
Modelling SDL, Modelling Languages
Michael PIEFEL

Institut für Informatik, Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

piefel@informatik.hu-berlin.de

and
Markus SCHEIDGEN

Institut für Informatik, Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

scheidge@informatik.hu-berlin.de

ABSTRACT

Today’s software systems are too complex to implement them and
model them using only one language. As a result, modern soft-
ware engineering uses different languages for different levels of
abstraction and different system aspects. Thus to handle an in-
creasing number of related or integrated languages is the most
challenging task in the development of tools.

We use object oriented metamodelling to describe languages. Ob-
ject orientation allows us to derive abstract reusable concept defi-
nitions (concept classes) from existing languages. This language
definition technique concentrates on semantic abstractions rather
than syntactical peculiarities. We present a set of common con-
cept classes that describe structure, behaviour, and data aspects of
high-level modelling languages. Our models contain syntax mod-
elling using the OMG MOF as well as static semantic constraints
written in OMG OCL.

We derive metamodels for subsets of SDL and UML from these
common concepts, and we show for parts of these languages that
they can be modelled and related to each other through the same
abstract concepts.

Keywords: Metamodel, MDA, SDL, MOF, OCL, UML

1. INTRODUCTION

Increasing demand for more and more complex software requires
that software engineering itself becomes more and more complex.
Informal problem analyses, crude design techniques, and ad-hoc
program writing cannot fulfil modern software engineering needs.
For that reason the building block of today’s quality-conscious real-
izations of extensive software projects have to be formal analyses,
complex design models, generated program code, and automated
development tasks within standardized software engineering pro-
cesses.

The mere size of today’s software system forces you to break
down its complexity. One way (horizontal separation) is to break
the complexity down into multiple views on the system. The
various aspects of a system are modelled in separate views. A
common partitioning is into a structural, a behavioural and a data
view. Following this principle, you use different languages that are
specialized for the modelling of different system aspects. Often
those languages are related, and they build a family of languages,
like the UML [14] or the collection of ITU-T languages, called
ULF.

Vertical separation is the other way to deal with complexity; a
system is modelled by using different levels of abstraction. The

Model Driven Architecture (MDA) [11], a method with increasing
popularity, uses models in various levels of abstraction to drive
the process of software development from early analysis to a fully
implemented and deployed ready-to-use system. In the MDA, the
important details that you abstract from in higher level design
phases are platform dependency, performance issues, real-time
aspects, etc. Of course you have to use different languages for
different levels of abstraction; you use languages that are special-
ized and made for the depth of detail needed at a certain point in
the development process.

Therefore complex software systems force you to use many lan-
guages because you model different system aspects with different
languages and model the system in different levels of abstraction,
using different languages. But as matter of fact, the integration
between languages is usually poor, and most languages have more
commonalities than differences. This provides a big motive for
a technique that allows to relate languages and thus promotes a
better integrated use of languages and allows the reuse of their
language concepts and implementations.

We think that metamodelling is the technique that is needed. Meta-
modelling allows object-oriented decomposition of languages by
finding abstractions. Metamodelling offers different concepts to
relate the concepts of languages and reuse via inheritance hierar-
chies. In this paper we want to exemplify how metamodelling can
be used to build a common model for SDL [8] and UML.

Section 2 gives an introduction into metamodelling; it explains
the idea of common concepts, the reusable core of our models; it
shows how common concepts are identified, modelled and used.
In Sect. 3 we present a common structural, behavioural and data
model. This model is used in Sect. 4 as the common base for an
SDL and an UML model. We demonstrate this common model by
applying it to an SDL model and UML model of the same simple
example system. Here we show: How the common model relates
structural, behavioural and data concepts to each other and how
the common concept correlates SDL and UML concepts with each
other, and how these concepts are reused in the two different lan-
guages. Section 5 will finally draw some conclusions and present
ideas for further work.

