness/uncertainty or 
outliers in the solution or output. Conversely, if in our high-
dimensional space there exists a vector which is approximately 
normal to all the vectors of the object-attribute matrix, we will 
have the situation of minimum fuzzyness in corresponding 
direction. Thus the analysis of the column vectors of the object-
attribute matrix gives us the information of the degree of 
inconsistency in the high-dimensional datasets. 
 
The pseudo-SVD method was first used by Featherstone et al. 
[3] for identification and control of large-scale chemical plant 
processes. They formulated the SVD method so that singular 
values are allowed to have a sign and thereby they introduced 
the term pseudo-SVD for such decompositions. A similar 
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approach is used in this paper. Having formulated the SVD as a 
pseudo-SVD, we recast the problem as an optimisation problem 
to identify the outliers in the data sets and cluster the data sets 
based on their angular inclination. Our method, therefore, can 
be classified as cluster-based with the metric defined by angular 
inclination. 
 
This paper is organised as follows: in Section 2 we discuss the 
eigenvalue approach for outlier detection. Section 3 describes 
the pseudo-SVD approach which leads to the formulation of an 
optimisation problem. Test datasets pertaining to two different 
case studies have been used, to illustrate the approach, in 
Section 4. Further research directions, for the solution and 
visualisation of the optimisation problem (formulated in 
Section 3), have been outlined in Section 5 along with the 
concluding remarks. 
 

2. EIGENVALUE APPROACH 
 
For the high-dimensional data sets if the m  objects (say, 
denoted by mZ ∈R ) are related to their corresponding n  
attributes (say nX ∈R ), where m n≥ , via the m n×  object-
attribute matrix m nM ×∈R , then we have the following linear 
relationship: 
 
                            Z MX=                                                    (2.1) 
 
In Linear Algebra it is a well known fact that if the coefficients 
of any pair of the above equations are approximately 
proportional, we will encounter difficulty in solving the 
equations because small measurement or data recording errors 
(in Z ) will reflect or show as large errors in the unknowns 
( X ). This becomes clear once we recognise the fact that the 
elements of the column vectors of the object-attribute matrix 
M are respective coefficients of a set of linear equations 
relating the corresponding object vector Z  and attribute 
variable X . With this in mind the entire theory of Linear 
Algebra can be brought to bear on the problem under 
consideration. The rank of the matrix M is considered to be the 
necessary and sufficient condition for the solution of the 
equation (2.1). However, even if the matrix M has maximal (i.e. 
full) rank n , when there are uncertainties or outliers in the data 
matrix M , the object-attribute matrix may become ill 
conditioned and consequently the calculated solution to Eq. 
(2.1) may differ from the ideal or preferred solution to Eq. 
(2.1). In order to understand this further let us look at a simple 
example of the spatial-orientation concept of vectors. 
 
An illustrative example 

Consider a matrix 1

2

1
1

M
α
α
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
whose rank is seen to be 2 

provided we have 1 2α α≠ . It can be clearly seen that 
as 1 2α α→ the column vectors of M become coincident; the 

system thus becomes unstable and unsolvable. A vector
1

1
−⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

which is approximately normal to both the column vectors of 
the matrix M , is clearly the direction of maximum fuzzyness, 
uncertainty or missing information, in this case. It is in the 
direction of this “most orthogonal” vector that attention needs 
to be paid as it contains considerable ‘information’. This 
illustration is shown in figure (2.1) where the sign of the second 

vector is reversed for convenience. Such a geometric 
interpretation becomes cumbersome when we consider higher 
dimensional data matrices. In order to gain understanding of the 
outliers and fuzzyness in the object-attribute matrix M , without 
actually solving the system of equations, we need a tool which 
will provide us with the insight into the intractable problem of 
detecting outliers from the unbridled growth of contaminated 
data. In doing, so we will exploit the fact that the inner-product 
of two orthogonal vectors is zero. 
 
Figure 2.1: An illustration of noisy vectors: orthogonal vector       

gives direction of minimum disturbance. 
 

