
A Sort-Last Rendering System over an Optical Backplane

Yasuhiro KIRIHATA, Jason LEIGH, Chaoyue XIONG, Tadao MURATA
Department of Computer Science, University of Illinois at Chicago

Chicago, Illinois 60607, U.S.

ABSTRACT

Sort-Last is a computer graphics technique for rendering
extremely large data sets on clusters of computers. Sort-Last
works by dividing the data set into even-sized chunks for
parallel rendering and then composing the images to form the
final result. Since sort-last rendering requires the movement of
large amounts of image data among cluster nodes, the network
interconnecting the nodes becomes a major bottleneck. In this
paper, we describe a sort-last rendering system implemented on
a cluster of computers whose nodes are connected by an
all-optical switch. The rendering system introduces the notion
of the Photonic Computing Engine, a computing system built
dynamically by using the optical switch to create dedicated
network connections among cluster nodes. The sort-last volume
rendering algorithm was implemented on the Photonic
Computing Engine, and its performance is evaluated. Prelimi-
nary experiments show that performance is affected by the
image composition time and average payload size. In an attempt
to stabilize the performance of the system, we have designed a
flow control mechanism that uses feedback messages to
dynamically adjust the data flow rate within the computing
engine.

Keywords: Computer graphics, parallel processing, sort-last
rendering, optical backplane, and feedback control.

1. INTRODUCTION

The continual drop in the cost of commodity computers has
motivated aggressive research in the development of techniques
for realizing and optimizing large scale computation on PC
clusters. On a cluster, each node is connected to each other by a
high-speed communication network whose bandwidth can reach
anywhere between 1~10 Gbps, depending on the technology
used. The cluster system takes the MIMD (Multiple Instruction
stream Multiple Data stream) architecture on which each node
can deal with its own data set on its own memory and execute
the programs in parallel. Compared with the SIMD (Single
Instruction stream Multiple Data stream) architecture, it is cost
effective and utilization of computing resource is more efficient.

When we consider the efficiency of a parallel algorithm over a
cluster, we should take one major overhead into account, i.e.,
communication among processing elements. To minimize the
communication cost, we need to (1) communicate in bulk, (2)
minimize the size of transferred data, and (3) minimize the
distance of data transfer. The first and second requirements are
for minimizing the start up time and transmission time,
respectively. The third point depends on the topology of the
cluster system and the mapping of the parallel programs. Since
the propagation time over the medium of the network is usually
very small on the cluster, we can ignore the distance among the
nodes. We need to take (1) and (2) to optimize the communi-

cation among the processing elements. If the communication
payload in a system becomes larger, e.g. the multimedia
application, it is not easy to realize (1) and (2) at the same time.
Because if one would like to send data in bulk, the size of each
message becomes large, and if the size of each message is small,
one needs to send messages more frequently. Using a huge
bandwidth network can greatly reduce transmission time, and
thus is the most effective way to realize these two requirements.
Therefore, constructing a cluster over a high bandwidth network
such as an optical network is one of the most effective solutions
to handle large data sets on clusters.

The OptIPuter [1], a project currently at the Electronic
Visualization Laboratory (EVL) and the University of
California San Diego, is a computing model which uses optical
networking as a backplane to connect clusters of computers that
are collectively regarded as large computer peripherals. For
example, a cluster of computers with massive RAID disks are
thought of as a single large disk drive; and a cluster of
computers with advanced graphics cards are thought of as a
single giant graphics card. These peripherals are then inter-
connected with optical networks to form a wide variety of
virtual computers that can be specifically customized to meet
application’s requirements. The Gigabit Ethernet switch which
supports the optical fiber connection converts the optical signal
into the electrical signal to realize the packet switching
internally in the conventional way. Although the achievable
bandwidth of the optical fiber is over 50 Tbps, the practical
limitation of the throughput is about 1~10 Gbps through the
Gigabit Ethernet switch. This is due to the response time of a
photodiode. The typical photodiode converts one signal in 1
nsec, that is, the limit of data rate is about 1 Gbps. The
limitation of the signal sampling causes the limitation of the
traditional optical-electrical network switch. Meanwhile, the
optical switch adopts totally different architecture for switching
network. It uses the all-optical MEMS devices to switch the
connection inside. The optical signal incoming via the inbound
fiber is routed to the outbound fiber with the micro-mirrors and
lenses in the silicon. There are no signal changes from optical to
electrical. This technology can avoid the bottleneck of the
optical-electrical converting signal and make utilize of the
optical fiber’s bandwidth possible up to the upper limitation.
The advantage of the optical switch-based cluster is that the
bandwidth of the interconnection among cluster nodes could be
over 1000 times larger than the traditional Gigabit Ethernet
cluster.

