

SOFTICE: Facilitating both Adoption of
Linux Undergraduate Operating Systems Laboratories and Students’

Immersion in Kernel Code

Alessio Gaspar, Sarah Langevin, Joe Stanaback, Clark Godwin
University of South Florida, 3334 Winter Lake Road, 33803 Lakeland, FL, USA

[alessio | Sarah | joe | clark]@softice.lakeland.usf.edu http://softice.lakeland.usf.edu/

Abstract
This paper discusses how Linux clustering and virtual machine
technologies can improve undergraduate students’ hands-on
experience in operating systems laboratories. Like similar
projects, SOFTICE1 relies on User Mode Linux (UML) to
provide students with privileged access to a Linux system
without creating security breaches on the hosting network. We
extend such approaches in two aspects. First, we propose to
facilitate adoption of Linux-based laboratories by using a load-
balancing cluster made of recycled classroom PCs to remotely
serve access to virtual machines. Secondly, we propose a new
approach for students to interact with the kernel code.

Keywords: Undergraduate Operating System Course, Linux
Kernel Programming, User Mode Linux, Warewulf Clustering.

1. INTRODUCTION

Problem Statement

Laboratories’ hands-on experience can significantly improve
an undergraduate student’s understanding of operating systems.
Despite their complexity, “real” operating systems help
clarifying lectures by exposing the motivations and roots of the
concepts, algorithms and tradeoff being discussed. Doing so can
help students “make sense” of facts rather than merely
memorizing them (thus introducing deductive and active
learning dynamics). Linux kernel source code’s availability,
ubiquity in server-side applications and its documentation
through publications [9][10][11][13] and pedagogical material
[7][8][12][24] makes it a natural choice in such an endeavor.

A review of current Linux-based laboratories reveals a strong

focus on having students modify the kernel directly (e.g. [12]).
This can make updates awkward as a new kernel release may
introduce new concepts and algorithms which are not covered in
the current laboratories. Such material rapidly becomes obsolete
and, just as rapidly, discouraging to update.

This review also reveals that facilitating the adoption of such

laboratories is a critical issue too often left unaddressed. These
laboratories require students to be granted privileged (if not
physical) access to computers. This imposes additional
constraints on the classrooms’ setting; isolation from the
University network, difficulty to use the workstations for other

1 SOFTICE stands for Scalable, Open-source, Fully Transparent and
Inexpensive Clustering for Education

courses, frequent re-installations… Because of this, virtual
machines, such as the one provided by the User Mode Linux
(UML) project [4][5][6] are becoming more common as a
means to enable students to safely and conveniently tinker with
kernel internals. Security concerns are therefore addressed and
re-installation processes considerably simplified. However, one
potential problem still remains; we have been assuming all
along the availability of Linux workstations in the classrooms.
Let’s consider an instructor is interested in a Linux-based
laboratory at an institution using exclusively Windows
workstations. Chances are that the classroom setup will be
assigned to the instructor or that new Linux-qualified personnel
will be hired. In both cases, the adoption of such laboratories
will depend on the complexity, the initial set-up, and day-to-day
administration of the system.

Related Projects

SOFTICE separates system administration issues from
pedagogical ones, acknowledging the importance of the former
to the success of the latter. We also believe there are alternatives
to having students make modifications directly to the kernel
code. We propose to depart from and extend current approaches
along 3 different axes:

(1) Facilitating adoption by using an easy to administrate

cluster of recycled classroom PCs to serve access to
UML virtual hosts to any kind of workstation on or
off campus.

(2) Facilitating replication by disseminating on the

SOFTICE wiki best practices, technical
documentation as well as software packages.

(3) Developing new laboratories using a novel approach

to kernel-level programming which emphasizes
progressive immersion into the kernel code and ease
of update.

