
A Sort-Last Rendering System over an Optical Backplane 
 
 

Yasuhiro KIRIHATA, Jason LEIGH, Chaoyue XIONG, Tadao MURATA 
Department of Computer Science, University of Illinois at Chicago 

Chicago, Illinois 60607, U.S. 
 
 
 

ABSTRACT 
 
Sort-Last is a computer graphics technique for rendering 
extremely large data sets on clusters of computers. Sort-Last 
works by dividing the data set into even-sized chunks for 
parallel rendering and then composing the images to form the 
final result. Since sort-last rendering requires the movement of 
large amounts of image data among cluster nodes, the network 
interconnecting the nodes becomes a major bottleneck. In this 
paper, we describe a sort-last rendering system implemented on 
a cluster of computers whose nodes are connected by an 
all-optical switch. The rendering system introduces the notion 
of the Photonic Computing Engine, a computing system built 
dynamically by using the optical switch to create dedicated 
network connections among cluster nodes. The sort-last volume 
rendering algorithm was implemented on the Photonic 
Computing Engine, and its performance is evaluated. Prelimi- 
nary experiments show that performance is affected by the 
image composition time and average payload size. In an attempt 
to stabilize the performance of the system, we have designed a 
flow control mechanism that uses feedback messages to 
dynamically adjust the data flow rate within the computing 
engine. 
 
Keywords: Computer graphics, parallel processing, sort-last 
rendering, optical backplane, and feedback control. 
  
  

1. INTRODUCTION 
  
The continual drop in the cost of commodity computers has 
motivated aggressive research in the development of techniques 
for realizing and optimizing large scale computation on PC 
clusters. On a cluster, each node is connected to each other by a 
high-speed communication network whose bandwidth can reach 
anywhere between 1~10 Gbps, depending on the technology 
used. The cluster system takes the MIMD (Multiple Instruction 
stream Multiple Data stream) architecture on which each node 
can deal with its own data set on its own memory and execute 
the programs in parallel. Compared with the SIMD (Single 
Instruction stream Multiple Data stream) architecture, it is cost 
effective and utilization of computing resource is more efficient. 
  
When we consider the efficiency of a parallel algorithm over a 
cluster, we should take one major overhead into account, i.e., 
communication among processing elements. To minimize the 
communication cost, we need to (1) communicate in bulk, (2) 
minimize the size of transferred data, and (3) minimize the 
distance of data transfer. The first and second requirements are 
for minimizing the start up time and transmission time, 
respectively. The third point depends on the topology of the 
cluster system and the mapping of the parallel programs. Since 
the propagation time over the medium of the network is usually 
very small on the cluster, we can ignore the distance among the 
nodes. We need to take (1) and (2) to optimize the communi- 

cation among the processing elements. If the communication 
payload in a system becomes larger, e.g. the multimedia 
application, it is not easy to realize (1) and (2) at the same time. 
Because if one would like to send data in bulk, the size of each 
message becomes large, and if the size of each message is small, 
one needs to send messages more frequently. Using a huge 
bandwidth network can greatly reduce transmission time, and 
thus is the most effective way to realize these two requirements. 
Therefore, constructing a cluster over a high bandwidth network 
such as an optical network is one of the most effective solutions 
to handle large data sets on clusters. 
  
The OptIPuter [1], a project currently at the Electronic 
Visualization Laboratory (EVL) and the University of 
California San Diego, is a computing model which uses optical 
networking as a backplane to connect clusters of computers that 
are collectively regarded as large computer peripherals. For 
example, a cluster of computers with massive RAID disks are 
thought of as a single large disk drive; and a cluster of 
computers with advanced graphics cards are thought of as a 
single giant graphics card. These peripherals are then inter- 
connected with optical networks to form a wide variety of 
virtual computers that can be specifically customized to meet 
application’s requirements. The Gigabit Ethernet switch which 
supports the optical fiber connection converts the optical signal 
into the electrical signal to realize the packet switching 
internally in the conventional way. Although the achievable 
bandwidth of the optical fiber is over 50 Tbps, the practical 
limitation of the throughput is about 1~10 Gbps through the 
Gigabit Ethernet switch. This is due to the response time of a 
photodiode. The typical photodiode converts one signal in 1 
nsec, that is, the limit of data rate is about 1 Gbps. The 
limitation of the signal sampling causes the limitation of the 
traditional optical-electrical network switch. Meanwhile, the 
optical switch adopts totally different architecture for switching 
network. It uses the all-optical MEMS devices to switch the 
connection inside. The optical signal incoming via the inbound 
fiber is routed to the outbound fiber with the micro-mirrors and 
lenses in the silicon. There are no signal changes from optical to 
electrical. This technology can avoid the bottleneck of the 
optical-electrical converting signal and make utilize of the 
optical fiber’s bandwidth possible up to the upper limitation. 
The advantage of the optical switch-based cluster is that the 
bandwidth of the interconnection among cluster nodes could be 
over 1000 times larger than the traditional Gigabit Ethernet 
cluster. 
  