However, there is a serious drawback on the optical switch-
based cluster. The switching delay takes about 1~2 seconds. If
the switch changes connections among the cluster nodes
frequently, the performance of the parallel computation will be
degraded. We can expect the performance improvement of the
parallel computation when the connection among the cluster
nodes does not change frequently compared with the processing
time for the assigned task on each node. Especially, the parallel

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 3 63ISSN: 1690-4524

algorithm in which the data flow is static among the nodes and
going to the single node like a tree-structured connection, the
switching does not happen after the initial connection
establishment. We can hide the drawback and get the benefit of
the optical switch-based cluster.

In this paper, we discuss the design and implementation of the
sort-last rendering system on the optical switch-based cluster.
Contents of the paper are as follows; first of all, we explain the
sort-last rendering in Section 2. Then, we discuss the design and
implementation of our system in Section 3. In Section 4, we will
provide experimental results and analysis of the system. Finally,
we discuss a feedback control mechanism to realize a stable
burst flow in the cluster in Section 5.

2. SORT-LAST RENDERING

There are three well-known parallel rendering algorithms,
sort-first, sort-middle, and sort-last rendering [3]. Their
differences are characterized by the time when the primitives
are distributed to several processors in the graphic pipeline. The
following figure illustrates the taxonomy of the parallel
rendering architecture.

Fig. 1. Taxonomy of the parallel rendering architecture
(a) sort-first, (b) sort-middle, and (c) sort-last

The graphic pipeline has three stages, the application processing,
the geometry processing, and the rasterization. At the geometry
processing stage, each geometry unit G processes the geometry
to be rendered. At the rasterization stage, each rasterizer unit R
handles the pixel calculations. In the sort-first rendering, the
"raw" primitives are distributed early to each processor during
the geometry processing stage. Each processor is assigned to a
part of the entire display which is divided into disjoint regions,
and it renders the assigned primitives individually.

In the sort-middle rendering, the distribution of the work is
arbitrary and even among the geometry units. Each rasterizer
unit is responsible for a screen space region. After the geometry
processing, each primitive is allocated to the corresponding
rasterizer unit that is responsible for the screen space location of
the primitive.

The sort-last rendering, on the other hand, defers sorting
primitives until the end of the rendering pipeline, i.e. after
primitives have been rasterized into pixels. Each processor is
assigned a subset of primitives and renders them no matter
where they locate on the screen. After rendering, processors
communicate with each other to composite those pixels to
generate the final entire image. In order to handle the real-time

high quality image rendering, the high data rates over the
internetwork among the rendering processors is required. This is
one of the reasons why we target on the parallel computing
system over the high bandwidth optical network.

There are some techniques to optimize the data transfer in the
sort-last rendering. One is the bounding rectangle method. It is
also called SL-sparse. It minimizes the data transfer by only
sending the pixels with actual data (active pixels). In order to
encode the active pixels, (1) you find a smallest rectangle which
contains all actual pixels in the rendered image, (2) take
coordinates of upper left and lower right points, and (3) pack
these coordinates and the image data inside the rectangle as the
buffer to send. When the original image is sparse, the
optimization is done efficiently.

At the composition stage of the sort-last rendering, because the
composition of active pixel and non-active pixel is the active
pixel, we should only compose the overlapping region of two
rectangles. This composition technique reduces the time to
compose two images.

Another optimization technique is the run-length encoding
method. In the method, each pixel is classified into two kinds of
pixel, active pixel and non-active pixel. Counting the
continuously locating non-active pixels and encode the count as
the integer into the sending buffer, the total size of pixels
shrinks. Combining these two methods, we can optimize the
data transfer rate in the sort-last rendering and improve its
performance.