Paper Organization

The following sections will begin with a discussion of the
various choices and pitfalls related to setting up the cluster and
virtual machines infrastructure (e.g. cluster management, load
balancing and virtual machine technologies). We’ll then set the
objectives for the OS Laboratories we want to develop, taking
into consideration existing work and possibilities offered by our
particular setting. We will also introduce a new pedagogical
approach to OS laboratories and present early results being
developed in our department.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 330 ISSN: 1690-4524

2. SETTING UP THE CLUSTER

In order to facilitate adoption of a Linux-based solution by

any kind of institution, regardless of their current OS choices,
we propose to use a load-balancing cluster made of recycled
classroom PCs. The advantage is that our implementation
results in having only one machine to administrate regardless of
the number of cluster nodes and of the amount of students’
workstations accessing it. This section discusses the
technological choices we made concerning both the clustering
and virtual machine technologies.

User Mode Linux

First and foremost, UML is an open source technology. This
guarantees its affordability, its availability, and its flexibility for
other institutions willing to replicate, adapt, or extend the
clustering infrastructure we are developing in this project.
While our experience with the integration of UML in a
clustering environment proved challenging, UML is a relatively
mature technology which has already been integrated in the
2.6.x Linux kernel source tree. It is also being used by many
web hosting and (virtual) server collocation companies [5].

Technically, UML is a port of the Linux kernel to a new

architecture. Unlike most ports, this one isn’t about making the
kernel work on some new hardware. Instead, the objective is to
be able to run a Linux kernel as a simple process on top of
another Linux Kernel. For this reason, UML is often referred to
as a port of the Linux Kernel onto itself which makes it more
efficient and elegant than hardware-emulation methods. Simply
by recompiling the standard Linux kernel source tree for this
new um architecture, we can generate an executable which
constitutes the “guest” kernel that students will execute in order
to create a new instance of a virtual machine. To complete the
virtual system, regular files can be used as storage devices,
formatted as a hard drive, and booted from by the UML
executable after they have been populated with any Linux
distribution.

For all these reasons, UML has already been successfully

used in operating system laboratories. Several of which
confirmed that this added emulation layer was indeed enabling
the setting of a secure, sandboxed environment for the students
without noticeable loss in term of flexibility [7][8]. The number
of already existing UML-based labs has motivated us to go one
step further by revisiting with an original pedagogy. The lab
material generally used with UML comforted us in the feeling
that, independently of our proposed pedagogical approach, other
institutions could benefit from shared experience. Setting up a
clustering infrastructure facilitates the adoption of a Linux-
based solution regardless of the previous OS choices, budget, or
flexibility in classroom scheduling. This aspect of the problem
is addressed by the choice of an appropriate clustering
technology.

Choosing a clustering technology

Another feature that distinguishes SOFTICE from similarly
intended projects is that, in order to provide a secure remote
access to virtual Linux hosts, we are going to centralize, in a
cluster, all necessary computing resources and load-balance

their access from a single point of entry. By doing so, students
can use simple tools such as X-win32 (windows x-server) and
SSH clients to access their accounts and, from there, recompile
and test a kernel or run a couple of virtual hosts to study
networking or system administration related topics. The cluster
will be interconnected by its own local area network using a
switch and connected to the internet only through the “master
node”. The latter will also be providing necessary services such
as NFS, intrusion detection, and will load-balance SSH access
to the cluster nodes (generally, cheap PCs with large amounts of
RAM).

To fulfill these objectives, we reviewed several clustering

technologies starting with the Linux Virtual Server (LVS)
project. LVS started as a kernel patch (IPVS) which is now
mainstream in the 2.6.x kernel series. Its role can be described
as implementing a kernel-space level 3 router, which boils down
to redirecting network traffic on the basis of application layer
information. As of today, LVS is a de facto standard for
implementing web farms or high availability services.