However, there is a serious drawback on the optical switch- 
based cluster. The switching delay takes about 1~2 seconds. If 
the switch changes connections among the cluster nodes 
frequently, the performance of the parallel computation will be 
degraded. We can expect the performance improvement of the 
parallel computation when the connection among the cluster 
nodes does not change frequently compared with the processing 
time for the assigned task on each node. Especially, the parallel 
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algorithm in which the data flow is static among the nodes and 
going to the single node like a tree-structured connection, the 
switching does not happen after the initial connection 
establishment. We can hide the drawback and get the benefit of 
the optical switch-based cluster. 
  
In this paper, we discuss the design and implementation of the 
sort-last rendering system on the optical switch-based cluster. 
Contents of the paper are as follows; first of all, we explain the 
sort-last rendering in Section 2. Then, we discuss the design and 
implementation of our system in Section 3. In Section 4, we will 
provide experimental results and analysis of the system. Finally, 
we discuss a feedback control mechanism to realize a stable 
burst flow in the cluster in Section 5. 
  
  

2. SORT-LAST RENDERING 
  
There are three well-known parallel rendering algorithms, 
sort-first, sort-middle, and sort-last rendering [3]. Their 
differences are characterized by the time when the primitives 
are distributed to several processors in the graphic pipeline. The 
following figure illustrates the taxonomy of the parallel 
rendering architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Taxonomy of the parallel rendering architecture 
(a) sort-first, (b) sort-middle, and (c) sort-last 

  
The graphic pipeline has three stages, the application processing, 
the geometry processing, and the rasterization. At the geometry 
processing stage, each geometry unit G processes the geometry 
to be rendered. At the rasterization stage, each rasterizer unit R 
handles the pixel calculations. In the sort-first rendering, the 
"raw" primitives are distributed early to each processor during 
the geometry processing stage. Each processor is assigned to a 
part of the entire display which is divided into disjoint regions, 
and it renders the assigned primitives individually. 
  
In the sort-middle rendering, the distribution of the work is 
arbitrary and even among the geometry units. Each rasterizer 
unit is responsible for a screen space region. After the geometry 
processing, each primitive is allocated to the corresponding 
rasterizer unit that is responsible for the screen space location of 
the primitive. 
  
The sort-last rendering, on the other hand, defers sorting 
primitives until the end of the rendering pipeline, i.e. after 
primitives have been rasterized into pixels. Each processor is 
assigned a subset of primitives and renders them no matter 
where they locate on the screen. After rendering, processors 
communicate with each other to composite those pixels to 
generate the final entire image. In order to handle the real-time 

high quality image rendering, the high data rates over the 
internetwork among the rendering processors is required. This is 
one of the reasons why we target on the parallel computing 
system over the high bandwidth optical network. 
  
There are some techniques to optimize the data transfer in the 
sort-last rendering. One is the bounding rectangle method. It is 
also called SL-sparse. It minimizes the data transfer by only 
sending the pixels with actual data (active pixels). In order to 
encode the active pixels, (1) you find a smallest rectangle which 
contains all actual pixels in the rendered image, (2) take 
coordinates of upper left and lower right points, and (3) pack 
these coordinates and the image data inside the rectangle as the 
buffer to send. When the original image is sparse, the 
optimization is done efficiently. 
 
At the composition stage of the sort-last rendering, because the 
composition of active pixel and non-active pixel is the active 
pixel, we should only compose the overlapping region of two 
rectangles. This composition technique reduces the time to 
compose two images. 
 
Another optimization technique is the run-length encoding 
method. In the method, each pixel is classified into two kinds of 
pixel, active pixel and non-active pixel. Counting the 
continuously locating non-active pixels and encode the count as 
the integer into the sending buffer, the total size of pixels 
shrinks. Combining these two methods, we can optimize the 
data transfer rate in the sort-last rendering and improve its 
performance. 
  
