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Abstract 
This paper discusses how Linux clustering and virtual machine 
technologies can improve undergraduate students’ hands-on 
experience in operating systems laboratories. Like similar 
projects, SOFTICE1 relies on User Mode Linux (UML) to 
provide students with privileged access to a Linux system 
without creating security breaches on the hosting network. We 
extend such approaches in two aspects. First, we propose to 
facilitate adoption of Linux-based laboratories by using a load-
balancing cluster made of recycled classroom PCs to remotely 
serve access to virtual machines. Secondly, we propose a new 
approach for students to interact with the kernel code.  
 
Keywords: Undergraduate Operating System Course, Linux 
Kernel Programming, User Mode Linux, Warewulf Clustering. 
 

1. INTRODUCTION 

Problem Statement  
 

Laboratories’ hands-on experience can significantly improve 
an undergraduate student’s understanding of operating systems. 
Despite their complexity, “real” operating systems help 
clarifying lectures by exposing the motivations and roots of the 
concepts, algorithms and tradeoff being discussed. Doing so can 
help students “make sense” of facts rather than merely 
memorizing them (thus introducing deductive and active 
learning dynamics). Linux kernel source code’s availability, 
ubiquity in server-side applications and its documentation 
through publications [9][10][11][13] and pedagogical material 
[7][8][12][24] makes it a natural choice in such an endeavor.  

 
A review of current Linux-based laboratories reveals a strong 

focus on having students modify the kernel directly (e.g. [12]). 
This can make updates awkward as a new kernel release may 
introduce new concepts and algorithms which are not covered in 
the current laboratories. Such material rapidly becomes obsolete 
and, just as rapidly, discouraging to update.  

 
This review also reveals that facilitating the adoption of such 

laboratories is a critical issue too often left unaddressed. These 
laboratories require students to be granted privileged (if not 
physical) access to computers. This imposes additional 
constraints on the classrooms’ setting; isolation from the 
University network, difficulty to use the workstations for other 

                                                 
1 SOFTICE stands for Scalable, Open-source, Fully Transparent and 
Inexpensive Clustering for Education 

courses, frequent re-installations… Because of this, virtual 
machines, such as the one provided by the User Mode Linux 
(UML) project [4][5][6] are becoming more common as a 
means to enable students to safely and conveniently tinker with 
kernel internals. Security concerns are therefore addressed and 
re-installation processes considerably simplified. However, one 
potential problem still remains; we have been assuming all 
along the availability of Linux workstations in the classrooms. 
Let’s consider an instructor is interested in a Linux-based 
laboratory at an institution using exclusively Windows 
workstations. Chances are that the classroom setup will be 
assigned to the instructor or that new Linux-qualified personnel 
will be hired. In both cases, the adoption of such laboratories 
will depend on the complexity, the initial set-up, and day-to-day 
administration of the system.  

Related Projects 
 

SOFTICE separates system administration issues from 
pedagogical ones, acknowledging the importance of the former 
to the success of the latter. We also believe there are alternatives 
to having students make modifications directly to the kernel 
code. We propose to depart from and extend current approaches 
along 3 different axes:  

 
(1) Facilitating adoption by using an easy to administrate 

cluster of recycled classroom PCs to serve access to 
UML virtual hosts to any kind of workstation on or 
off campus.  

 
(2) Facilitating replication by disseminating on the 

SOFTICE wiki best practices, technical 
documentation as well as software packages.  

 
(3) Developing new laboratories using a novel approach 

to kernel-level programming which emphasizes 
progressive immersion into the kernel code and ease 
of update.  

Paper Organization 
 

The following sections will begin with a discussion of the 
various choices and pitfalls related to setting up the cluster and 
virtual machines infrastructure (e.g. cluster management, load 
balancing and virtual machine technologies). We’ll then set the 
objectives for the OS Laboratories we want to develop, taking 
into consideration existing work and possibilities offered by our 
particular setting. We will also introduce a new pedagogical 
approach to OS laboratories and present early results being 
developed in our department. 
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2. SETTING UP THE CLUSTER 
 
In order to facilitate adoption of a Linux-based solution by 

any kind of institution, regardless of their current OS choices, 
we propose to use a load-balancing cluster made of recycled 
classroom PCs. The advantage is that our implementation 
results in having only one machine to administrate regardless of 
the number of cluster nodes and of the amount of students’ 
workstations accessing it. This section discusses the 
technological choices we made concerning both the clustering 
and virtual machine technologies.  

