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ABSTRACT

The main objective of this article is to develop a non-
standard partial differential equation-based anisotropic diffu-
sion model for efficient edge-preserving denoising for speckle
noised images. The standard total variation (TV)-based en-
ergy functional is not based on the multiplicative-ness of
speckle noise which is inappropriate for a speckle noise re-
moval. Moreover, TV-based models can easily lose fine struc-
tures and produce non-physical dissipation during the noise
removal process. The principal feature in this article is an in-
troduction of a new coefficient for the non-linear diffusion
term of the Euler-Lagrange equation corresponding to the
minimization of the energy functional. Combination of a new
model with a texture-free residual parametrization enables us
to overcome the drawback arising from use of the standard
TV-based model. The numerical results indicate the effec-
tiveness and robustness of the new model.

Keywords: Anisotropic diffusion, speckle noise, fine struc-
tures, denoising, total variation (TV) model, nonphysical dis-
sipation, texture-free residual parametrization.

1. INTRODUCTION

Images in our daily lives occur in many forms such as digi-
tal or analog pictures, scanned documents, satellite pictures,
and scanning electron microscopes (SEM) images. Not only
can images from the visible portion of the electromagnetic
spectrum be detected, but sensors can detect and produce im-
ages from infrared and ultraviolet light, X-rays, γ-rays, mi-
crowaves, and radio waves, as well. Signals other than elec-
tromagnetic radiation can be also imaged [16].

Many of these image applications are produced in the fol-
lowing processing steps: An imaging system, such as an ob-
jective lens or a collimator, converts a three-dimensional real-
world scene to a two-dimensional image, and subsequently a
sensor system, such as a digital camera or a scanner, con-

verts the image into an electrical signal. The image gener-
ated by a picture digitization generally produces errors due
to a mechanical imperfection or physics of picture acquisi-
tion. Especially, the noise inherent in the electronics of the
photo-receptors adds a noise.

Many applications in modern age rely on good quality of
images and therefore, various techniques of image restoration
that improve the quality of images take on a very important
role.

Mathematically based image restoration techniques have
emerged to answer fundamental questions, such as a higher
level of efficiency and reliability, arising in the field of im-
age processing. For the last decade or so, partial differential
equations (PDE)-based models have been developed for var-
ious physical applications in image restoration [1, 2, 4, 8, 12,
13, 14, 15, 17].

Image distortion is usually caused by a space invariant
blur accompanied by an additive Gaussian noise. Thus the
observed (distorted) image f can be represented by the form

f = K ∗ u + n, (1)

where ∗ denotes convolution, n represents the Gaussian noise,
and u is the desired image to find. Here K is a blurring oper-
ator, where the integral over the domain is unity, that is,∫

Ω

K dx = 1, K ≥ 0. (2)

In this article we assume that K = I , the identity operator
since our main concern is to remove noise. A common vari-
ational technique for denoising is to minimize a functional
given as

min
u

Fp(u), Fp(u) =
∫

Ω

|∇u|p dx +
λ

2
‖f − u‖22, (3)

where λ ≥ 0 is a Lagrange multiplier and ‖ · ‖2 denotes the
L2-norm.

The corresponding Euler-Lagrange equation for the min-
imization of energy functional Eq. (3) is

−p∇ ·
( ∇u

|∇u|2−p

)
− λ (f − u) = 0. (4)
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For a dynamic iterative numerical simulation of Eq. (4),
we introduce energy descent direction by an artificial time t
and we obtain the following evolutionary parabolic-type non-
linear equation:

∂u

∂t
−∇ ·

( ∇u

|∇u|2−p

)
=

λ

p
(f − u). (5)

The above equation can be numerically solved iteratively
with no-flux boundary condition and with the given noised
image f as an initial data. Note that when 1 ≤ p ≤ 2, the
model Eq. (5) can easily lose fine structures due to nonphys-
ical dissipation. In order to prevent the denominator |∇u| in
Eq. (5) approaching zero, it must be regularized as

|∇u| ≈ |∇εu| := (u2
x + u2

y + ε2)1/2 (6)

for some ε > 0 small. Such a regularization can be a signifi-
cant source of nonphysical dissipation [9].