LVS implements three load balancing techniques based
respectively on Network Address Translation (NAT), IP
tunneling (TUN), or Direct Routing (DR). The choice of a
specific technique impacts on the cluster topology, scalability,
and efficiency. We chose to sacrifice part of the scalability in
order to increase security by using NAT. With this approach,
the incoming network traffic is redirected to the nodes in a load-
balanced fashion while the nodes’ responses are redirected in
the opposite direction by the master-node. The latter is therefore
responsible for rewriting packets’ headers in order to maintain
the masquerading of the internal nodes. This is why this
approach is considered less scalable. As the number of cluster
nodes grows, the master node can become a bottleneck if its
computing power doesn’t match the induced workload. On the
other hand, this also limits the exposure of the cluster’s nodes to
the internet which considerably facilitates the implementation of
security measures and the system administration tasks. In such a
setting, the cluster nodes don’t need a routable IP address and
can all be “hidden” inside the cluster thus making intrusions less
likely.

The cluster we are using has been designed with a somewhat

oversized master-node capacity (dual xeon) to avoid any bottle
neck due to the number of nodes. It is also used as a standalone
server allowing early testing of our lab material in the
classrooms. In practice, we expect that a recent PC (2-3Ghz,
mono core) with two network adapters and a good amount of
memory (1-2Gb) will be more than sufficient once the load
balancing is in place. After deciding on LVS, we investigated
ways to further adapt the idea of load balancing to our
educational purposes and explored SSI clustering technologies.

Single System Image (SSI) clustering is a technology that
aims at presenting to processes the illusion that a cluster of
workstations is nothing but a single system with a shared
memory address space, shared devices, and in which processes
can be seamlessly migrated from one node to the other in order
to balance the workload. One of the many challenges involved
in a SSI implementation is to keep this illusion coherent even
when processes are using IPC mechanics not meant to be used
over a network. Besides its obvious advantages in terms of
process-level load balancing, SSI clustering also provides a
unified technology for many types of clustering needs. In our
case, it also enables us to manage an arbitrary number of nodes
by simply administrating a unique master-node. This master-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 3 31ISSN: 1690-4524

node will be responsible for automatically providing any
booting cluster node with a kernel, an initial ram disk, and a
root file system image through PXE. This makes system
administration much more scalable than if we had to install and
maintain each node individually. It also makes it easier for an
institution to adopt this infrastructure with a minimal system
administration overload.

Mosix and open Mosix were the first SSI clustering projects

to catch our attention. After preliminary tests on recycled
hardware, we realized that these kernel patches follow a very
constraining release policy whereby only a specific kernel
version is fully maintained. We then searched for alternatives
and discovered OpenSSI. The OpenSSI project integrates
features similar to (open) Mosix and combines them with the
network traffic load balancing capabilities of LVS. We
implemented our first full cluster prototype using 2.6.10
kernel’s open SSI release. By using the flexibility of the process
migration combined with LVS network traffic load balancing
capabilities and the single system administration, we were
convinced that this is the best infrastructure to support our
laboratories.

Unfortunately, as we started the labs development with UML,

we realized that having students work on a recent (2.6.x) kernel
version on top of the open SSI 2.6.10 kernel was going to prove
problematic. As of the time of these experiments (spring –
summer 2005), UML had serious problems operating on some
kernel versions. This included, naturally, the only version
supported by OpenSSI.

While featuring similar capabilities, (open) Mosix and open

SSI both showed integration problems with other kernel-based
technologies not yet integrated in the mainstream development
tree. The first solution we considered was to edit by hand the
patches in order to make their modifications co-exist
harmoniously. This work involves gaining an in-depth
knowledge of the chosen SSI technology and maintaining the
patch for every new release of UML or OpenSSI. At the time of
these experiences the development of UML was very active in
response to many bugs related to its integration to the 2.6.x
kernel series. As a result, we decided that this would represent
too much of a time investment in the context of this particular
project. Besides, early experiments that consisted in
benchmarking a kernel compilation over the SSI cluster,
revealed, as we expected, that the gain wasn’t justifying all
these efforts. SSI technologies are based on the fact that
processes can be migrated from one node to the other on the
basis of the cluster’s workload distribution. In many cases,
applications can be seamlessly migrated to an idle node as soon
as the one they are running on becomes overloaded. In the case
of a kernel compilation task, this might not be the case.
Building a kernel is identical to building a UML machine,
which we expect to be a relatively common task for OS
students. Such a task spawns numerous short-lived processes
which are each responsible to compile a couple of C files at a
time. The duration of these processes is, in fact, so short that
they don’t last long enough for the SSI load balancing
algorithms to migrate them. Therefore, if a student logs in to the
master node, all of his/her compilations processes will most
likely remain on this node. If many students compile
simultaneously their kernel(s), the master node will be
overloaded while the cluster node will sit idle and nobody will
actually benefit from the SSI capabilities. This observation led