 
As we are interested in the angles between the column vectors 
of the matrix M , we can normalise the column vectors of the 
object-attribute matrix without affecting our results. Let us 
denote this normalised matrix by nM . Because the inner-
product of two orthogonal vectors is zero, the most orthogonal 
vector can be defined as the vector that minimises the sum of 
the squares of the inner-products between it and each of the 
column vectors of the object-attribute matrix nM . It can be 
shown [4], using simple calculus and the theory of 
simultaneous linear algebraic equations, that the most 
orthogonal vector of the column vectors of the object-attribute 
matrix nM is in fact the eigenvector associated with the smallest 

eigenvalue of the matrix T
n nM M . If all the eigenvalues of this 

matrix are equal then we have an outlier free data set. Below we 
outline the steps involved in this algorithm.  
 
Outlier detection algorithm 
Step 1. Determine the T

n nM M matrix 
Step 2. Find eigevalues and eigenvectors 
Step 3. Identify the eigenvector corresponding to the 

smallest eigenvalue 
Step 4. Use this eigenvector to identify the direction of 

fuzzyness in data.  
 
The most desirable data to be added to the initial measurements 
or data set should be the one which is as close as possible to the 
most orthogonal vector (identified in step 3 above) as it is this 
direction where there is deficiency of data. This amounts to at 
least matching one or more of the highest components of this 
most orthogonal vector. Also, if all the smallest eigenvectors 
are equal then any linear combination of the associated 
eigenvectors is also an eigenvector [4]. Thus, if this situation 
arises, the direction of the most orthogonal vector can be 
computed as the linear combination of the eigenvectors 
corresponding to equal smallest eigenvalues. The steps can be 
performed iteratively unless there is a situation of minimum 
fuzzyness or uncertainty. 
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3. PSEUDO-SINGULAR VALUE DECOMPOSITION 
 
Eigenanalysis approach outlined in the previous section is 
useful if the matrix M  has associated eigenvalue 
decomposition. It is known that even if the eigenvalues do 
exist, an infinitesimal perturbation may in general remove them 
[11]. Singular value decomposition (SVD) makes use of two 
different bases and all matrices (even rectangular ones) have 
singular values. Spectral analysis using SVD has been used for 
visualization of clusters in data-mining [2]. Here we present an 
optimisation problem formulation based on the pseudo-SVD 
[3]; the pseudo-singular values itself will help identify outliers 
and the solution of the resulting optimisation problem will yield 
clustering of data as meaningful granules or confidence bounds. 
The derivation and formulation of the optimisation problem 
presented here is based on the treatment given in [3]. For the 
object-attribute matrix M  in equation (2.1), performing the 
SVD of M  gives: 
                               ˆ ˆTM U V= Λ                                            (3.1) 
Let us define (as in derived in [3]) the diagonal matrix UD  
which has each of its diagonal elements either +1 or -1, with the 
( ),i i th element equal to -1 if the dot product the two bases 

matrices, ˆ ˆ( )i T iV U , is negative (where Û and V̂ are as defined 
in (3.1) and iA is used to denote the i th column vector of 
matrix A ). 
Substituting the diagonal matrix UD  in Eq. (3.1), we get:      

                 ˆ ˆ ˆ ˆ( )( )T T
U UM U V UD D V= Λ = Λ  

                      TU V= Ω                                                          (3.2) 
where UDΩ = Λ is a constant real diagonal matrix whose 
diagonal elements are known as 'pseudo-singular values' (a term 
coined by Featherstone and Braatz in [3]). The pseudo-singular 
values can thus be of any sign (and could also be zero), and are 
defined in such a way that the angle between the corresponding 
column vectors iU  and iV  is not greater than a right angle. 
The RHS of Eq. (3.2) is referred to as the pseudo-singular value 
decomposition (pseudo-SVD or p-SVD) [3]. 
 
Now expressing the RHS of equation (3.2) as a rank one 
decomposition we obtain: 

       
1

( )
n

i i T
ii

i

M U V
=

= Ω∑                                (3.3) 

Since, as a result of SVD, the columns of V form an 
orthonormal basis, the attribute vector, X can be expressed in 
terms of the basis vector as follows: 

                  
1

n
j

j
j

X Vα
=

= ∑                                     (3.4) 

here the real scalar ( )j T
j V Xα =  quantifies the amount of 

movement or inclination of X in the direction of  the 
orthonormal basis vector jV .  
 
Similarly if there is noise (deterministic norm bounded or 
Gaussian white noise), then the effect of noise ε on the output 
can be expressed as:  

                   
1

n
j

j
j

Uε β
=

= ∑    (3.5) 

so now the real scalar ( )j T
j Uβ ε= represents the amount of 

noise in the direction of the orthonormal basis vector jU . 