When p = 1, the model Eq. (5) becomes the total varia-
tion (TV) model [15]. Notice that |∇u|−1 in the diffusion
term ∇ ·

(
∇u
|∇u|

)
of the TV model is huge on the flat re-

gion and small near edges. Such a different speed of dif-
fusion in different regions is a desirable property for an edge-
preserving noise removal. However, it has been practically
shown that the TV model tends to produce locally constant
images, which is called the staircasing effect. In order to pre-
vent this, Marquina and Osher [12] introduced the improved
TV (ITV) model

∂u

∂t
− |∇u|∇·

( ∇u

|∇u|

)
= λ |∇u| (f − u) (7)

by scaling the TV model by a factor of |∇u|. It has been
however recently analyzed in [3] that ITV model can hardly
reduce nonphysical dissipation.

In order to prevent such nonphysical dissipation, Kim and
Lim have introduced in their recent paper [9] the following
non-convex model:

∂u

∂t
− |∇u|1+ω∇ ·

( ∇u

|∇u|1+ω

)
= β (f − u), ω ∈ (0, 1),

(8)

where β = β(x, t) ≥ 0. It has been numerically verified in
[9] that the stable algorithm associated with the above non-
convex model combined with texture-free residual (TFR) para-
metrization can reduce nonphysical dissipation. The model
is also very effective in simultaneous denoising and edge en-
hancement. However, the model is mathematically unstable
since ω is between 0 and 1.

The above TV-based models are based on the assumption
that the image distortion is based on additive Gaussian noise
(See Eq. (1)). Thus they are not appropriate for images hav-
ing speckle noise since speckle noise is normally multiplica-
tive, not additive. In this article, we develop a mathemati-
cally stable model based on the TV minimization which can
efficiently remove speckle noise while reducing nonphysical
dissipation of the model. The principal technique is based on

the introduction of a new coefficient for the non-linear dif-
fusion term to provide an efficient process of speckle noise
removal.

An outline of the paper is as follows. In the next section,
we develop a new model based on the TV minimization. In
Section 3, we discuss about the numerical procedure for our
new model and briefly review TFR parametrization. Section
4 contains numerical results to show the effectiveness of the
new model. The last section includes conclusions.

2. A NEW ANISOTROPIC DIFFUSION MODEL

The speckle noise which is mostly present in ultrasound im-
ages, synthetic aperture radar (SAR) images, or acoustic im-
ages is often assumed to be multiplicative and experimental
results show that it can be modeled as [10, 11]

f = u +
√

un, (9)

where u is the desired image to find, n is Gaussian noise, and
f denotes the observed image. Then from energy minimiza-
tion of the corresponding functional, the following TV-based
model can be derived:

∂u

∂t
− u2

f + u
|∇u|∇·

( ∇u

|∇u|

)
= λ |∇u| (f − u). (10)

Here note that the coefficient of the diffusion term
|∇u|∇·

(
∇u
|∇u|

)
is u2

f+u and u2

f+u ≈ u/2 assuming that f ≈ u.
Therefore, the model Eq. (10) can be interpreted as a variant
of the ITV model with a constant multiple of u multiplied by
the diffusion term. This coefficient makes the diffusion faster
in the lighter region (where the image values are high) and
slower in the darker region (where the image values are low).
Diffusion is associated with the noise removal. That is, noise
is removed or reduced from the diffusion process due to the
second term in Eq. (10). Thus the model Eq. (10) is unre-
alistic and ineffective in practice since noise can be present
anywhere in the image, not only in the lighter region. For this
reason, we propose the following form of a noise model:

f = u +
(√

u− us

)
n, (11)

where f, u, n are the same as before and us denotes
smoothed version of the noised image f . From the associated
minimization of the functional, we derive a new non-standard
anisotropic diffusion (NSAD) model:

∂u

∂t
−C|u−us|α|∇u|∇·

( ∇u

|∇u|

)
= λ |∇u| (f −u), (12)

where C is a constant which will be numerically found. Since
the values of u and f are scaled to between 0 and 1, we need a
proper constant C. For stability reasons, C can not be chosen
to be too large. From the numerical experiments, the best
choice of α is known to be in between 1/2 and 2. Our new
model Eq. (12) has the following desirable properties:

• On the regions where noise is present, |u − us| is rel-
atively big. Therefore with an appropriate multiple of
the constant C, diffusion (the second term of the model
Eq. (12)) is big enough to reduce the noise efficiently.
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• On the regions where noise is not present, |u − us| is
small. Thus diffusion is relatively slower which can
prevent any nonphysical dissipation due to excessive
diffusion.