User Mode Linux  
 

First and foremost, UML is an open source technology. This 
guarantees its affordability, its availability, and its flexibility for 
other institutions willing to replicate, adapt, or extend the 
clustering infrastructure we are developing in this project. 
While our experience with the integration of UML in a 
clustering environment proved challenging, UML is a relatively 
mature technology which has already been integrated in the 
2.6.x Linux kernel source tree. It is also being used by many 
web hosting and (virtual) server collocation companies [5]. 

 
Technically, UML is a port of the Linux kernel to a new 

architecture. Unlike most ports, this one isn’t about making the 
kernel work on some new hardware. Instead, the objective is to 
be able to run a Linux kernel as a simple process on top of 
another Linux Kernel. For this reason, UML is often referred to 
as a port of the Linux Kernel onto itself which makes it more 
efficient and elegant than hardware-emulation methods. Simply 
by recompiling the standard Linux kernel source tree for this 
new um architecture, we can generate an executable which 
constitutes the “guest” kernel that students will execute in order 
to create a new instance of a virtual machine. To complete the 
virtual system, regular files can be used as storage devices, 
formatted as a hard drive, and booted from by the UML 
executable after they have been populated with any Linux 
distribution.  

 
For all these reasons, UML has already been successfully 

used in operating system laboratories. Several of which 
confirmed that this added emulation layer was indeed enabling 
the setting of a secure, sandboxed environment for the students 
without noticeable loss in term of flexibility [7][8]. The number 
of already existing UML-based labs has motivated us to go one 
step further by revisiting with an original pedagogy. The lab 
material generally used with UML comforted us in the feeling 
that, independently of our proposed pedagogical approach, other 
institutions could benefit from shared experience. Setting up a 
clustering infrastructure facilitates the adoption of a Linux-
based solution regardless of the previous OS choices, budget, or 
flexibility in classroom scheduling. This aspect of the problem 
is addressed by the choice of an appropriate clustering 
technology.  

Choosing a clustering technology 
 

Another feature that distinguishes SOFTICE from similarly 
intended projects is that, in order to provide a secure remote 
access to virtual Linux hosts, we are going to centralize, in a 
cluster, all necessary computing resources and load-balance 

their access from a single point of entry. By doing so, students 
can use simple tools such as X-win32 (windows x-server) and 
SSH clients to access their accounts and, from there, recompile 
and test a kernel or run a couple of virtual hosts to study 
networking or system administration related topics. The cluster 
will be interconnected by its own local area network using a 
switch and connected to the internet only through the “master 
node”. The latter will also be providing  necessary services such 
as NFS, intrusion detection, and will load-balance SSH access 
to the cluster nodes (generally, cheap PCs with large amounts of 
RAM).  

 
To fulfill these objectives, we reviewed several clustering 

technologies starting with the Linux Virtual Server (LVS) 
project. LVS started as a kernel patch (IPVS) which is now 
mainstream in the 2.6.x kernel series. Its role can be described 
as implementing a kernel-space level 3 router, which boils down 
to redirecting network traffic on the basis of application layer 
information. As of today, LVS is a de facto standard for 
implementing web farms or high availability services. 

LVS implements three load balancing techniques based 
respectively on Network Address Translation (NAT), IP 
tunneling (TUN), or Direct Routing (DR). The choice of a 
specific technique impacts on the cluster topology, scalability, 
and efficiency. We chose to sacrifice part of the scalability in 
order to increase security by using NAT. With this approach, 
the incoming network traffic is redirected to the nodes in a load-
balanced fashion while the nodes’ responses are redirected in 
the opposite direction by the master-node. The latter is therefore 
responsible for rewriting packets’ headers in order to maintain 
the masquerading of the internal nodes. This is why this 
approach is considered less scalable. As the number of cluster 
nodes grows, the master node can become a bottleneck if its 
computing power doesn’t match the induced workload. On the 
other hand, this also limits the exposure of the cluster’s nodes to 
the internet which considerably facilitates the implementation of 
security measures and the system administration tasks. In such a 
setting, the cluster nodes don’t need a routable IP address and 
can all be “hidden” inside the cluster thus making intrusions less 
likely.  