us to realize that process-level load balancing wasn’t sufficient
for our specific application and that we would need to combine
it with SSH connections load balancing (e.g. IPVS). The idea is
that, as a student logs in to the cluster, he or she will be
redirected to an arbitrary cluster node in a round robin fashion.
From then on, even if the process-level load balancing is not
effective, we at least already managed a rough load balancing
by spreading incoming connections over the whole cluster. At
that point, we had to revisit our infrastructure and find a new
way to obtain the features which our previous experimentations
deemed interesting:

1. network load balancing
2. process migration
3. easy cluster management

LVS could easily provide us with the first feature since it’s
already integrated in stock 2.6.x kernels. Process migration
would be the hardest to obtain in so far that it requires having a
SSI-enabling kernel patch on the host kernel that is compatible
with the UML patch on the guest kernel. Unfortunately, no such
patch has been successfully incorporated into any of the
mainstream kernels as of this writing. On the other hand, this
feature, while undeniably desirable, also proved to be the less
critical to the success of one of the most common OS students’
activities. Easy cluster management is necessary to maintain a
reasonable system administration workload. Requiring
interested institutions to commit personnel to administrate the
cluster node individually would be a critically discouraging
argument against adopting SOFTICE. The Warewulf project
provided us with a perfect solution which didn’t necessitate any
kernel modification.

Warewulf

To quote the Warewulf project’s wiki at http://warewulf-
cluster.org/: “Warewulf is a Linux cluster solution that is
scalable, flexible and easy to use.” [edited out] “Warewulf is
the first of its kind which elegantly solves many of the problems
associated with administration and scalability.” [edited out]
“Warewulf facilitates the process of installing a cluster and
long term administration. It does this by changing the
administration paradigm to make all of the slave node file
systems manageable from one point, and automate the
distribution of the node file system during node boot. It allows a
central administration model for all slave nodes and includes
the tools needed to build configuration files, monitor, and
control the nodes. It is totally customizable and can be adapted
to just about any type of cluster. From the software
administration perspective it does not make much difference if
you are running 2 nodes or 500 nodes. The procedure is still the
same, which is why Warewulf is scalable from the admins
perspective. Also, because it uses a standard chroot'able file
system for every node, it is extremely configurable and lends
itself to custom environments very easily.”

By combining LVS and the Warewulf toolkit, we obtain two

out of three of the features we wanted in our cluster. Warewulf
allows for a single master-node to serve a root file system,
kernel, and initial ram disk to any cluster node at boot time. It
therefore implements the centralized cluster management
scheme which SSI systems benefit from. This toolkit, because it
is not based on kernel modifications, also turned out to integrate

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 332 ISSN: 1690-4524

perfectly with both LVS and UML. As of today, our cluster is
based on these technologies to provide us with a development
environment for the OS labs we will be discussing below.

3. OS LABS: A NEW APPROACH

While educational Operating Systems (Minix, Nachos,
Topsy, GeekOS…) enable students to comprehend a complete
OS in one semester, they are often bound to implement the
simplest algorithms for each component. An alternative
approach is to cover fewer components but in a much more
realistic way. For this approach, the Linux kernel is increasingly
being used to provide students with a “real world” experience
on operating systems internals. This is the approach we propose
to develop further. Our first step has been to explore the nature
of existing laboratories [14][11][13][10][8].The next section
will focus on the lessons we learned and how we intend to use
them to shape a somewhat different approach