  

3. SYSTEM DESIGN AND IMPLEMENTATION 
 

3.1. PHOTONIC COMPUTING ENGINE 
  
The Photonic Computing Environment provides a high 
performance computing mechanism over the optical switch- 
based cluster system. It constructs the pipelines among the 
cluster nodes and manages the computation flow. In order to use 
the optical switch to construct the rendering cluster, the cluster 
application needs to use the Photonic Domain Controller (PDC) 
[2] to generate the pipeline connection among the cluster nodes. 
Because the current existing library for parallel programming 
such as MPICH does not support the manipulation of the 
connection inside the optical switch, it is necessary to 
implement the network application which generates the network 
pipeline among the cluster nodes over the optical switch. The 
following figure shows the architecture of the network 
application to construct the cluster over the optical switch. 
 
 
 
 
 
 
 
 
 

Fig. 2. Architecture of Photonic Computing Environment 
 
The PDC provides the interface to create the link inside the 
optical switch. The network application that uses the PDC at 
first invokes the PDC’s interface to establish the connection 
between two nodes. After generating the connection, those 
nodes can communicate each other with any protocols such as 
TCP and UDP. The connection can occupy the whole bandwidth 
allocated at the initialization time. It is disconnected when 
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communicating nodes explicitly invoke the disconnect function 
on the PDC. The Photonic Computing Engine (PCE) handles 
the establishment of the connection among the cluster nodes and 
provides the functionality to synchronize messages to the add-in 
calculation module such as image rendering module and image 
composition module. 
  
The PCE has the two types of data transfer mechanism, pull-up 
mode and push-out mode. In the pull-up mode, the client sends 
a request to the PCE and it returns the results as the C/S system. 
In the sort-last rendering case, the viewer on the client send 
rendering request to the PCE each time when it needs to change 
the view. On the other hand, the outputs of calculations on the 
PCE are generated as much as possible and sent to the client in 
the push-out mode. The push-out mode is useful if the 
computation results are automatically generated like animations 
and movies. 
  
  

3.2. ARCHITECTURE OF THE SORT-LAST 
RENDERING SYSTEM OVER THE PCE 

  
The PCE is the application that provides the network pipeline 
among the nodes on the optical switch-based cluster and 
synchronization mechanism to realize the sort-last rendering. 
Fig. 3 shows the architecture of the PCE with 7 nodes for the 
sort-last rendering. 
 
On the each node, the Photonic Computing Unit (PCU) is 
running and generates the pipeline. The client application 
accesses to the root PCU to get the computing result. In the 
sort-last volume rendering system, the PCU plays two types of 
roles, the composition proxy and the rendering server. Each 
rendering server fetches the allocated part of volume data and 
renders the image. After rendering the image, the rendering 
server sends to the composition proxy, which is a parent node of 
it. At the composition proxy, it synchronizes the output images 
and composes them. 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 3. Architecture of the 7-node sort-last rendering cluster 

 
 

3.3. IMPLEMENTATION OF PCE 
 
In this section, we will describe the actual implementation of 
the PCE. PCE has basically the following functionalities, 
message transferring, message queuing, flow control, and 
module add-in. 
 
(1) Message transferring 
The PCE generates the cluster as a tree. When the client sends 
the request to the PCE, the root node has to propagate the 
request message to the computing nodes such as the rendering 
servers. Since switching the connection among the nodes in the 
optical switch takes much cost, the PCE does not change the 
connection pattern. The message needs to be passed along the 
tree-structured connection. Therefore, the each PCU has the 
message transferring mechanism from the parent node to the 
child nodes. 

(2) Message queuing 
On the intermediate PCU, the synchronization mechanism is 
required because the intermediate PCU might use both results 
sent from two child PCUs. Each message sent from the child 
PCUs has a sequential number and it is used to synchronize the 
output results. Since the output messages from the child PCUs 
are sent to the intermediate PCU asynchronously, it needs to 
store the messages in a queue to synchronize them. 
 
(3) Flow control 
In the push-out mode, the rendering server sends output image 
to the composition proxy. If the output message rate of the 
rendering server is better than that of the other rendering servers 
or ability of message processing at the composition proxy, the 
queue could overflow for the message burst. Therefore, the flow 
control mechanism is required in the composition proxy. In 
order to control the flow, we use the socket buffer and TCP flow 
control mechanism. If the socket buffer is full, the sender 
process is blocked on a TCP connection. Thus, if the length of 
the queue becomes maximum, the composition proxy blocks the 
receiving process until a queue element is consumed by another 
process. The blocking of the receiving process on the proxy is 
propagated to the child node and stop sending data. 
 