3. SYSTEM DESIGN AND IMPLEMENTATION

3.1. PHOTONIC COMPUTING ENGINE

The Photonic Computing Environment provides a high
performance computing mechanism over the optical switch-
based cluster system. It constructs the pipelines among the
cluster nodes and manages the computation flow. In order to use
the optical switch to construct the rendering cluster, the cluster
application needs to use the Photonic Domain Controller (PDC)
[2] to generate the pipeline connection among the cluster nodes.
Because the current existing library for parallel programming
such as MPICH does not support the manipulation of the
connection inside the optical switch, it is necessary to
implement the network application which generates the network
pipeline among the cluster nodes over the optical switch. The
following figure shows the architecture of the network
application to construct the cluster over the optical switch.

Fig. 2. Architecture of Photonic Computing Environment

The PDC provides the interface to create the link inside the
optical switch. The network application that uses the PDC at
first invokes the PDC’s interface to establish the connection
between two nodes. After generating the connection, those
nodes can communicate each other with any protocols such as
TCP and UDP. The connection can occupy the whole bandwidth
allocated at the initialization time. It is disconnected when

Sort

G G G

R R R

Sort

G G G

R R R
Sort

G G G

R R R

(a) (b) (c)

Application

Display

Application Application

Display Display

Photonic Domain Controller

Photonic Computing Engine

Application (Sort-last rendering)

Optical Network

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 3 ISSN: 1690-4524

communicating nodes explicitly invoke the disconnect function
on the PDC. The Photonic Computing Engine (PCE) handles
the establishment of the connection among the cluster nodes and
provides the functionality to synchronize messages to the add-in
calculation module such as image rendering module and image
composition module.

The PCE has the two types of data transfer mechanism, pull-up
mode and push-out mode. In the pull-up mode, the client sends
a request to the PCE and it returns the results as the C/S system.
In the sort-last rendering case, the viewer on the client send
rendering request to the PCE each time when it needs to change
the view. On the other hand, the outputs of calculations on the
PCE are generated as much as possible and sent to the client in
the push-out mode. The push-out mode is useful if the
computation results are automatically generated like animations
and movies.

3.2. ARCHITECTURE OF THE SORT-LAST
RENDERING SYSTEM OVER THE PCE

The PCE is the application that provides the network pipeline
among the nodes on the optical switch-based cluster and
synchronization mechanism to realize the sort-last rendering.
Fig. 3 shows the architecture of the PCE with 7 nodes for the
sort-last rendering.

On the each node, the Photonic Computing Unit (PCU) is
running and generates the pipeline. The client application
accesses to the root PCU to get the computing result. In the
sort-last volume rendering system, the PCU plays two types of
roles, the composition proxy and the rendering server. Each
rendering server fetches the allocated part of volume data and
renders the image. After rendering the image, the rendering
server sends to the composition proxy, which is a parent node of
it. At the composition proxy, it synchronizes the output images
and composes them.

Fig. 3. Architecture of the 7-node sort-last rendering cluster

3.3. IMPLEMENTATION OF PCE

In this section, we will describe the actual implementation of
the PCE. PCE has basically the following functionalities,
message transferring, message queuing, flow control, and
module add-in.

(1) Message transferring
The PCE generates the cluster as a tree. When the client sends
the request to the PCE, the root node has to propagate the
request message to the computing nodes such as the rendering
servers. Since switching the connection among the nodes in the
optical switch takes much cost, the PCE does not change the
connection pattern. The message needs to be passed along the
tree-structured connection. Therefore, the each PCU has the
message transferring mechanism from the parent node to the
child nodes.

(2) Message queuing
On the intermediate PCU, the synchronization mechanism is
required because the intermediate PCU might use both results
sent from two child PCUs. Each message sent from the child
PCUs has a sequential number and it is used to synchronize the
output results. Since the output messages from the child PCUs
are sent to the intermediate PCU asynchronously, it needs to
store the messages in a queue to synchronize them.

(3) Flow control
In the push-out mode, the rendering server sends output image
to the composition proxy. If the output message rate of the
rendering server is better than that of the other rendering servers
or ability of message processing at the composition proxy, the
queue could overflow for the message burst. Therefore, the flow
control mechanism is required in the composition proxy. In
order to control the flow, we use the socket buffer and TCP flow
control mechanism. If the socket buffer is full, the sender
process is blocked on a TCP connection. Thus, if the length of
the queue becomes maximum, the composition proxy blocks the
receiving process until a queue element is consumed by another
process. The blocking of the receiving process on the proxy is
propagated to the child node and stop sending data.