2. METAMODELLING, OBJECT-ORIENTATION AND
COMMON CONCEPTS

Before we present the result of our efforts to build common models,
we want to give an introduction about what metamodels are, what
concepts are, what makes concepts common, and how does the
overall idea of metamodelling for language integration/alignment
and language reuse work.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 61ISSN: 1690-4524

Metamodelling
The building blocks of metamodels are concepts. Concepts are
modelled as classifications of language entities of the same kind.
Examples for concepts are variables, data type, procedures etc.
Those classifications (concept classes) can be related to other con-
cepts: they can inherit from more abstract concepts; they can
aggregate other concepts; they can associate with other concepts,
and finally they can contain other concepts: structural features,
like attributes or references to other concepts, and behavioural
features, like methods. Meta-models are usually notated using
UML class diagrams.

Semantically a concept is an idea or a notion that we apply to
things, or objects in our awareness. A concept applies or does
not apply to an object [10]. When you transfer this common def-
inition to the metamodelling domain, a concept is an idea or a
notion that applies or does not apply to an element of a model or
a program.

A good introduction to metamodelling can be obtained fromAtkin-
son [1, 2] or the MOF standard [12].

Concepts
The nature of object-orientation is to compose a larger system
from smaller parts or to decompose a larger system into smaller
parts. Of course you can do the same with concepts; you compose
more expressive concepts from less expressive concepts.

There are two forms of composition; the specialization of concepts
using inheritance and structural composition using concept rela-
tions like aggregations or associations. This is known as object-
oriented (de)composition [3], the (de)composition with abstrac-
tions as key; you compose less abstract concepts from more ab-
stract ones.

There are two important metrics that describe the applicability of
concepts for further composition. These metrics are cohesion and
coupling [4]. A concept has a high cohesion if it describes a sin-
gle, atomic characteristic. A concept NamedElement whose only
characteristic is the property name is highly coherent. A concept
has low coupling if it does not depend on other concepts. The
concept NamedElement has low coupling; it only depends on the
primitive data type String.

These metrics describe the capability of concepts to be the basis
for composition. A concept with high cohesion and low coupling
is easy to use without getting characteristics you do not want (high
cohesion) or dependencies you can not handle (low coupling).

Common Concepts
As a matter of fact, languages have more commonalities than dif-
ferences. The languages that are made to model the same system
aspects, but on different levels of abstraction, often share many
concepts – because they are meant to model the same things, but
just with a different level of detail.

For example eODL [9], SDL, and even implementation languages
(like Java) incorporate the concept of generalization, they support
structural features like attribute, or they have data typed elements
such as variables. Here the shared concepts form a direct align-
ment between languages and allow easy derivation of translation
processes to convert models between the different abstraction lev-
els.

On the other hand, languages that are made for modelling at the
same abstraction level, but for the modelling of different aspects,
basically use more different concepts. In the end, those languages
are used to model only one consistent system, and for that reason

they have to be related to each other. Their concept spaces overlap.
The concepts in this intersection are common concepts.

As an example, take a parameterized procedure call. The param-
eter’s type is in the domain of data modelling; the procedure call
that uses the parameter falls into the structural view; the proce-
dure’s behaviour may access the parameter and uses operations
defined by the data type of the parameter. So all of the three
views, and their respective languages, must have the same syntac-
tical and semantic idea about what a data type/parameter is; they
must share this common concept. Here the shared concepts often
form a direct relation between languages that can be utilized for
an integrated use of languages.

How does metamodelling allow the shared use of common con-
cepts? Well as laid out earlier metamodels are simply object-
oriented models and their entities can be composed (reused) to
more concrete concepts. We mentioned two metrics that influ-
ence the applicability of a concept for reuse. In summary there
are three properties that a concept must fulfil in order to be a
common, and more importantly a reusable concept:

1. A common concept must be common; it must be applicable to
the entities of different languages.

2. It must have high cohesion in order to be freely and flexible
combinable without the ballast of unnecessary or unwanted
concept features.