(4) Module add-in 
Besides the message routing mechanism, the PCE provides the 
computation add-in mechanism, that is, you can replace the 
composition and rendering part of implementation to other one 
like the add-in module. You can easily change the computation 
algorithm on the PCE by overwriting the computation part of 
composition nodes and rendering nodes. For example, the proxy 
provides the callback function that is invoked when all output 
data from child nodes reach at the proxy. One can overwrite the 
callback function that handles the output buffers to implement 
other composition algorithms. Also, the rendering server 
provides the display function as the callback function. If one 
would like to implement the other rendering algorithms, one can 
modify the display function to realize it. 
  
We explain the implementation of the rendering server, 
composition proxy, and client viewer. The rendering server 
renders the part of the volume data with the 3D texture mapping 
method. After rendering the assigned part of volume data, it 
fetches the image data from the frame buffer. The fetched image 
is cut into the smallest rectangle which includes the active part 
of the image, encoded by the Run Length Encoding algorithm, 
and sent to the composition proxy [4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Composition of the overlapping part of two rectangles 
 
The composition proxy receives the encoded images from the 
child nodes such as the rendering server and other composition 
proxy. The encoded images are decoded and checked whether 
the two image rectangles have overlapping part or not. If so, 
overlapping part of two image rectangles are fetched and 
composed. Then, the composed part is embedded into the image 
rectangle which includes two image rectangles inside. Fig. 4 
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shows the composition algorithm. Composing the overlapping 
part of the rectangles, we can omit the other redundant 
composition such as the composition with the blank part of 
pixels. After finishing the composition, it packs the data as the 
message with appropriate header and sends the packed message 
to the parent node. 
 
The client viewer also has a queue to store the image data sent 
from the composition proxy. It fetches the encoded image and 
pushes it into the queue. The display routine of the client viewer 
popes the image data from the queue, decoding data, embedding 
it into the original size of blank rectangle, and maps it onto the 
square polygon. It also has an interface to change the argument 
of the volume image. When you drag the mouse over the 
display window, the bounding box rotating on the window and 
send the request message to the composition proxy when you 
release the mouse button. We can switch pull-up mode or burst 
image mode with the client viewer. 
 
Setting the configuration file, one can specify the tree structure 
of the cluster. In the configuration file, the information of the 
network connection can be described by the port numbers and 
network addresses of parent node, child nodes and message 
transfer service on each node. Each node has the ID specified by 
the command line argument at the beginning of the execution. 
In the configuration file, the set of parameters for each node is 
separated and identified with the node ID. Each node reads its 
configuration part from the configuration file according to its 
ID. 
 
Since the cluster in EVL consists of the nodes on which Linux 
is running and Linux cannot recognize more than 2 optical NICs, 
the proxy cannot have 3 NICs to construct the data processing 
pipeline currently. Therefore, the current implementation does 
not have the function to construct the connections over the 
optical switch with PDC. However, once the pipeline is 
constructed with PDC, the communication overhead in terms of 
the PDC does not happen during the computation of image 
rendering. Additionally, bandwidth of an optical NIC and a 
regular Gigabit NIC are similar to each other (both have around 
1 Gbps). We can simulate and evaluate the performance of PCE 
somehow in the current implementation. 
 
 

4. EXPERIMENTAL RESULTS 
 
In order to evaluate the PCE, we implemented the sort-last 
volume rendering system over the PCE and took some 
experiments. The volume rendering is a method to visualize the 
volume data which is sampled by CT (Computer Tomography) 
or MRI (Magnetic Resonance Imaging) scanner. The sampled 

data has the scalar value for each point in the 3 dimensional 
spatial data. Several methods are proposed to visualize the 
volume data. The representative methods are ray casting, 
splatting, shear-warp and hardware-assisted 3D texture mapping 
[5][7]. We implemented the 3D texture mapping method to 
render the volume in the system 
  
We used the cluster that has 16 nodes, 1 master and 15 slaves. 
Each node has dual Xeons 1.8 GHz and 1.5 GB memory. The 
graphics card is PNY Quadro FX3000 and the Gigabit Ethernet 
card is equipped on each node. All nodes are connected to the 
Gigabit Ethernet Switch to construct a cluster. In the experiment, 
we constructed the 7-node sort-last rendering system on the 
cluster and rendered the three sample volume data, protein.raw, 
hydrogen.raw and foot.raw, which have sizes of 64x64x64, 
128x128x128, and 256x256x256 respectively [6]. 
 