Toward a different OS labs pedagogy

Introducing students to the Linux kernel internals in one

semester can be a daring challenge depending on the average
programming skills level and the motivation. Regardless of
these factors, the Linux kernel source base is sufficiently large
nowadays to pose the “where do I start first” problem to anyone
not fluent in kernel programming. We will not revisit the
arguments of the “real “ vs. “educational” OS controversy and
explore possibilities to introduce such a large code base to the
students while avoiding the most common pitfalls that
experience taught us:

First, students can be overwhelmed by the sheer quantity of

code. As a result, they focus only on the micro changes required
of them and absorb a minimal amount of information from the
overall kernel.

Secondly, directing students to make modifications to existing

code and guiding them each step of the way can cause them not
to develop their “start from scratch” programming skills.

Our response to these concerns is based on the Loadable

Kernel Modules (LKM) technology and the examples left by
famous Root-kits such as Knark.

Loadable kernel modules are software components featuring

initialization and clean-up functions respectively executed when
the module is started (loaded into the kernel) and unloaded.
These components are compiled against a kernel source tree and
dynamically linked to a running kernel thus allowing expansion
of a running kernel’s capabilities without complete
recompilation. This approach is most commonly known for the
dynamic loading of device drivers. For our purposes, one of the
interesting features of loadable kernel modules is that modules
can be of any size and complexity. In an operating systems
laboratory, the complexity shouldn’t be in writing the code in
the module itself but rather in the way the module interacts with
kernel’s data structures and routines. With loadable kernel
modules, students can manipulate well targeted kernel elements
while still feeling in control of a relatively small code of their
own. Also, the code written in a module is definitively kernel
code and therefore exposes the students to the same “comfort

level” that kernel programmers benefit from (no stdin, no
system calls wrappers…). In pedagogical terms, the focus of the
lecture can be easily reinforced by a lab briefing on specific,
kernel elements that students’ modules will interact with.

We can therefore introduce kernel data structures, system

calls and kernel routines progressively and let students
understand them from the perspective of “how do I manipulate
these structures”. This approach has already been explored in
Linux kernel books [11] which don’t try to provide an
exhaustive code commentary or reference but more of a
functional description of the kernel addressed and who might
want to work with it. So far, we haven’t specified how the
students’ loadable kernel modules are to interface with the
kernel; root-kits have been the inspiration behind this interface
and the design of the operating systems laboratories we propose.

Root-kits have been using loadable kernel modules
[18][19][20] to allow a successful intruder to preserve a way to
easily regain root access on a machine he previously broke into.
Common tasks achieved by such root-kits include hiding from
common system tools processes, directories and files, escalating
privileges of any arbitrary processes fulfilling a trigger
condition and so on so forth. During the course of the semester,
students will work on re-implementing in their own modules
which will affect the kernel in some way. Class lectures will
cover the kernel internals and related data structures which the
students will be exploiting throughout the term. This allows for
a naturally paced introduction to the kernel with an interesting
twist toward computer security related issues that will expand
topics coverage in the OS lecture while further motivating
students. Also, since the kernel source tree is introduced in
small intervals over the duration of the term, the students will
have the ability to discover kernel internals through a series of
well-delimited forays designed to familiarize them with the
kernel code.

4. LABORATORIES OVERVIEW

This section discusses how the above principles can be

applied to develop an OS lab series. As of today, the first
laboratories of the series have been developed. The whole set
should be available at the project’s wiki site by the end of spring
2006. We decided to use Knark [19][21] as a model of LKM-
based root-kit for the development of our laboratories.