3. It must have low coupling; this is needed to prevent conflicts
when the concept is used for composition.

Sources for Common Concepts
The overall nature of a set of common concepts is that this set
is evolving. As languages evolve, new concepts and techniques
are invented and used, the set of common concepts must adopt
and evolve over time. In other words, the common concepts must
continuously adopt to their sources. What are these sources, how
do we find them? We identified three different sources that can be
used to identify concepts that are common to considered languages,
and that will probably be common to other languages:

1. Concepts that already exist, are well known. These are con-
cepts of the object-oriented paradigm, concepts taken from
abstract type systems, or abstract computational models like
state automata, algebraic expressions, etc.

2. Object-oriented decomposition of concepts of existing lan-
guages into smaller, more abstract, and potentially common
concepts.

3. By direct integration of languages and straightforward com-
parison of the related concepts in different languages.

Source 2 would be the most desirable. It describes the object ori-
ented method that we use in daily software development and that
is known to lead to flexible and reusable artefacts. However, it is
also the most problematic source, because it is unlikely that two
abstractions gained independently from two languages will be the
same. Therefore a direct comparison of languages is inevitable
and the integrated use of source 3 and 2 would be the method of
choice. Of course, also the ideas taken from source 1 must be
taken into account. Those known concepts reflect the common
knowledge about languages and only this knowledge makes a set
of common concepts applicable for future languages.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 162 ISSN: 1690-4524

GeneralizableElement *

1

+supertype

GeneralizableElementSupertype

+specialtype

Expression
(from CommonData)

determineType()

ArgumentedElement
(from CommonData)

*

1

+arguments*{ordered}

+argumentedElement

Arguments

Namespace

TypedElement

NamedElement

name : String

1

1

+instance

+type
Type

ParameterParameterizedElement

Type

1

+parameters
0..*

{ordered}

+parameterizedElement

Parameters

BodiedElement

Container

ModelElement
0..1 +bodiedElement1

+body Bodied

*

+container
1

+contents
Contains

Contains

Figure 1: Common Structure

3. THE COMMON MODEL

In this section we present a model of common concepts for struc-
tural, behavioural and data modelling. We developed this model
by comparing SDL with UML, we looked for abstractions in those
languages; we normalized these abstractions to fit into each other;
we were also influenced by existing metamodels to UML and our
common knowledge about language constructs.

Here are few notes on the notation: The model is notated with
UML class diagrams. Most of the concept classes are abstract; so
they cannot be instantiated directly; they have to be specialized by
a concrete language definition. There is heavy use of specializa-
tion throughout the model. Unfortunately, the support for special-
ization of associations in MOF/UML 1.x is very poor. In order to
notate association specialization anyway, we used dependencies
with the same name. They should be understood as replacement
for the original association, but with the dependency’s ends as new
specialized association ends.

We omit detailed explanations of the model, but we give a few
notes on those parts that we think are not self explanatory.

Common Concepts among Common Concepts
The Common package (Fig. 1) contains the most abstract concepts;
these are concepts that themselves are heavily used by the com-
mon concepts. ModelElement is the most abstract element; it is the
super concept to all other concepts. Its purpose is to model every
element as possible contents for the Container concept.

The container-contents relation (also known as composite-
component) uses composite aggregation semantics in order to
impose a strong part-of-a-whole semantics on the instances of
Container and its content. To both participants of this relation
there are specializations: Namespace and NamedElement. These
four concepts are widely used in structural modelling; classes,
components, SDLAgents, packages are only a few examples.

The usefulness of BodiedElement is yet unclear. On the one hand
this element can be replaced in a container-contents relation. On
the other hand, some constructs, like a process in SDL, contain
named elements but also contain a nameless body (processes con-
tain a state automaton). Further applications have to show whether
BodiedElement is needed or not.

The concept TypedElement characterizes an element that refer-
ences exactly one type of that very element. The name typed
easily confuses, because you instantly think of data-type seman-
tics; but the concept TypedElement is just a syntax property that
simply says that there is exactly one type to every typed element.