In the next section, we discuss a numerical procedure for
our new model. For more efficient edge-preserving noise re-
moval, we adopt TFR parametrization which was developed
in [9] for our new model Eq. (12) and briefly review the pro-
cedure in the second subsection.

3. THE NUMERICAL PROCEDURE

The linearized θ-method
Denote the timestep size by ∆t. Set tn = n∆t and un =
u(·, tn) for n ≥ 0. Then, Eq. (12) can be linearized by eval-
uating the nonlinear parts from the previous time level. Con-
sider the linearized θ-method for Eq. (12) of the form:

un − un−1

∆t
+ (An−1 + βnI) [θun + (1− θ)un−1]

= βn f, 0 ≤ θ ≤ 1, (13)

where An−1 is a spatial approximation of a linearized diffu-
sion operator, i.e.,

An−1um ≈ −C|un−1 − us|α|∇εun−1|∇ ·
( ∇um

|∇εun−1|

)
,

m = n− 1, n.
(14)

Here |∇εu| := (u2
x + u2

y + ε2)1/2 is a regularization of |∇u|
to prevent the denominator from approaching zero. βn is
chosen as

βn := λn|∇εun|. (15)

To improve efficiency of the computation of Eq. (13), we set
An−1 = An−1

1 +An−1
2 , where

An−1
` um ≈ −C|un−1 − us|α|∇εun−1| ∂x`

( ∂x`
um

|∇εun−1|

)
,

` = 1, 2.
(16)

Here (∂x1 , ∂x2)
T is a spatial finite difference approximation

of ∇ which will be constructed later in this section. Using
these separable matrix operatorsAn−1

1 andAn−1
2 in Eq. (16),

the alternating direction implicit (ADI) method [5, 6], which
is a perturbation of Eq. (13) with a splitting error of O(∆t2),
has been employed.

Now, we construct the matrix An−1
1 . Let D un−1

i−1/2,j be
a finite difference approximation of |∇un−1| evaluated at
xi−1/2,j , the mid point of xi−1,j and xi,j . Define

dn−1
ij,W = [(D un−1

i−1/2,j)
2 + ε2]1/2, dn−1

ij,E = dn−1
i+1,j,W . (17)

Then the differential operators in Eq. (16) can be approxi-

mated as

−∂x1

( ∂x1u
m

|∇εun−1|

)
≈ − 1

dn−1
ij,W

um
i−1,j

+
( 1

dn−1
ij,W

+
1

dn−1
ij,E

)
um

i,j

− 1
dn−1

ij,E

um
i+1,j ,

|∇εun−1| ≈ 2
dn−1

ij,W · dn−1
ij,E

dn−1
ij,W + dn−1

ij,E

. (18)

By combining the right sides of equations in Eq. (18), we can
obtain the three consecutive non-zero elements of the matrix
An−1

1 corresponding to the pixel xij :

[An−1
1 ]ij = C|un−1

ij − us,ij |α(−an−1
ij,W , 2, −an−1

ij,E ), (19)

where

an−1
ij,W =

2 dn−1
ij,E

dn−1
ij,W + dn−1

ij,E

, an−1
ij,E =

2 dn−1
ij,W

dn−1
ij,W + dn−1

ij,E

. (20)

Similarly, An−1
2 corresponding to the pixel xij can be ob-

tained:

[An−1
2 ]ij = C|un−1

ij − us,ij |α(−an−1
ij,S , 2, −an−1

ij,N ), (21)

where

an−1
ij,S =

2 dn−1
ij,N

dn−1
ij,S + dn−1

ij,N

, an−1
ij,N =

2 dn−1
ij,S

dn−1
ij,S + dn−1

ij,N

. (22)

Combining these approximations with the same ADI proce-
dure in [9, §3.2], our linearized θ-method Eq. (13) satisfies
the following stability theorem.

Theorem 3.1. Define β0 = min
i,j,n

βn
ij and β1 = max

i,j,n
βn

ij .

Denote b∗ := C max
i,j,n

|un−1
ij − us,ij |α. Let

(4b∗ + β1) (1− θ)∆t ≤ 1. (23)

Then the θ-method Eq. (13) associated with the numerical
scheme in Eqs. (17)-(22) is stable and holds the maximum
principle.