 
If we consider a system of equations (2.1) perturbed or affected 
by noise (deterministic norm bounded or Gaussian white noise), 
then equation (2.1) can be written as: 
                      Z MX ε= +                                                     (3.6) 
Substituting equations (3.3), (3.4) and (3.5) into equation (3.6) 
yields: 

  
1 1 1

( )
n n n

i i T j j
ii j j

i j j
Z U V V Uα β

= = =

= Ω +∑ ∑ ∑  

                    
1
( )

n
j

jj j j
j

Uα β
=

= Ω +∑                  (3.7) 

(This has been achieved keeping in view that ( )i T j
ijV V δ= , 

V being orthonormal matrix; and
0,  if 
1,  if ij

i j
i j

δ
≠⎧

= ⎨ =⎩
is the 

Kronecker delta). 
 
Let us now consider the projection of Z vector in the direction 
of orthonormal basis vector jU : 
            ( )j T

jj j jU Z α β= Ω +   (3.8) 

From here can interpret that if the vector Z is in the direction of 
jU  such that 0ijΩ =  then we have the situation of noisy data 

with the parameter ( )j T
j U Zβ = quantifying the extent or 

amount of noise in that direction. Similarly, from Eqs. (3.4) and 
(3.8) we infer that for minimum error in the vector Z in the 
direction of jU , X in Eq. (3.4) must be such that the 
parameter /j j jjα β= − Ω  exists. In other words if jjΩ  does not 
have appropriate sign (or direction), then the RHS of Eq. (3.8) 
will be greater than jβ , i.e. the amount of noise. For small or 
minimum ‘signal-to-noise’ ratio, which can be measured by the 
ratio of ( )j TU Z  to jβ , we must have small jjΩ .  In the next 
section we apply the ideas developed and discussed here to two 
application areas: one related to a dermatological dataset and 
the other to an engineering problem of state estimation. 
 

4. APPLICATIONS, RESULTS, AND DISCUSSIONS 
 
Application 1: Dermatological dataset 
The algorithm for eigenfunction analysis has been applied to a 
public domain (real world) dermatology dataset [2] with 358 
instances and 34 attributes. The data records information about 
differential diagnosis of erythemato-squamous disease, a real 
problem in dermatology. The data presents two types of 
investigation, clinical and histopathological, with these 
diseases. All such diseases share clinical features such as 
erythema and scaling with very little differences.   It is known 
that patients at first observation (clinically) may have different 
features of another disease and show characteristic features of 
erythemato-squamous at the following stages. These feature 
variations of the disease are identified as clusters and outliers 
detected. 
The object-attribute matrix thus consists of 33 columns and 358 
rows represented as equation (2.1); where Z is the object and 
M is the coefficient matrix with 33 attributes (column-wise) 
and 358 equations (row-wise). Our problem is to determine an 
eigenvector corresponding to the smallest eigenvalue. This 
most orthogonal eigenvector suggests identification of clusters 
as shown in Figure 4.1; the eigenvector corresponding to the 
smallest eigenvalue points to cluster A; in fact that is the 
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direction of the most orthogonal vector to the column vector of 
the object-attribute matrix. Any additional data to be classified 
as belonging to the cluster A should be as much as possible in 
the direction of this most orthogonal eigenvector. The outliers 
in the figure are shown with B and C.  The pseudo-SVD 
method validates these results as pseudo-SVD found that jjΩ  
does not have appropriate sign, and thus the RHS of Eq. (3.8) is 
greater than jβ , the amount of noise. In this case the signal-to-

noise ratio, which is measured by the ratio of ( )j TU Z  to jβ , 

had large jjΩ values.  
 

Figure 4.1: Eigenvalue vs. eigenvectors: identification of 
clusters (A) and detection of outliers (B, C) 

 
 
 
Application 2: State estimation of distribution systems: 
outlier detection 
In the case of water distribution systems the purpose of a state-
estimator is to provide the best possible information about the 
flows and pressures in a system given all the available data [8]. 
It is capable of producing a validated set of on-line information 
about a particular network. These data can then be used for a 
wide range of purposes, e.g.: security analysis, poor quality 
water tracing, decision support and pump scheduling.  
 