(4) Module add-in
Besides the message routing mechanism, the PCE provides the
computation add-in mechanism, that is, you can replace the
composition and rendering part of implementation to other one
like the add-in module. You can easily change the computation
algorithm on the PCE by overwriting the computation part of
composition nodes and rendering nodes. For example, the proxy
provides the callback function that is invoked when all output
data from child nodes reach at the proxy. One can overwrite the
callback function that handles the output buffers to implement
other composition algorithms. Also, the rendering server
provides the display function as the callback function. If one
would like to implement the other rendering algorithms, one can
modify the display function to realize it.

We explain the implementation of the rendering server,
composition proxy, and client viewer. The rendering server
renders the part of the volume data with the 3D texture mapping
method. After rendering the assigned part of volume data, it
fetches the image data from the frame buffer. The fetched image
is cut into the smallest rectangle which includes the active part
of the image, encoded by the Run Length Encoding algorithm,
and sent to the composition proxy [4].

Fig. 4. Composition of the overlapping part of two rectangles

The composition proxy receives the encoded images from the
child nodes such as the rendering server and other composition
proxy. The encoded images are decoded and checked whether
the two image rectangles have overlapping part or not. If so,
overlapping part of two image rectangles are fetched and
composed. Then, the composed part is embedded into the image
rectangle which includes two image rectangles inside. Fig. 4

Composition
Proxy

Rendering Server

Rendering Server

Rendering Server

Rendering Server

Composition
Proxy

Composition
Proxy

rectangle 1

rectangle 2

Overlapping part

rectangle 1

rectangle 2

Composed part

Compose
overlapping

parts and embed Composed
rectangle

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 3 65ISSN: 1690-4524

shows the composition algorithm. Composing the overlapping
part of the rectangles, we can omit the other redundant
composition such as the composition with the blank part of
pixels. After finishing the composition, it packs the data as the
message with appropriate header and sends the packed message
to the parent node.

The client viewer also has a queue to store the image data sent
from the composition proxy. It fetches the encoded image and
pushes it into the queue. The display routine of the client viewer
popes the image data from the queue, decoding data, embedding
it into the original size of blank rectangle, and maps it onto the
square polygon. It also has an interface to change the argument
of the volume image. When you drag the mouse over the
display window, the bounding box rotating on the window and
send the request message to the composition proxy when you
release the mouse button. We can switch pull-up mode or burst
image mode with the client viewer.

Setting the configuration file, one can specify the tree structure
of the cluster. In the configuration file, the information of the
network connection can be described by the port numbers and
network addresses of parent node, child nodes and message
transfer service on each node. Each node has the ID specified by
the command line argument at the beginning of the execution.
In the configuration file, the set of parameters for each node is
separated and identified with the node ID. Each node reads its
configuration part from the configuration file according to its
ID.

Since the cluster in EVL consists of the nodes on which Linux
is running and Linux cannot recognize more than 2 optical NICs,
the proxy cannot have 3 NICs to construct the data processing
pipeline currently. Therefore, the current implementation does
not have the function to construct the connections over the
optical switch with PDC. However, once the pipeline is
constructed with PDC, the communication overhead in terms of
the PDC does not happen during the computation of image
rendering. Additionally, bandwidth of an optical NIC and a
regular Gigabit NIC are similar to each other (both have around
1 Gbps). We can simulate and evaluate the performance of PCE
somehow in the current implementation.

4. EXPERIMENTAL RESULTS

In order to evaluate the PCE, we implemented the sort-last
volume rendering system over the PCE and took some
experiments. The volume rendering is a method to visualize the
volume data which is sampled by CT (Computer Tomography)
or MRI (Magnetic Resonance Imaging) scanner. The sampled

data has the scalar value for each point in the 3 dimensional
spatial data. Several methods are proposed to visualize the
volume data. The representative methods are ray casting,
splatting, shear-warp and hardware-assisted 3D texture mapping
[5][7]. We implemented the 3D texture mapping method to
render the volume in the system

We used the cluster that has 16 nodes, 1 master and 15 slaves.
Each node has dual Xeons 1.8 GHz and 1.5 GB memory. The
graphics card is PNY Quadro FX3000 and the Gigabit Ethernet
card is equipped on each node. All nodes are connected to the
Gigabit Ethernet Switch to construct a cluster. In the experiment,
we constructed the 7-node sort-last rendering system on the
cluster and rendered the three sample volume data, protein.raw,
hydrogen.raw and foot.raw, which have sizes of 64x64x64,
128x128x128, and 256x256x256 respectively [6].