The concept Parameter for example is a classical application of
TypedElement. But another application of TypedElement, Argu-
mentedElement, might seem a bit more peculiar. It is best explained
through an example: Imagine a procedure call (an element with ar-
guments) and its type the procedure declaration (an element with
parameters – ParameterizedElement).

On first sight GeneralizableElement seems to be incoherent because
it unnecessarily specializes Namespace. But wherever generaliza-
tion/specialization occurs it seems to have inheritance semantics.
The reason is that in order to have something to inherit, general-
izable elements should be able to contain something. Take the
methods and members of a Java class as an example.

Behaviour
The next model package is CommonBehaviour (Fig. 2 on the next
page). Because there are a lot of techniques that are used in mod-
elling behaviour, this package, or better the set of behaviour mod-
elling concepts in general, have potential for further development.
We only present concepts for the behaviour modelling with state au-
tomata and concepts for a simple communication mechanism.

A StateAutomaton is a composite element that contains States and
Transitions. Transitions connect two states. NextState directly
relates a transition with its successor state. This is straightfor-
ward.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 63ISSN: 1690-4524

AnswerGuard Trigger

Action

StateAutomaton
State

0..*

0..1

+ entryActions
{ordered}

+ state

EntryActions

0..*

0..1

+exitActions
{ordered}

+ state

ExitActions

Transition

0..*

0..1

+actions

{ordered}

+ transition

Actions

1

1

+ nextState

+ transition

NextState0..*

1

+ transitions

+ automaton

Transitions

Selector 0..*

1

+ selectors

+ state

SelectorsOfState

1

1

+ transition

+ selector

TransitionSelector

States

Media

*

ComSource

*

*

ComSink

*

*

ComData
*

1

*

1

+ adjacentMedia + sink

+ media

+ source

+ media

+ data

+ source

+ data

+ sink

SourceData SinkData

Entry Exit

Network

State

Start

Split
question : Expression

PseudoState

JoinHistory

recursive : Boolean

Stop

NamedState

NamedElement
(from Common)

1

+ automaton
0..*

+ states

Immediate

Figure 2: Common Behaviour – State Automata and Communication

Unfortunately, the relation from the predecessor state to an tran-
sition is not straightforward at all. For one thing, there has to be
a concept that selects the transition that should be executed; for
another we have to decide where to place the Selector. The current
solution (as presented in the figure) is that Selector is part of Tran-
sition and can be reached via the SelectorsOfState association from
the predecessor state.

As many decisions this one yet has to prove sensible. Other pos-
sibilities are that the selectors are part of the states and simply
reference the transitions that they select; or the selected transition
is part of the selector (it is done that way in the Z.100 (SDL) spec-
ification). We chose this solution because we think it meets best
with the scholar’s idea of a state automaton.

Transitions can contain Actions. Often a transition shall not sim-
ply execute a chain of actions, but branch on conditions or join
with another transition. To enable this, we introduce PseudoState;
states that that a automaton cannot reside in over a period of time,
but only can instantly fire a transition.

The states Split and Join are such pseudo states. A Transition cannot
perform splits or joins on its own; but it can connect join and split
states. A split state can only be predecessor to transitions that have
Answer selectors. Those answers select the path to choose, accord-
ing to the question expression of the split. A join state, can only be
predecessor to exactly one transition with Immediate selector.

Communication concepts are modelled in a simple way; a Com-
Source sends ComData over a Network of Media to an ComSink. These
concepts are explained in detail in Sect. 4 , where they are used.

Data
The data concepts modelled in the CommonData (Fig. 3 on the next
page) describe an operative interface to actual data types, expres-
sions and their application, and the definition variables.

The concept ValueDataType is capable of modelling an interface to
any algebraic data type, since it uses Literal to define a set and it
defines Operations that work on that set.

The Expression concept allows arbitrary inductive expressions over
data using LiteralExpression, VariableAccess and AnyExpression as
base step and Operation as inductive step.