 
The cluster we are using has been designed with a somewhat 

oversized master-node capacity (dual xeon) to avoid any bottle 
neck due to the number of nodes. It is also used as a standalone 
server allowing early testing of our lab material in the 
classrooms. In practice, we expect that a recent PC (2-3Ghz, 
mono core) with two network adapters and a good amount of 
memory (1-2Gb) will be more than sufficient once the load 
balancing is in place. After deciding on LVS, we investigated 
ways to further adapt the idea of load balancing to our 
educational purposes and explored SSI clustering technologies.  

Single System Image (SSI) clustering is a technology that 
aims at presenting to processes the illusion that a cluster of 
workstations is nothing but a single system with a shared 
memory address space, shared devices, and in which processes 
can be seamlessly migrated from one node to the other in order 
to balance the workload. One of the many challenges involved 
in a SSI implementation is to keep this illusion coherent even 
when processes are using IPC mechanics not meant to be used 
over a network. Besides its obvious advantages in terms of 
process-level load balancing, SSI clustering also provides a 
unified technology for many types of clustering needs. In our 
case, it also enables us to manage an arbitrary number of nodes 
by simply administrating a unique master-node. This master-
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node will be responsible for automatically providing any 
booting cluster node with a kernel, an initial ram disk, and a 
root file system image through PXE. This makes system 
administration much more scalable than if we had to install and 
maintain each node individually. It also makes it easier for an 
institution to adopt this infrastructure with a minimal system 
administration overload.  

 
Mosix and open Mosix were the first SSI clustering projects 

to catch our attention. After preliminary tests on recycled 
hardware, we realized that these kernel patches follow a very 
constraining release policy whereby only a specific kernel 
version is fully maintained. We then searched for alternatives 
and discovered OpenSSI. The OpenSSI project integrates 
features similar to (open) Mosix and combines them with the 
network traffic load balancing capabilities of LVS. We 
implemented our first full cluster prototype using 2.6.10 
kernel’s open SSI release. By using the flexibility of the process 
migration combined with LVS network traffic load balancing 
capabilities and the single system administration, we were 
convinced that this is the best infrastructure to support our 
laboratories.  

 
Unfortunately, as we started the labs development with UML, 

we realized that having students work on a recent (2.6.x) kernel 
version on top of the open SSI 2.6.10 kernel was going to prove 
problematic. As of the time of these experiments (spring – 
summer 2005), UML had serious problems operating on some 
kernel versions. This included, naturally, the only version 
supported by OpenSSI.  

 
While featuring similar capabilities, (open) Mosix and open 

SSI both showed integration problems with other kernel-based 
technologies not yet integrated in the mainstream development 
tree. The first solution we considered was to edit by hand the 
patches in order to make their modifications co-exist 
harmoniously. This work involves gaining an in-depth 
knowledge of the chosen SSI technology and maintaining the 
patch for every new release of UML or OpenSSI. At the time of 
these experiences the development of UML was very active in 
response to many bugs related to its integration to the 2.6.x 
kernel series. As a result, we decided that this would represent 
too much of a time investment in the context of this particular 
project. Besides, early experiments that consisted in 
benchmarking a kernel compilation over the SSI cluster, 
revealed, as we expected, that the gain wasn’t justifying all 
these efforts. SSI technologies are based on the fact that 
processes can be migrated from one node to the other on the 
basis of the cluster’s workload distribution. In many cases, 
applications can be seamlessly migrated to an idle node as soon 
as the one they are running on becomes overloaded. In the case 
of a kernel compilation task, this might not be the case. 
Building a kernel is identical to building a UML machine, 
which we expect to be a relatively common task for OS 
students. Such a task spawns numerous short-lived processes 
which are each responsible to compile a couple of C files at a 
time. The duration of these processes is, in fact, so short that 
they don’t last long enough for the SSI load balancing 
algorithms to migrate them. Therefore, if a student logs in to the 
master node, all of his/her compilations processes will most 
likely remain on this node. If many students compile 
simultaneously their kernel(s), the master node will be 
overloaded while the cluster node will sit idle and nobody will 
actually benefit from the SSI capabilities. This observation led 