The observability problem in water-system state estimation 
consists essentially in determining whether the measurements 
currently available to the state estimator provide sufficient 
information to allow the computation of the estimates.  Such 
tests are important both as a design tool in meter placement 
studies performed offline and in the online real-time 
implementation of the state estimator. The uncertainty in 
measurement data is transferred through the state estimation 
process where it is compounded by uncertainties in the model. 
The traditional ‘observability test’ based on rank of the 
technology matrix provides a yes/no answer to the question of 
the adequacy of the measurement set [1, 8]. The eigenfunction 
approach reported in this research seeks to add a more realistic 
test that predicts the performance of an estimator before it is 
installed through an analysis of the uncertainties arising from 
the available data. This is achieved through analysis of the 
spatial direction of the M matrix in order to provide an 
informed answer to the observability question ‘if observable, 
how observable?’. Measurements can then be added to the 

direction of measurement deficient direction revealed by the 
eigenvector corresponding to the smallest eigenvalue. The p-
SVD method also provides useful insights into the datasets 
containing missing data, statistically bad data, and noisy data, 
and uncertainties (stochastic or deterministic). The p-SVD 
problem above can be formulated as an optimisation problem to 
provide confidence bounds on the estimated. In the next 
subsection we briefly discuss this optimisation problem 
formulation and for the state estimation problem we report 
results showing confidence bounds.  
 
Pseudo-SVD optimisation problem 
The formulation above in section 3 can be recast as the 
following constraint optimisation problem (also discussed by 
Nagar et al. in [8, 9] - but using a different approach and, 
therefore, different formulation): 

                  
1min  ( ) ( )

subject to: 

T

j j j

Z MX R Z MX
θ α ω

−− −
≤ ≤

                            (3.9) 

where R  is a diagonal m m×  matrix whose elements are the 
measurement weighting factors. The measurement weighting 
factor is taken as the reciprocal of the error variance, 

( )j T
j V Xα = , which, as seen above, is a metric that quantifies 

the orientation or inclination of the attribute vector X such that 
X  lies in a particular cluster or granule (here bounds) of data 

set. The lower jθ  bound and the upper bound jω  could be 
determined either statistically (confidence ellipsoids) or these 
could be probabilistic bounds or alternatively, these could, in 
fact, be defined as fuzzy bounds. These bounds can then be 
tightened iteratively to obtain clusters. In this work we obtain 
ellipsoid-of-confidence bounds which are obtained by 
projecting the ellipsoid along the co-ordinate axes. 
 
The method has been applied to an engineering problem of state 
estimation for a test water distribution network system. A water 
system simulator and a state estimator were designed using 
MATLAB environment; solution of Eq. (3.9) requires interior-
point methods. Before applying the state estimation, the 
eigenfunction based spatial analysis was performed to identify 
observable islands for the test network under consideration [9]. 
Figure 4.2 shows the results of state estimation for the test case. 
As a result of solving the optimisation problem in Eq. (3.9), 
point estimates are found to coincide with the centre of the 
confidence bounds (similar results were observed in [9] using 
an Leaner Fractional Transformation (LFT) based approach 
leading to a Semi-definite programming (SDP) formulation). 
The actual confidence bounds are shown in Figure 4.3.  
 
By observing the bounds on the estimates one can infer the 
quality of the metering configuration for a water distribution 
network (or an observable sub-network known as an island) and 
determine whether the installation of new meters would be 
desirable. Confidence bounds thus help in answering the 
question of observability (if observable, how observable?) and 
in detecting anomalies and outliers in the multi-dimensional 
datasets from the distribution systems. The centre of the 
confidence ellipsoid gives the maximum-likely point state 
estimates. State estimation can also be used to detect anomalies 
or potential problems in the system (or part of the system).   
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Figure 4.2: Point estimates coinciding with the centre of the 
confidence bounds 

 

   
 

Figure 4.3: Confidence bounds for a nodal based state 
estimator 

 

 
5. CONCLUDING REMARKS AND FURTHER WORK 

 
This paper has introduced a novel technique to the problem of 
mining outliers from large datasets by looking at angular 
inclination of vectors, therefore known as cluster-based outlier 
detection using angular metric. Further work will investigate 
the optimisation problem of fuzzy or probabilistic bounds, as 
formulated in equation (3.9). Further implementation of this 
algorithm will consider visualisation of clusters and how 
variations of fuzzy bounds and consequently the angle affects 
the clusters. Implementation of the methodology to datasets 
pertaining to various other application areas, e.g. financial 
datasets, will also be reported elsewhere. Performance measures 
related work will also be investigated and reported later. 
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