Proof. It is sufficient to show the following inequality:

min
i,j

fij ≤ un
ij ≤ ‖f‖∞, n ≥ 0, (24)

which implies the maximum principle and stability.
Let Mij := C|un−1

ij − us,ij |α. Then the Eq. (13) at a point
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xij can be written as

[1 + (4Mij + βn
ij)θ∆t]un

ij

= θ∆tMij [an−1
ij,W un

i−1,j + an−1
ij,E un

i+1,j

+an−1
ij,S un

i,j−1 + an−1
ij,N un

i,j+1]

+(1− θ)∆tMij [an−1
ij,W un−1

i−1,j + an−1
ij,E un−1

i+1,j

+an−1
ij,S un−1

i,j−1 + an−1
ij,N un−1

i,j+1]

+[1− (4Mij + βn
ij)(1− θ)∆t]un−1

ij

+∆tβn
ij fij . (25)

Let un
ij be a local minimum. Note that un

ij is smaller than or
equal to the nine neighboring values:

un
i−1,j , u

n
i+1,j , u

n
i,j−1, u

n
i,j+1,

un−1
i−1,j , u

n−1
i+1,j , u

n−1
i,j−1.u

n−1
i,j+1, u

n−1
ij . (26)

Notice also that the following identity holds:

am
ij,W + am

ij,E + am
ij,S + am

ij,N = 4, m = n− 1, n. (27)

Using the conditions Eqs. (26), (27), and the inequality given
in Eq. (23), one can conclude that each of coefficients in the
right side of Eq. (25) is nonnegative and therefore the Eq. (25)
becomes

[1 + (4Mij + βn
ij)θ∆t]un

ij

≥ [1 + (4Mij + βn
ij)θ∆t]un

ij −∆tβn
ij (un

ij − fij).
(28)

Thus the second term ∆tβn
ij (un

ij − fij) in the right side of
inequality Eq. (28) must be positive. This implies that

fij ≤ un
ij .

The inequality holds for all local minima, which proves the
first inequality in Eq. (24). The same argument can be ap-
plied for local maxima to verify the other inequality. This
completes the proof.

The TFR Parametrization
In literature, the parameter λ has been chosen constant for
most cases; the resulting model either smears out some im-
portant portions more excessively than desired or leaves a
certain amount of noise in the restored image. In order to
overcome the difficulty, the parameter must become larger
wherever dissipation is excessive, while being small else-
where. In the following, we will consider an automatic and
effective numerical method for the determination of the con-
straint function β(x, t):

1. Set β as a constant:

β(x, 0) = β0. (29)

(a) (b)

Fig. 1. Lenna: (a) The original image g and (b) a noisy image
f with Gaussian noise (PSNR: 24.8)

2. For n = 2, 3, · · ·

(2a) Compute the absolute residual and a quantity
Gn−1

Res :

Rn−1 = |f − un−1|,

Gn−1
Res = max

(
0, Sm(Rn−1)−Rn−1

)
,

(30)

where Sm is a smoothing operator and Rn−1 de-
notes the L2-average of Rn−1.

(2b) Update:

βn = βn−1 + γn Gn−1
Res , (31)

where γn is a scaling factor having the property:
γn → 0 as n →∞.

The above procedure, Eqs. (29)-(31), is called the texture-
free residual (TFR) parameterization. See [9] for more de-
tails.

In practice, one may wish to limit the parameter in a pre-
scribed interval, i.e., β(x, t) ∈ [β0, β1]. Also one may want
to update the parameter a few times only. Thus we can update
the TFR parameter β in the first few iterations, say, four. In
the case, the scaling factor γn can be selected as follows:

γn ‖Gn−1
res ‖∞ = η (β1−β0), η =


0.4, n = 2,
0.3, n = 3,
0.2, n = 4,
0.1, n = 5.

(32)

4. NUMERICAL EXPERIMENTS

This section reports some numerical examples to show the
effectiveness of using a new non-standard anisotropic diffu-
sion model incorporating the TFR parametrization. We com-
pare the performance of conventional ITV model and ITV
model with TFR parametrization (ITV-TFR), with our new
non-standard anisotropic diffusion model with TFR
parametrization (NSAD-TFR).