us to realize that process-level load balancing wasn’t sufficient 
for our specific application and that we would need to combine 
it with SSH connections load balancing (e.g. IPVS). The idea is 
that, as a student logs in to the cluster, he or she will be 
redirected to an arbitrary cluster node in a round robin fashion. 
From then on, even if the process-level load balancing is not 
effective, we at least already managed a rough load balancing 
by spreading incoming connections over the whole cluster. At 
that point, we had to revisit our infrastructure and find a new 
way to obtain the features which our previous experimentations 
deemed interesting:  

 
1. network load balancing 
2. process migration 
3. easy cluster management 

 
LVS could easily provide us with the first feature since it’s 
already integrated in stock 2.6.x kernels. Process migration 
would be the hardest to obtain in so far that it requires having a 
SSI-enabling kernel patch on the host kernel that is compatible 
with the UML patch on the guest kernel. Unfortunately, no such 
patch has been successfully incorporated into any of the 
mainstream kernels as of this writing. On the other hand, this 
feature, while undeniably desirable, also proved to be the less 
critical to the success of one of the most common OS students’ 
activities. Easy cluster management is necessary to maintain a 
reasonable system administration workload. Requiring 
interested institutions to commit personnel to administrate the 
cluster node individually would be a critically discouraging 
argument against adopting SOFTICE. The Warewulf project 
provided us with a perfect solution which didn’t necessitate any 
kernel modification. 

Warewulf 
 

To quote the Warewulf project’s wiki at http://warewulf-
cluster.org/: “Warewulf is a Linux cluster solution that is 
scalable, flexible and easy to use.” [edited out] “Warewulf is 
the first of its kind which elegantly solves many of the problems 
associated with administration and scalability.” [edited out] 
“Warewulf facilitates the process of installing a cluster and 
long term administration. It does this by changing the 
administration paradigm to make all of the slave node file 
systems manageable from one point, and automate the 
distribution of the node file system during node boot. It allows a 
central administration model for all slave nodes and includes 
the tools needed to build configuration files, monitor, and 
control the nodes. It is totally customizable and can be adapted 
to just about any type of cluster. From the software 
administration perspective it does not make much difference if 
you are running 2 nodes or 500 nodes. The procedure is still the 
same, which is why Warewulf is scalable from the admins 
perspective. Also, because it uses a standard chroot'able file 
system for every node, it is extremely configurable and lends 
itself to custom environments very easily.” 

 
By combining LVS and the Warewulf toolkit, we obtain two 

out of three of the features we wanted in our cluster. Warewulf 
allows for a single master-node to serve a root file system, 
kernel, and initial ram disk to any cluster node at boot time. It 
therefore implements the centralized cluster management 
scheme which SSI systems benefit from. This toolkit, because it 
is not based on kernel modifications, also turned out to integrate 
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perfectly with both LVS and UML. As of today, our cluster is 
based on these technologies to provide us with a development 
environment for the OS labs we will be discussing below. 

 
  

3. OS LABS: A NEW APPROACH  
 

While educational Operating Systems (Minix, Nachos, 
Topsy, GeekOS…) enable students to comprehend a complete 
OS in one semester, they are often bound to implement the 
simplest algorithms for each component. An alternative 
approach is to cover fewer components but in a much more 
realistic way. For this approach, the Linux kernel is increasingly 
being used to provide students with a “real world” experience 
on operating systems internals. This is the approach we propose 
to develop further. Our first step has been to explore the nature 
of existing laboratories [14][11][13][10][8].The next section 
will focus on the lessons we learned and how we intend to use 
them to shape a somewhat different approach 

Toward a different OS labs pedagogy 
 
Introducing students to the Linux kernel internals in one 

semester can be a daring challenge depending on the average 
programming skills level and the motivation. Regardless of 
these factors, the Linux kernel source base is sufficiently large 
nowadays to pose the “where do I start first” problem to anyone 
not fluent in kernel programming. We will not revisit the 
arguments of the “real “ vs. “educational” OS controversy and 
explore possibilities to introduce such a large code base to the 
students while avoiding the most common pitfalls that 
experience taught us:   

 
First, students can be overwhelmed by the sheer quantity of 

code. As a result, they focus only on the micro changes required 
of them and absorb a minimal amount of information from the 
overall kernel. 