We took several trials for image resolutions 128x128, 256x256 
and 512x512, and measured time intervals on the client viewer, 
the composition proxy, and the rendering server. The measured 
time intervals are the total delay, queuing time, blending time, 
bounding rectangle calculation time and so on. 
 
The graphs in Fig. 5 show the total delay and spent time for 
each process in the system. Total delay means how long it takes 
from the start of sending request message to final image 
displaying on the client viewer. Image embedding time is the 
time to embed the partial rectangle image into the original size 
of blank image to generate final one. Blending time is the 
composition processing time for two received images. 
Synchronization time is the time to take for synchronizing the 
received data, that is, the time interval from the arrival of the 
first image to the arrival of the final image. It is actually the 
time the data spent in the queue until it is popped out. Finally, 
queuing time is the time to push and pop the data in the queue 
respectively. Queue data is stored in the shared memory. 
Attaching, detaching, reading and writing data to the shared 
memory is the main processes of the queue handling. 
  
As can be seen in these graphs, the total delay increases as the 
resolution size increases. The number of polygons did not affect 
the performance explicitly, since the performance of the 
rendering server is so much better compared with the processing 
performance inside the proxies. 
  
From these results, we can see that the blending time increases 
as the size of the resolution becomes larger. The reason is like 
this. If the resolution is larger, the overlapping part of the two 
rectangles on the composition process becomes larger. The 
blending calculation spends more time as the size of the 
overlapping part of the two rectangles increases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Total delay and spent time of each processing in the 7-node volume rendering cluster system. (a) Processing times 
for protein.raw, (b) processing times for hydrogen.raw, and (c) processing times for foot.raw 

Processing time for foot.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

To
ta

l d
el

ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

Bl
en

di
ng

Sy
nc

hr
on

iz
at

io
n

sp
en

t t
im

e 
(s

ec
)

128x128
256x256
512x512

Processing time for hydrogen.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

To
ta

l d
el

ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

Bl
en

di
ng

Sy
nc

hr
on

iz
at

io
n

sp
en

t t
im

e 
(s

ec
)

128x128
256x256
512x512

Processing time for protein.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

To
ta

l d
el

ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

Bl
en

di
ng

Sy
nc

hr
on

iz
at

io
n

sp
en

t t
im

e 
(s

ec
)

128x128
256x256
512x512

66 SYSTEMICS, CYBERNETICS AND INFORMATICS                VOLUME 3 - NUMBER 3 ISSN: 1690-4524



Other time intervals such as synchronization, queue push and 
queue pop do not change explicitly in this experiment. However, 
the synchronization time can increase if the transferred data size is 
getting larger, since it includes the data receiving time. Thus, we 
can say that the transmission time affects the synchronization time 
and total performance of the frame rate on the client viewer 
significantly. 
  
Fig. 6 shows the frame rate on the client viewer when the system 
pushes out the output image as fast as possible or keeps the 
sending rate in a certain speed, such as 10 FPS, 15 FPS, and 20 
FPS. In order to keep the sending rate, the rendering server takes 
sleep for appropriate time in the redraw routine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Frame rate in push-out mode 
 
If the rendering server sends the data as much as possible, the 
actual frame rate is not good, because the data flow in the cluster 
is not smooth. When the message-sending rate at the rendering 
servers is too high, the queues in the composition proxies can be 
full easily and frequently because once one rendering server’s 
performance get worse, the other one send messages during the 
time and the many messages which cannot be synchronized arrive 
at the composition proxy. Controlling the output of the rendering 
server, the data flow inside the cluster get smooth and the frame 
rate is improved as you can see in the other sending rate cases. 
What is the optimal message-sending rate on the rendering servers 
is the significant problem in order to maximize the performance of 
the system. 
 
Finally, we can expect some rendering performance improvement 
if the number of polygons to be rendered is huge and the rendering 
speed on each rendering server is close to the optimal one in the 
push-out mode. In this case, the frame rate on the single machine 
is lower than that of each rendering server in our sort-last volume 
rendering system because the frame processing ability in the 
composition proxy depends on not the number of polygons to 
visualize the volume data but the spatial distribution of active 
pixels and resolution. 
  