We took several trials for image resolutions 128x128, 256x256
and 512x512, and measured time intervals on the client viewer,
the composition proxy, and the rendering server. The measured
time intervals are the total delay, queuing time, blending time,
bounding rectangle calculation time and so on.

The graphs in Fig. 5 show the total delay and spent time for
each process in the system. Total delay means how long it takes
from the start of sending request message to final image
displaying on the client viewer. Image embedding time is the
time to embed the partial rectangle image into the original size
of blank image to generate final one. Blending time is the
composition processing time for two received images.
Synchronization time is the time to take for synchronizing the
received data, that is, the time interval from the arrival of the
first image to the arrival of the final image. It is actually the
time the data spent in the queue until it is popped out. Finally,
queuing time is the time to push and pop the data in the queue
respectively. Queue data is stored in the shared memory.
Attaching, detaching, reading and writing data to the shared
memory is the main processes of the queue handling.

As can be seen in these graphs, the total delay increases as the
resolution size increases. The number of polygons did not affect
the performance explicitly, since the performance of the
rendering server is so much better compared with the processing
performance inside the proxies.

From these results, we can see that the blending time increases
as the size of the resolution becomes larger. The reason is like
this. If the resolution is larger, the overlapping part of the two
rectangles on the composition process becomes larger. The
blending calculation spends more time as the size of the
overlapping part of the two rectangles increases.

Fig. 5. Total delay and spent time of each processing in the 7-node volume rendering cluster system. (a) Processing times
for protein.raw, (b) processing times for hydrogen.raw, and (c) processing times for foot.raw

Processing time for foot.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

To
ta

l d
el

ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

Bl
en

di
ng

Sy
nc

hr
on

iz
at

io
n

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

Processing time for hydrogen.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

To
ta

l d
el

ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

Bl
en

di
ng

Sy
nc

hr
on

iz
at

io
n

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

Processing time for protein.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

To
ta

l d
el

ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

Bl
en

di
ng

Sy
nc

hr
on

iz
at

io
n

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 3 ISSN: 1690-4524

Other time intervals such as synchronization, queue push and
queue pop do not change explicitly in this experiment. However,
the synchronization time can increase if the transferred data size is
getting larger, since it includes the data receiving time. Thus, we
can say that the transmission time affects the synchronization time
and total performance of the frame rate on the client viewer
significantly.

Fig. 6 shows the frame rate on the client viewer when the system
pushes out the output image as fast as possible or keeps the
sending rate in a certain speed, such as 10 FPS, 15 FPS, and 20
FPS. In order to keep the sending rate, the rendering server takes
sleep for appropriate time in the redraw routine.

Fig. 6. Frame rate in push-out mode

If the rendering server sends the data as much as possible, the
actual frame rate is not good, because the data flow in the cluster
is not smooth. When the message-sending rate at the rendering
servers is too high, the queues in the composition proxies can be
full easily and frequently because once one rendering server’s
performance get worse, the other one send messages during the
time and the many messages which cannot be synchronized arrive
at the composition proxy. Controlling the output of the rendering
server, the data flow inside the cluster get smooth and the frame
rate is improved as you can see in the other sending rate cases.
What is the optimal message-sending rate on the rendering servers
is the significant problem in order to maximize the performance of
the system.

Finally, we can expect some rendering performance improvement
if the number of polygons to be rendered is huge and the rendering
speed on each rendering server is close to the optimal one in the
push-out mode. In this case, the frame rate on the single machine
is lower than that of each rendering server in our sort-last volume
rendering system because the frame processing ability in the
composition proxy depends on not the number of polygons to
visualize the volume data but the spatial distribution of active
pixels and resolution.