 
Secondly, directing students to make modifications to existing 

code and guiding them each step of the way can cause them not 
to develop their “start from scratch” programming skills.  

 
Our response to these concerns is based on the Loadable 

Kernel Modules (LKM) technology and the examples left by 
famous Root-kits such as Knark.  

 
Loadable kernel modules are software components featuring 

initialization and clean-up functions respectively executed when 
the module is started (loaded into the kernel) and unloaded. 
These components are compiled against a kernel source tree and 
dynamically linked to a running kernel thus allowing expansion 
of a running kernel’s capabilities without complete 
recompilation. This approach is most commonly known for the 
dynamic loading of device drivers.  For our purposes, one of the 
interesting features of loadable kernel modules is that modules 
can be of any size and complexity. In an operating systems 
laboratory, the complexity shouldn’t be in writing the code in 
the module itself but rather in the way the module interacts with 
kernel’s data structures and routines. With loadable kernel 
modules, students can manipulate well targeted kernel elements 
while still feeling in control of a relatively small code of their 
own. Also, the code written in a module is definitively kernel 
code and therefore exposes the students to the same “comfort 

level” that kernel programmers benefit from (no stdin, no 
system calls wrappers…). In pedagogical terms, the focus of the 
lecture can be easily reinforced by a lab briefing on specific, 
kernel elements that students’ modules will interact with. 

 
We can therefore introduce kernel data structures, system 

calls and kernel routines progressively and let students 
understand them from the perspective of “how do I manipulate 
these structures”. This approach has already been explored in 
Linux kernel books [11] which don’t try to provide an 
exhaustive code commentary or reference but more of a 
functional description of the kernel addressed and who might 
want to work with it.  So far, we haven’t specified how the 
students’ loadable kernel modules are to interface with the 
kernel; root-kits have been the inspiration behind this interface 
and the design of the operating systems laboratories we propose.  

Root-kits have been using loadable kernel modules 
[18][19][20] to allow a successful intruder to preserve a way to 
easily regain root access on a machine he previously broke into. 
Common tasks achieved by such root-kits include hiding from 
common system tools processes, directories and files, escalating 
privileges of any arbitrary processes fulfilling a trigger 
condition and so on so forth. During the course of the semester, 
students will work on re-implementing in their own modules 
which will affect the kernel in some way. Class lectures will 
cover the kernel internals and related data structures which the 
students will be exploiting throughout the term. This allows for 
a naturally paced introduction to the kernel with an interesting 
twist toward computer security related issues that will expand 
topics coverage in the OS lecture while further motivating 
students. Also, since the kernel source tree is introduced in 
small intervals over the duration of the term, the students will 
have the ability to discover kernel internals through a series of 
well-delimited forays designed to familiarize them with the 
kernel code. 

  

4. LABORATORIES OVERVIEW 
 
This section discusses how the above principles can be 

applied to develop an OS lab series. As of today, the first 
laboratories of the series have been developed. The whole set 
should be available at the project’s wiki site by the end of spring 
2006. We decided to use Knark [19][21] as a model of LKM-
based root-kit for the development of our laboratories.  

 
[Lab-1] System Calls Interception  
 

This first laboratory is meant to let students work inside a 
UML machine and test some provided code for intercepting the 
fork system call. Results are shown by running simple bash 
external commands and observing the shell forking a child 
process to execute the command. Students can then, by analogy, 
develop another LKM aimed at intercepting the open system 
call in a slightly different way. Once these preliminaries are 
acquired, passing parameters to a module at load time is 
considered and, a loadable kernel module capable of banning 
the use of fork (then open) to a specific PID passed at load time 
is implemented. To conclude, a more generic system call 
interception module is written that receives load time 
parameters specifying which system call number to block for 
which process.  