  

5. DATA FLOW CONTROL MECHANISM IN PCE 
 
In this section, we discuss the flow control mechanism for the 
push-out mode. The objective of this mechanism is to adaptively 
determine the optimal push-out rate for the rendering system to 
ensure maximum animation frame rate. The following figure 
shows the data flow model of the 7-node cluster, where nij is the 

number of messages generated by a rendering process j, and noj is 
the number of messages handled by a composition process j. 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The data flow model of the 7-node cluster 
 
A composition process assembles two messages together each of 
which comes from a different queue, and creates one message. The 
whole system is composed of six small equivalent sub-systems as 
shown in Fig. 8, where ni is the number of input message, and no is 
the number of output message. 
 
 
 
 

Fig. 8. The sub-system 
 
A system achieves the maximum-speed response with a 
predictable operation if the system operates at a state close to 
stability boundary. A queue pair refers to two queues feeding the 
same composition process. If two queues in a queue pair are stable, 
i.e., always have some messages to feed a composition process 
and at the same time no queue has an overwhelming number of 
messages than another, the system can achieve the maximum 
message-sending rate. In other words, the system can achieve the 
maximum rate by maintaining a non-zero and small queue in a 
steady state, and draining queues when the sources do not have 
messages to send. Therefore, in order to achieve the maximum rate, 
we should maintain a small number of messages in every queue. 
This is the problem of making the sub-system be stable.  
  
A queue does not change the number of messages, but it imposes 
delay to message flow. Thus a queue can be modeled as a delay 
part, so is a composition process.  
 
Let l=l(t) to express the length of a queue, then we have: 
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Since queue length is greater than zero in a stable state, therefore, 
we have,  
    
 
 
    
whose corresponding Laplace transform is  
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The message-sending rate is the derivative of the number of 
messages generated by a rendering process and output rate is the 
derivative of the number of messages processed by a composition 
process, i.e.,  
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Since ro(0) = 0 and ri(0)=0, we have Laplace transforms for ro(t) 
and ri(t) as: 
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Therefore, the fluid-flow model for the open-loop sub-system can 
be modeled as shown in Fig. 9, where τ is the delay of the 
sub-system, Ri and Ro is the Laplace transform of the 
message-sending rate and message-output rate respectively.  
 
 
 
 
 
 
 
 
 
 

Fig. 9. Open-loop sub-system 
 
From Fig. 9, we have the following equations: 
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From Eq. (1) and Eq. (2), we know the open-loop transfer function 
of the system is: 
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τ is small, so the system can be considered as a linear system 
within a small range of time. Thus the system can be analyzed by 
the stability criterion of a linear system, which says that a system 
is stable if all roots of its characteristic equation lie to the left of 
imaginary axis in the s-plane.  
  
The characteristic equation of this system has only one root, s = 0, 
which means that the system is boundary stable. However, usually 
a boundary-stable system is not stable in operation. To make this 
system stable, one option is to add a negative feedback to the 
system, as shown in Fig. 10, where λ is a feedback gain. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Closed loop subsystem 
 
From Fig. 10, we know,  
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Thus, the closed-loop transfer function is: 
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The system has a pole at −λ, therefore, the system is stable 
provided λ > 0.  
  
We can apply this control mechanism to the 7-node cluster as 
follows. When the composition proxy receives the message, it 
returns the feedback λL to the child node where L is the current 
queue length. Then, the child node controls the message-sending 
rate to ri – λL. If the child node is the rendering server, it can add 
some time interval in the display loop to control the sending rate. 
If the child node is the composition proxy, it adds some time 
interval in the composition routine to control the message-sending 
rate to realize the feedback control. 
 
 

6. CONCLUSIONS 
 
We designed the sort-last rendering cluster system with optical 
switch over the optical fiber network and implemented the system 
to evaluate its performance. We found it from the experiments that 
the performance of the sort-last parallel rendering system is 
mainly affected by the image blending time and synchronization 
time. Synchronization time increases when transmission time 
grows or the loads on rendering servers are not balanced. While 
the frame processing ability of the composition proxy is related to 
the resolution and the density of the active pixel, it is relatively 
independent on the number of polygons rendered on the rendering 
server. Thus we can expect an improvement of the frame rate in 
the push-out mode if the rendered image on the rendering server 
consists of lots of polygons and make a burden to render on a 
single machine. 
 
When rendering servers generate images as much as possible and 
the message-sending rate exceed the processing capability on the 
composition proxy, the frame rate on the client viewer gets worse. 
To realize the optimal data flow inside the cluster, we propose the 
flow control mechanism which calculates the optimal message- 
sending rate from the current queue length and feedback to the 
child nodes to set the message-sending rate. Evaluating the 
efficacy of the adaptive flow mechanism is the future work, as 
well as testing in a fully realized optical network. 
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