5. DATA FLOW CONTROL MECHANISM IN PCE

In this section, we discuss the flow control mechanism for the
push-out mode. The objective of this mechanism is to adaptively
determine the optimal push-out rate for the rendering system to
ensure maximum animation frame rate. The following figure
shows the data flow model of the 7-node cluster, where nij is the

number of messages generated by a rendering process j, and noj is
the number of messages handled by a composition process j.

Fig. 7. The data flow model of the 7-node cluster

A composition process assembles two messages together each of
which comes from a different queue, and creates one message. The
whole system is composed of six small equivalent sub-systems as
shown in Fig. 8, where ni is the number of input message, and no is
the number of output message.

Fig. 8. The sub-system

A system achieves the maximum-speed response with a
predictable operation if the system operates at a state close to
stability boundary. A queue pair refers to two queues feeding the
same composition process. If two queues in a queue pair are stable,
i.e., always have some messages to feed a composition process
and at the same time no queue has an overwhelming number of
messages than another, the system can achieve the maximum
message-sending rate. In other words, the system can achieve the
maximum rate by maintaining a non-zero and small queue in a
steady state, and draining queues when the sources do not have
messages to send. Therefore, in order to achieve the maximum rate,
we should maintain a small number of messages in every queue.
This is the problem of making the sub-system be stable.

A queue does not change the number of messages, but it imposes
delay to message flow. Thus a queue can be modeled as a delay
part, so is a composition process.

Let l=l(t) to express the length of a queue, then we have:

otherwise
rrorlifrr

dt
dl oioi >>

⎩
⎨
⎧ −

=
0

0

Since queue length is greater than zero in a stable state, therefore,
we have,

whose corresponding Laplace transform is

s
sRsRsL oi)()()(−=

The message-sending rate is the derivative of the number of
messages generated by a rendering process and output rate is the
derivative of the number of messages processed by a composition
process, i.e.,

)()(tn
dt
dtr oo = ,)()(tn

dt
dtr ii =

Laplace transform for a derivative is

∫ −=
t

oi duururtl
0

))()(()(

Queue
ni no

Compose

Compose

Queue

Render

Render

Render

Render
Compose

ni1

ni2

ni3

ni4

no2

no3

no1 Queue

Queue

Queue

Queue

Queue

0

2

4

6

8

10

12

14

16

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

10FPS 15FPS 20FPS As fast as possible

FP
S

128x128

256x256

512x512

(1)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 3 67ISSN: 1690-4524

)0()()(±−=⎥⎦
⎤

⎢⎣
⎡ fssFtf
dt
dL

Since ro(0) = 0 and ri(0)=0, we have Laplace transforms for ro(t)
and ri(t) as:

)()()(ssNtn
dt
dLsR ooo =⎥⎦

⎤
⎢⎣
⎡=

)()()(ssNtn
dt
dLsR iii =⎥⎦

⎤
⎢⎣
⎡=

Therefore, the fluid-flow model for the open-loop sub-system can
be modeled as shown in Fig. 9, where τ is the delay of the
sub-system, Ri and Ro is the Laplace transform of the
message-sending rate and message-output rate respectively.

Fig. 9. Open-loop sub-system

From Fig. 9, we have the following equations:

s
i

is
i

s
oo esR

s
sRsesNsessNsR τττ −−− ====)(
)(

)()()(

From Eq. (1) and Eq. (2), we know the open-loop transfer function
of the system is:

s
e

sR
sL s

i

τ−−= 1
)(
)(

τ is small, so the system can be considered as a linear system
within a small range of time. Thus the system can be analyzed by
the stability criterion of a linear system, which says that a system
is stable if all roots of its characteristic equation lie to the left of
imaginary axis in the s-plane.

The characteristic equation of this system has only one root, s = 0,
which means that the system is boundary stable. However, usually
a boundary-stable system is not stable in operation. To make this
system stable, one option is to add a negative feedback to the
system, as shown in Fig. 10, where λ is a feedback gain.

Fig. 10. Closed loop subsystem

From Fig. 10, we know,

s
io

ii

oi

eRsR
sLsRsR

s
sRsRsL

τ

λ
−=

−=′

−′
=

)(

)()()(

)()()(

Thus, the closed-loop transfer function is:

λ

τ

+
−=

−

s
e

sR
sL s

i

1
)(
)(

The system has a pole at −λ, therefore, the system is stable
provided λ > 0.