 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 3 33ISSN: 1690-4524



 

 

[Lab-2] Hiding a process 
 

The focus is here on process-related kernel data structures and 
the /dev/kmem kernel memory device. The technology is based 
on Knark sources and enables students to implement a module 
capable of hiding information related to a given process from 
system commands such as ps, top… This activity complements 
the former by developing it toward a topic that seems to always 
interest students; security. Furthermore, this module constitutes 
the very first step of a root-kit like module that students will be 
building from scratch.  

 
[Lab-3] File System Stacks 
 

This laboratory is an intermediate step used to introduce file 
systems kernel data structures and use the approach described 
by Erez Zadock [22][23] to not overwhelm students with the 
kernel source code for their first forays into this topic. The 
objective is also to prepare students to interact with the proc 
pseudo file system which is examined in the next laboratory.  
 
[Lab-4] Communication through ProcFS  
 

This lab focuses on the /proc pseudo file system and teaches 
students how to register file entries for their modules so that 
information can be exchanged with them after they are loaded 
into the kernel. The structure of Lab #01 is used again; first, the 
LKM intercepting the fork system call is extended to be able to 
prevent a list of processes from calling fork. The PIDs are 
visible through /proc/ban-fork.out and new PIDs can be added 
by writing to /proc/ban-fork.in. The open system call 
interception module is then modified in a similar manner thus 
allowing a list of files to be specified by their absolute paths. 
The module will ensure that these files won’t be opened by any 
process. This part is left to the students as an exercise so that 
they can repeat the drill by analogy with the source used as 
example. The loadable kernel module hiding processes is then 
enhanced using this same mechanics thus enabling to specify at 
run time the processes to hide / reveal. With a minimal syntax, 
students can very easily start controlling their loadable kernel 
module form the command line, or use it within their own user 
space programs.  

 
[Lab-5] Hiding Files & Directories 
 

The next natural step in stealth is to conceal the existence of 
files and directories. This lab is the analog of the precedent and 
starts by introducing the students to the file systems-related 
kernel data structures. Once again, Knark is guiding the 
resulting implementations of this laboratory and the object is to 
provide students with knowledge on one of the many available 
file systems. In our case, we will focus on the Ext2FS and 
Ext3FS family. Such project illustrates perfectly how User 
Mode Linux facilitates experimentations not only on the kernel 
internals but also on storage devices. It is safe to assume that 
some students might severely damage an existing file system 
while investigating the corresponding kernel code. With UML, 
a simple file will be formatted then mounted from the virtual 
machine. In case of a crash, restoring the image, or even the 
whole FS for that matter, is as simple as a copy command. 

  

5. DISCUSSION & FUTURE WORK 
 

This paper discussed recent advances in the SOFTICE project 
which ambitions are to provide educational institutions with 
system administration and pedagogical resources to bring an 
innovative approach to hands-on activities for CS and IT 
courses such as undergraduate operating systems courses. An 
open-source load balancing cluster infrastructure has been 
evaluated for this purpose and the experience we gained from its 
implementation herein discussed. To illustrate the new 
possibilities offered by this first step, a novel approach to 
undergraduate operating systems laboratories has been 
presented and its early implementation discussed. The project’s 
wiki site will provide further technical and pedagogical 
resources (http://softice.lklnd.usf.edu). 

 
We are right now exploring ways to leverage our clustering and 
virtual machines infrastructure in other courses which benefit 
from hands-on environments which, just like for operating 
systems, are problematic to set up and maintain. We want to 
offer support for replication or development efforts undertaken 
by the educational community at large. These efforts have 
resulted so far in experiments with Linux System 
Administration and undergraduate Networking courses. 
 
We are also starting exploring possibilities to provide automatic 
installation and management tools to simplify the setup of a 
similar cluster and the daily system administration tasks. This 
will help reducing the amount of work involved in “giving a 
try” at replicating the SOFTICE experiment and thus facilitate 
its dissemination at large.  
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