4. APPLICATION OF THE COMMON MODEL

The model for SDL was derived from the SDL abstract grammar
using the techniques described in [7, 13]. Basically this means
that a preliminary model was generated from the SDL grammar,
using an automated mapping from BNF to the MOF-model (the
language that we write our metamodels with [12]), and then the
elements of this model were related (marked as specializations)
to the elements from the common model. For the UML model,
concrete concepts were taken from the UML standard and related
to our common model.

Unfortunately this is a paper of limited size, so it is not possible to
provide you with the actual metamodels for SDL and UML that
we derived from the common model. Instead we would like to
show an SDL and UML model of an simple example system, and
we want to show with this example, where which common concept
is used in which concrete language concept. The example system
is a very primitive constructed system but it shows some major
concepts of the modelling of structure, communication, and state
automata.

Figure 4 shows the structure of the system. In both models there
is multiple use of the communication concept Media. In SDL,
gates and channels are media, used to create a communication
link between agent instances. UML defines associations between
classes to define links as media between class instances. Media is
conceived as a unidirectional communication link; for that reason
both the bi-directional SDL channel as well as the bi-navigable
UML association must be aggregations of two media. Further the
UML association is also an aggregation of its association ends
(each of them is a media too); the SDL gates instead are part of
the agent instead.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 164 ISSN: 1690-4524

LiteralExpression

Literal

1

1

+ literal

+ literalExpressionLiteralOfLiteralExpression

ValueDataType

1. . *

1

+ literals

+ dataType

Literals Operation

OperationApplication

ArgumentedElement

VariableAccess

Assignment

Expression

determineType()

1

1

+ assignmentExpression

+ assignment

AssignWith

*1 + arguments

{ordered}

+ argumentedElement

Arguments

Variable

1

+ variable
1

+ access

AccessedVariable

1

1

+ variable

+ assignment

AssignTo

0. . 1

1

+ initExpression

+ variableDefinition

Initialization

DataType

compatibleWith()

AnyExpression

Type

Type

Namespace
(from Common)

Contains

Type

Type

Type

Figure 3: Common Data

It might seem strange to apply communication semantics to UML
association. The semantics of UML is for the bigger part open
to individual interpretation. We apply the following semantics:
There must be a navigable link from object a to object b in order
to allow a to call a method (to send a message) on b.

This is a bit difficult because methods have synchronous commu-
nication semantics. This means that there must be an additional
implicit ComItem characterising the return. Regardless of these se-
mantic differences both SDL signals and UML methods comply
to the ComItem concept.

There is one common concept needed here that we did not cover in
the common model; that is an interface concept. An interface is a
communication concept that constrains possible communication;
an interface says which ComItems an entity can receive or send.
This way an interface is a concept that is purely part of static se-
mantics; it is only used for model checking and has no influence
on the actual system behaviour.

We did not introduce an interface concept because we are not sure
whether it is really needed. All elements of an interface (signals,
methods, etc.) are already covered by other concepts (gates, class,
etc.); but for a common implementation of static semantics an ad-
ditional common interface concept might be very useful. The con-
cept interface becomes even more important when specialization
and polymorphism complicates the implicit interfaces of UML
classes of SDL agents.

In both languages there is a instantiable structure type concept;
agent type in SDL and classes in UML. Both type concepts are
GeneralizableElements and Namespaces. They might also comply
to the BodiedElement, like their relation to a state automaton that
describes the behaviour of a type. Both concepts are instantiable;
but SDL allows the definition of whole instance sets. Due to the
more detailed and more formal semantics, the SDL agent type is
a bit more sophisticated; it differentiates various kinds of agents
with different characteristics. The UML class is a more common
broader concept. But both share the mentioned concepts.

As mentioned SDL agent and UML class are namespaces; they
are namespaces to distinguish features of those structure types. A
UML class may contain attributes and methods; an SDL agent is
namespace to various definitions including variables and proce-
dures.