We can apply this control mechanism to the 7-node cluster as
follows. When the composition proxy receives the message, it
returns the feedback λL to the child node where L is the current
queue length. Then, the child node controls the message-sending
rate to ri – λL. If the child node is the rendering server, it can add
some time interval in the display loop to control the sending rate.
If the child node is the composition proxy, it adds some time
interval in the composition routine to control the message-sending
rate to realize the feedback control.

6. CONCLUSIONS

We designed the sort-last rendering cluster system with optical
switch over the optical fiber network and implemented the system
to evaluate its performance. We found it from the experiments that
the performance of the sort-last parallel rendering system is
mainly affected by the image blending time and synchronization
time. Synchronization time increases when transmission time
grows or the loads on rendering servers are not balanced. While
the frame processing ability of the composition proxy is related to
the resolution and the density of the active pixel, it is relatively
independent on the number of polygons rendered on the rendering
server. Thus we can expect an improvement of the frame rate in
the push-out mode if the rendered image on the rendering server
consists of lots of polygons and make a burden to render on a
single machine.

When rendering servers generate images as much as possible and
the message-sending rate exceed the processing capability on the
composition proxy, the frame rate on the client viewer gets worse.
To realize the optimal data flow inside the cluster, we propose the
flow control mechanism which calculates the optimal message-
sending rate from the current queue length and feedback to the
child nodes to set the message-sending rate. Evaluating the
efficacy of the adaptive flow mechanism is the future work, as
well as testing in a fully realized optical network.

7. ACKNOWLEDGEMENTS

The visualization and advanced networking research, collabo-
rations, and outreach programs at the EVL at the University of
Illinois at Chicago are made possible by major funding from the
National Science Foundation (NSF), awards EIA-9802090, EIA-
0115809, ANI-9980480, ANI-0229642, ANI-9730202, ANI-
0123399, ANI-0129527 and EAR-0218918, as well as the NSF
Information Technology Research (ITR) cooperative agreement
(ANI-0225642) to the University of California San Diego (UCSD)
for "The OptIPuter" and the NSF Partnerships for Advanced
Computational Infrastructure (PACI) cooperative agreement
(ACI-9619019) to the National Computational Science Alliance.

Ni(s) No(s)

Ri(s) Ro(s)

s s

1/s 1/s

L(s)

+ −

se τ−

Ni(s) No(s)

Ri(s)

Ro(s)

s s

1/s 1/s

L

+ −

λ
+ −

se τ−

)(sRi′

(2)

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 3 ISSN: 1690-4524

8. REFERENCES

[1] Jason Leigh, et al., "An Experimental OptIPuter Architecture

for Data-Intensive Collaborative Visualization", 3rd
Workshop on Advanced Collaborative Environments (in
conjunction with the High Performance Distributed Computing
Conference), Seattle, WA, 06/22/2003 – 06/22/ 2003

[2] Eric He, et al., "QUANTA: A Toolkit for High Performance
Data Delivery over Photonic Networks", Future Generation
Computer Systems 1005, 1-15 01/01/2003 – 01/01/2003

[3] Steven Molnar, Michael Cox, David Ellsworth, Henry Fuchs,
"A Sorting Classification of Parallel Rendering", IEEE
Computer Graphics and Applications, 14(4): 23-32 (1994)

[4] Don-Lin Yang, Jen-Chih Yu, Yeh-Ching Chung, "Effecient
Compositing Methods for the Sort-Last-Sparse Parallel
Volume Rendering System on Distributed Memory Multi-
computers", The Journal of Supercomputing, 18(2): 201-220
(2001)

[5] Michael Meißner, Jian Huang, Dirk Bartz, Klaus Mueller,
Roger Crawfis, "A Practical Evaluation of Popular Volume
Rendering Algorithms", Volviz 2000: 81-90 (2000)

[6] http://www.gris.uni-tuebingen.de/~bartz/
[7] Brian Cabral, et al., "Accelerated Volume Rendering and

Tomographic Reconstruction using texture mapping hardware",
ACM SIGGRAPH (Oct. 1994)

[8] D.C. Dorf and R.H. Bishop, Modern Control Systems,
Addison-Wesley, 1998.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 3 69ISSN: 1690-4524

	P640899