[Lab-1] System Calls Interception

This first laboratory is meant to let students work inside a
UML machine and test some provided code for intercepting the
fork system call. Results are shown by running simple bash
external commands and observing the shell forking a child
process to execute the command. Students can then, by analogy,
develop another LKM aimed at intercepting the open system
call in a slightly different way. Once these preliminaries are
acquired, passing parameters to a module at load time is
considered and, a loadable kernel module capable of banning
the use of fork (then open) to a specific PID passed at load time
is implemented. To conclude, a more generic system call
interception module is written that receives load time
parameters specifying which system call number to block for
which process.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 3 33ISSN: 1690-4524

[Lab-2] Hiding a process

The focus is here on process-related kernel data structures and
the /dev/kmem kernel memory device. The technology is based
on Knark sources and enables students to implement a module
capable of hiding information related to a given process from
system commands such as ps, top… This activity complements
the former by developing it toward a topic that seems to always
interest students; security. Furthermore, this module constitutes
the very first step of a root-kit like module that students will be
building from scratch.

[Lab-3] File System Stacks

This laboratory is an intermediate step used to introduce file
systems kernel data structures and use the approach described
by Erez Zadock [22][23] to not overwhelm students with the
kernel source code for their first forays into this topic. The
objective is also to prepare students to interact with the proc
pseudo file system which is examined in the next laboratory.

[Lab-4] Communication through ProcFS

This lab focuses on the /proc pseudo file system and teaches
students how to register file entries for their modules so that
information can be exchanged with them after they are loaded
into the kernel. The structure of Lab #01 is used again; first, the
LKM intercepting the fork system call is extended to be able to
prevent a list of processes from calling fork. The PIDs are
visible through /proc/ban-fork.out and new PIDs can be added
by writing to /proc/ban-fork.in. The open system call
interception module is then modified in a similar manner thus
allowing a list of files to be specified by their absolute paths.
The module will ensure that these files won’t be opened by any
process. This part is left to the students as an exercise so that
they can repeat the drill by analogy with the source used as
example. The loadable kernel module hiding processes is then
enhanced using this same mechanics thus enabling to specify at
run time the processes to hide / reveal. With a minimal syntax,
students can very easily start controlling their loadable kernel
module form the command line, or use it within their own user
space programs.

[Lab-5] Hiding Files & Directories

The next natural step in stealth is to conceal the existence of
files and directories. This lab is the analog of the precedent and
starts by introducing the students to the file systems-related
kernel data structures. Once again, Knark is guiding the
resulting implementations of this laboratory and the object is to
provide students with knowledge on one of the many available
file systems. In our case, we will focus on the Ext2FS and
Ext3FS family. Such project illustrates perfectly how User
Mode Linux facilitates experimentations not only on the kernel
internals but also on storage devices. It is safe to assume that
some students might severely damage an existing file system
while investigating the corresponding kernel code. With UML,
a simple file will be formatted then mounted from the virtual
machine. In case of a crash, restoring the image, or even the
whole FS for that matter, is as simple as a copy command.

5. DISCUSSION & FUTURE WORK

This paper discussed recent advances in the SOFTICE project
which ambitions are to provide educational institutions with
system administration and pedagogical resources to bring an
innovative approach to hands-on activities for CS and IT
courses such as undergraduate operating systems courses. An
open-source load balancing cluster infrastructure has been
evaluated for this purpose and the experience we gained from its
implementation herein discussed. To illustrate the new
possibilities offered by this first step, a novel approach to
undergraduate operating systems laboratories has been
presented and its early implementation discussed. The project’s
wiki site will provide further technical and pedagogical
resources (http://softice.lklnd.usf.edu).

We are right now exploring ways to leverage our clustering and
virtual machines infrastructure in other courses which benefit
from hands-on environments which, just like for operating
systems, are problematic to set up and maintain. We want to
offer support for replication or development efforts undertaken
by the educational community at large. These efforts have
resulted so far in experiments with Linux System
Administration and undergraduate Networking courses.

We are also starting exploring possibilities to provide automatic
installation and management tools to simplify the setup of a
similar cluster and the daily system administration tasks. This
will help reducing the amount of work involved in “giving a
try” at replicating the SOFTICE experiment and thus facilitate
its dissemination at large.