For the examples in this section, images are first scaled
to have values in [0,1] and after denoising, it is scaled back
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(a) (b) (c)

Fig. 2. Lenna: Restored images u by using (a) ITV, (b) ITV-TFR, and (c) NSAD-TFR model

(a) (b) (c) (d)

Fig. 3. Cuba: (a) The original image g, restored images u by using (b) ITV, (c) ITV-TFR, and (d) NSAD-TFR model

for the 8-bit display. We set the parameters ε = 0.05, β0 =
0.5, β1 = 5.0, and ∆t = 1. The constant β for ITV model
is set to 0.6. Choose C = 3 and α = 1 for our new model
Eq. (12). We define a peak signal-to-noise ratio (PSNR) as
follows:

PSNR ≡ 10 log10

( ∑
ij 2552∑

ij(gij − uij)2

)
dB, (33)

where g denotes the original clear image and u is the
processed image. Note that PSNR value increases as the l2

error of processed image u decreases.
The three models are used for noise removal of a Lenna

image when the original image (Figure 1(a)) is contaminated
by a Gaussian noise of PSNR=24.8 (Figure 1(b)). In Fig-
ure 2, restored image u by using the ITV model (Figure 2(a)),
ITV-TFR model (Figure 2(b)), and NSAD-TFR model (Fig-
ure 2(c)) are presented. It can be easily seen from Figure 2(a)
that the ITV model introduces a large amount of nonphysi-
cal dissipation and it makes the image blurry (PSNR=28.5).
The restored image using the ITV-TFR model in Figure 2(b)
show much less nonphysical dissipation (PSNR=30.2). The

use of NSAD-TFR model in Figure 2(c) produces the best
restored image (PSNR=30.5). It keeps most fine structures
of the original image. Especially, the restored image keeps
details on the feather of the hat better than other two models.
Here the ITV model took 3 iterations, ITV-TFR model took
6 iterations, and NSAD-TFR model took 15 iterations to ob-
tain the results seen in Figure 2. The optimal number of iter-
ations is chosen to restore the best image, measured in PSNR
and visual verification. This example indicates that our new
NSAD-TFR model also works better than the conventional
models for images without having speckle noise.

The original aerial photograph taken of Cuba during the
missile crisis is shown in Figure 3(a). This original SAR im-
age was obtained from the Central Intelligence Agency (CIA)
website [7]. As one can see from Figure 3(a), the original im-
age itself contains lots of speckle type noise. Therefore, the
three models are applied directly to the original image for
denoising without applying any artificial noise. The restored
image in Figure 3(b) using the conventional ITV model re-
moves most speckle noise presented in the original image
but too much nonphysical dissipation induces the loss of fine
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structure in the image. For ITV model, the restoration took
3 iterations. Figure 3(c) using the ITV-TFR model presents
better restored image than the ITV model. However, the re-
stored image still suffers from the noticeable amount of dis-
sipation. Here for the ITV-TFR model, the best restored im-
age was obtained after 6 iterations. Figure 3(d) shows that
the new model removes noise satisfactorily while it keeps the
fine structure of the image. The details of trees and buildings,
etc. are very well preserved. The image in Figure 3(d) was
obtained after 12 iterations. Note that the original image it-
self is not clear on the lower left corner which results in the
blurriness of all three denoised images in that region. How-
ever, the NSAD-TFR model still has the best result among
the three restored images.

5. CONCLUSIONS

PDE-based models, especially TV-based models can answer
fundamental questions arising in image restoration better than
other models. However, their minimizing energy functionals
are derived based on the additive Gaussian noise which is
inappropriate for speckle noise removal since speckle noise
is often assumed to be multiplicative. Moreover, TV-based
models produce nonphysical dissipation and consequently
lose fine structures in the image during the denoising process.
In this article, a new physics based non-standard anisotropic
diffusion model incorporating with TFR parametrization
(NSAD-TFR), has been introduced for an efficient noise re-
movel for images having speckle noise. The new NSAD-
TFR model controls the speed of dissipation by using the
new coefficient of anisotropic diffusion in the conventional
ITV model. A new numerical procedure for the NSAD model
has been proved to be mathematically stable and satisfy the
maximum principle. It has been verified from numerical ex-
amples that the new model with stable numerical procedure
better preserves fine structures while removing speckle noise
more satisfactorily than the ITV model and ITV model with
TFR parametrization.
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