Those features might have a specific visibility. In UML they fol-
low the known private, protected, public scheme. In SDL visi-
bility is hidden behind the possibility to export variables and to
make procedures remotely accessible. As interfaces visibility has
purely constraining semantics; it is tightly coupled to the inter-
face concept. It is omitted from our common model for the same
reasons.

Both languages are almost identical about the State concept. Be-
side the normal named state, there are pseudo states. These are
states in that the behaving entity cannot reside but only immedi-
ately trigger a transition or completely stop any further behaviour.
Such states are for example start or stop states. States can, in both
languages, contain inner states that are computed in parallel.

For the modelling of transitions between such composite states
SDL defines entry and exit points to derive semantics that is de-
tailed enough to allow an unambigiuous execution of the automa-
ton. Such points comply to the pseudo state concept (not part of
the example).

Transitions are in both languages executed when selected by a
trigger, a guard, or similar concepts; selectors can also be combi-
nations of such concepts. Transitions can contain actions such as
tasks or outputs in SDL or method calls in UML. The exit from a
state (the execution of a transition from this state) as well as the
entry to a state (the execution of a transition to this state) can be
accompanied by actions. All exit, transition, and entry actions are
executed in a specific order.

In SDL it is possible to split one transition into reusable parts us-
ing labels. Because this is purely syntactical, there is no concept
for that in the common model.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 65ISSN: 1690-4524

Another selector is the Trigger, for example inputs in SDL and
method call events in UML. Both concepts also comply with the
ComSink concept and are the far side of a communication. This
means that a signal and its actual arguments (the ComItem) are
received in SDL and the method call message and the actual ar-
guments (the ComItem) are received in UML. The opposite is the
output in SDL and the method call in UML. These elements com-
ply to both ComSource and Actions. ComSource because they are
the local side of a communication and Actions because they are
executed as part of a transition.

The example system shall transit from B to A or B depending on
the value of varA. The behaviour has been realized differently in
SDL and UML to exemplify both approaches; both are possible in
SDL and UML. In UML the transitions selector is a combination
of a Trigger (the methodB call event) and a Guard selector; there are
two different selectors for two different transitions. In the SDL
model, a first transition, leading to a Split pseudo state, is selected
as usual by the input trigger. From that split state the next transi-
tion is immediately selected by one of the two Answer selectors;
the answers finally make the difference.

5. CONCLUSION

We use metamodelling’s object-oriented characteristics to build a
model of concepts that are common in high-level modelling lan-
guages. This set of common concepts can be the basis for the
definition and implementation of languages.

There are three factors that are crucial for the success of the com-
mon concept idea:

• Common concepts are subject to frequent changes, and the
set of common concept has to be constantly evolved to adopt
to new trends in the modelling world. The problem is: How
flexible and adoptable is metamodelling really?

• Can common concepts be the base for reusable tool implemen-
tations? Is it possible to implement a shared concept once and
reuse it in tools for different languages? How easy is it to de-
velop tools for new languages on the basis of already existent
tool implementations.

• When common concepts evolve, can implementations based
on common concepts evolve with them? Is metamodelling
flexible enough to evolve common concepts without con-
stantly crippling and deprecating already written tools that
are based on them?

All of these question can only be answered when metamodelling
and the common concept idea is practically used. From the theo-
retical view point, the only point of view that we can look from for
now: due to the success of object-oriented software development
that metamodelling is based upon, all these question have to be
answered with a yes.

But despite its success, object-orientation could not fulfil every
promise made, and it cannot be the final answer to all software en-
gineering problems. For that reason the theoretical (hypothetical)

yes might seem a bit faint and questionable to the practitioner’s
eye.

We started to use the common concept idea, and the models pre-
sented in this paper, in methodologies, frameworks and actual im-
plementations for language tools. In [5] a conceptual architecture
for language development and tool implementation is proposed,
and we use this tool-based language development to implement
tools for ITU-T languages; our work in progress is presented in
[6].

6. REFERENCES

[1] ColinAtkinson. Meta-Modeling for Distributed Object Envi-
ronments. In 1st International Enterprise Distributed Object
Computing Conference, October 1997.