Acknowledgments

This material is based in part upon work supported by the
National Science Foundation under award number 0410696.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

6. REFERENCES

[1] SOFTICE project web site and wiki, Alessio Gaspar,

http://softice.lklnd.usf.edu/
[2] SOFTICE: Scalable, Open, Fully Transparent and

Inexpensive Clustering for Education, Alessio Gaspar,
Francois Delobel, William D. Armitage, Arthur Karshmer
and Farimah Fleschute, International Conference on
Education and Information Systems: Technologies and
Applications, EISTA’04, pp. 335-340, July, 2004

[3] SOFTICE: Linux SSI clustering & emulation can facilitate
Hands-on Computer Science Education, Alessio Gaspar,
Dave Armitage, Farimah Fleshute, Symposium on 21st
Century Teaching Technologies, 2005, University of South
Florida, March 3 2005, USF, Tampa, FL.

[4] User Mode Linux project web site, Jeff Dike, http://user-
mode-linux.sourceforge.net/

[5] User Mode Linux community web site,
http://usermodelinux.org/

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 334 ISSN: 1690-4524

[6] A user-mode port of the Linux kernel, Dike, Jeff, In
Proceedings of the 4th Annual Linux Showcase &
Conference, Atlanta, page 63, Atlanta, GA, 2000. Usenix,

[7] A Secured Networked Laboratory for Kernel
Programming, J. Mayo and P. Keans, Technical Report
TR97-1, Department of Computer Science, College of
William and Mary, September 1997.

[8] A Linux-Based Lab for Operating Systems and Network
Courses, Linux Journal #41, R. Chapman and W.H.
Carlisle, 1997

[9] Understanding the Linux Kernel 2/e, Daniel P. Bovet,
Marco Cesati, O’Reilly & Associates, 2002, ISBN 0-596-
0021309

[10] Linux Kernel Programming 3/e, Michael Beck, Harald
Bohme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus,
Claus Schroter, Dirk Verworner, Addison Wesley
Professional, 2002, ISBN: 0-201-71975-4

[11] Linux Kernel Development 1/e, Robert Love, Developers
Library, SAMS, 2003

[12] Kernel Projects for Linux, Gary Nutt, Addison Wesley,
2001, ISBN 0-201-61243-7

[13] Linux Device Drivers 3/e, Alessandro Rubini, Jonathan
Corbet, O'Reilly & Associates, 2001

[14] Operating Systems 3/e, Gary Nutt, Addison Wesley,
2003, ISBN: 0-201-77344-9

[15] Operating Systems Concepts 6/e with Java, Abraham
Silberschatz, Peter Baer Galvin, Greg Gagne, Prentice
Hall, 2003, ISBN 0-471-489050

[16] Modern Operating Systems 2/e, Andrew Tanenbaum,
Prentice Hall, 2001

[17] Operating Systems, design and implementation 2/e,
A.S. Tannenbaum and A.S. Woodhull, Prentice Hall, 1997,
ISBN 0-13-638677-6

[18] Rootkit: Attacker undercover tools, Saliman Manap,
Section 2.0: Chronology of Rootkit,
http://www.niser.org.my/resources/rootkit.pdf

[19] Alamo: A Linux Forensic Kernel Module, Kelley Spoon,
http://www.spoonix.org/software/alamo/ 2001-
whitepaper/index.html

[20] Root-kits and integrity, Frédéric Raynal,
http://www.security-labs.org/ index.php3?page=454

[21] Knark readme file, online at
http://www.ossec.net/rootkits/studies/knark-README.txt

[22] Writing Stackable File Systems, Erez Zadock, 05-2003,
Linux Journal

[23] FIST: Stackable File System Language and Template, Erez
Zadock, http://www.filesystems.org/

[24] Linux in Government: Linux Lab at the University of
South Florida Opens Eyes, Tom Adelstein, 12-2004, Linux
Journal

[25] Warewulf clustering toolkit project web site, Greg M.
Kurtzer, http://warewulf-cluster.org/

[26] Open SSI project web site, Bruce Walker,
http://openssi.org/

[27] User Mode Linux, Jeff Dike, Prentice Hall

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 3 35ISSN: 1690-4524

	P624629