[2] Colin Atkinson and Thomas Kühne. The essence of multi-
level metamodeling. In 4th International Conference of the
Unified Modeling Language, October 2001.

[3] Grady Booch. Object-Oriented Design with Applications.
Addison Wesley Professional, 1991. 2nd edition (1993).

[4] Peter Coad and Edward Yourdon. Object-Oriented Design.
Yourdon Press, 1991.

[5] Joachim Fischer, Eckhardt Holz, Andreas Prinz, and Markus
Scheidgen. Tool-based Language Development. In Work-
shop on Integrated-reliability with Telecommunications and
UML Languages (WITUL) , November 2004.

[6] Joachim Fischer, Andreas Kunert, Michael Piefel, and
Markus Scheidgen. ULF-Ware – An Open Framework for
Integrated Tools for ITU-T Languages. In SDL 2005 , LNCS.
Springer-Verlag, 2005.

[7] Joachim Fischer, Michael Piefel, and Markus Scheidgen. A
metamodel for SDL-2000 in the context of metamodelling
ULF. In SAM 2004 , LNCS. Springer-Verlag, 2005.

[8] ITU-T Z.100. Specification and Description Language
(SDL). International Telecommunication Union, August
2002.

[9] ITU-T Z.130. Extended Object Definition Language (eODL).
International Telecommunication Union, July 2003.

[10] James Martin and James J. Odell. Object-Oriented Methods:
A Foundation. Prentice Hall PTR, 1995. 2nd edition (1997).

[11] MDA. Model Driven Architecture Guide, Version 1.0.1. Ob-
ject Management Group, June 2003. omg/03-06-01.

[12] MOF. Meta Object Facility, Version 1.4. Object Manage-
ment Group, March 2003. formal/2002-04-03.

[13] Markus Scheidgen. Metamodelle für Sprachen mit formaler
Syntaxdefinition, am Beispiel von SDL-2000. Humboldt-
Universität zu Berlin, June 2004. Dissertation.

[14] UML. Unified Modeling Language, Version 1.5. Object
Management Group, March 2003. formal/2003-03-01.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 166 ISSN: 1690-4524

UML Class/Object Diagram

SDL System

a : A b : B

endBendA

A

methodC()

B

attrA : Integer

methodA()
methodB(argA : Integer)

11

+ endB+ endA

signalC signalA, signalB
a(1,1):A

signal signalA,
 signalB(Integer), signalC;

A B

b(1,1):B

gateA gateB

UMLClass and SDLAgentType are both a combination
of GeneralizableElement and Namespace.

UMLObject and SDLTypebasedAgent
are both TypedElements.

UMLAssociation, UMLAssociationEnds,
SDLChannels and SDLGates are all Media.

UMLMethod and SDLSignals both
comply to ComItem. But UMLMethod,
as part of an interface, also complies to
the concept Media; in SDL, this role is
provided by SDLGate. Those items can
be ArgumentedElements and
TypedElements.

Figure 4: Common Concepts among SDL’s and UML’s Concepts

A

B

methodAmethodB / endA. methodC()

methodB (attrA) [attrA!=1]

methodB (attrA) [attrA==1]

signalC
via gateB

signalC

signalB varA

dcl varA Integer;

signalB(varA)

BA

B

signalA

B

A

signalA, signalB

Process Type B

gateB

1else

Statechart for Class B

The UMLMethodCall and the SDLOutput
are Action and also ComSource.
The UMLMethodCalledEvent and the SDLInput
are T rigger and also ComSink.

This Selector is a combination of
an UMLMethedCallEvent and a
Guard .

State, Start, Stop are the same in
both languages.

The SDLDecision is a Split , a PseudoState
that uses Answer as Selector for the two
successor transitions.

SDLVariable as well as UMLAttribute
are T ypedElements and part of the surrounding
Namespace

Figure 5: Common Concepts among SDL’s and UML’s Statechart Concepts

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 1 67ISSN: 1690-4524

	P637430

