
Non-linear and signal energy optimal asymptotic
filter design

Josef Hrǔsák
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Abstract— The paper studies some connections between the
main results of the well known Wiener-Kalman-Bucy stochastic
approach to filtering problems based mainly on the linear
stochastic estimation theory and emphasizing the optimality
aspects of the achieved results and the classical deterministic
frequency domain linear filters such as Chebyshev, Butter-
worth, Bessel, etc. A new non-stochastic but not necessarily
deterministic (possibly non-linear) alternative approach called
asymptotic filtering based mainly on the concepts of signal
power, signal energy and a system equivalence relation plays
an important role in the presentation. Filtering error invariance
and convergence aspects are emphasized in the approach. It
is shown that introducing the signal power as the quantitative
measure of energy dissipation makes it possible to achieve
reasonable results from the optimality point of view as well.
The property of structural energy dissipativeness is one of the
most important and fundamental features of resulting filters.
Therefore, it is natural to call them asymptotic filters. The notion
of the asymptotic filter is carried in the paper as a proper tool
in order to unify stochastic and non-stochastic, linear and non-
linear approaches to signal filtering.

Index Terms— Causality, Invariance, Structure, Convergence,
Signal power, Signal energy, Equivalence

I. I NTRODUCTION

Filtering is a large field in signal processing having a wide
sort of different applications and long history. Thus, it is not
very surprising that a lot of approaches have independently
been proposed and developed. In fact, two of them dominate.
The first one, the well known and broadly used frequency
domain approach based mainly on deterministic linear time-
invariant input-output system representations, seems to be the
most natural. If all the important characteristics of the problem
are known in the stochastic sense, then the stochastic version
of the input-output approach known as the Wiener filtering
theory can be considered as a proper tool for that. The second
approach can be characterized as state space oriented. The
well known Wiener-Kalman-Bucy linear filtering theory is
its stochastic version [1], [2], [3], [4]. It can be seen as
the substantial generalization of the Wiener filtering theory
already mentioned above.

Let us briefly summarize some main ideas and important
features of both the deterministic and stochastic approaches to
signal filtering in this paragraph in order to point differences
and similarities between them later. In signal processing [5],

[6], [7], [8] the main function of a filter is to remove unwanted
parts of a signal such as a random noise and other measure-
ment errors or to extract useful parts of the signal such as its
certain components lying within a specific frequency range.
Hence, it seems to be natural to start with the general theory of
stochastic processes [9], [10] and stochastic estimation theory
[11], [12], [13], [14], [15], [16] if the randomness of an
unwanted signal uncertainty can be considered as the main
attribute of reality and a reasonable quantitative model of the
uncertainty can be assumed. Such an approach leads to the
well known stochastic non-linear filtering problem concisely
introduced in the sections II and III [3], [11], [15], [17],
[18], [19], [20]. On the other hand, the frequency domain
characterization of both the useful and unwanted parts of
the signal seems to be more acceptable in many practical
situations and therefore the frequency domain approaches
based on the concept of an ideal frequency filter are often
preferred. The ideal frequency filter would have a rectangular
magnitude response. Unfortunately, it is non-causal. However,
there are practical filter design techniques that approximate the
ideal frequency filter characteristics and they are realizable.
Each of the major types - Butterworth, Chebyshev, Bessel,
etc. - optimizes a different aspect of the approximation [5],
[6], [7], [8].

The main aim of the paper consists in demonstrating that
it is possible to make compatible to each other both the
stochastic and frequency domain approaches and their results.
Further, they can be seen as a special case of the proposed
asymptotic filtering philosophy [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30] in a certain way. The paper also
tries to explain similarities between the developed asymp-
totic and optimal filtering. This problem has already been
discussed for example in [13], [20], [21], [24]. Nevertheless,
any straightforward answer has not been provided yet. Finally,
some simulation experiments and their results are presented
to illustrate these mentioned points.

II. STOCHASTIC FORMULATION OF

NON-LINEAR FILTERING PROBLEM

Let us shortly characterize a standard stochastic approach
to a continuous-time non-linear filtering problem [10], [11],
[15], [17].
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Consider two vector processesx(t) andy(t). The problem
is to estimate the unknown processx(t) from observation
of the related processy(t) under the assumption that both
processes are described by the following non-linear stochastic
differential equations:

dx(t) = f [x(t)]dt + g[x(t)]dw(t) (1)

dy(t) = h[x(t)]dt + m[x(t)]dv(t) (2)

x(t0) = x0. (3)

The state processx(t) and the output processy(t) evolve on
n andp dimensional manifolds. Driving signalsw(t) andv(t)
are supposed to be represented byr andp dimensional inde-
pendent standard Wiener processes. The initial state vectorx0

is assumed to be a random variable independent ofw(t) and
v(t). If mappingsf , g, h, m and a probability distribution
of the initial state vectorx0 are known, it is said that a
local coordinate process representation using Itô differentials
is given.

Having the process representation (1), (2), (3), the stochas-
tic non-linear filtering problem is to compute in real time the
conditional probability distribution of the current statex(t)
given the past observationsy(s), t0 ≤ s < t.

Stochastic non-linear filtering is an extremely important and
very nice but extremely difficulttheoreticalproblem as well.
It is also known that the problem is critically sensitive to
small perturbations of problem specifications. Thus, its direct
utilization for practical filter design is relatively limited.

R. E. Kalman and R. S. Bucy [1], [2] discovered the only
broad class of stochastic process representations for which an
efficient algorithm is known. The class of the representations
is a special case of (1), (2), (3) and can be described by the
following linear stochastic differential equations:

dx(t) = F (t)x(t)dt + G(t)dw(t) (4)

dy(t) = H(t)x(t)dt + M(t)dv(t) (5)

x(t0) = x0, (6)

where both the probability distribution of the initial statex0

and the conditional probability distribution of the statex(t)
are Gaussian and thus completely described by their means
and covariances.

The most important feature of the stochastic linear filtering
problem is that the conditional covariance is independent of
the observation processy(t). Consequently, it can be pre-
computed usinga’priori knowledge only. Hence, the only real
time (observation data dependent) computation needed is that
of conditional mean.

There have been several attempts to find other stochastic
models than (4), (5), (6) for which the resulting partial
differential equation characterizing the conditional probability
distribution of the statex(t) would reduce to a finite set
of ordinary differential equations driven by the observation
processy(t). Unfortunately, those studies have not provided
any new wide enough class of finite dimensional filters yet.

It is worthwhile to notice that the mappingsf and h are
typically derived from physical laws and/or at least closely
related to fundamental attributes of reality such ascausality,
energy conservation principle, etc. On the other hand, the

description of noise effects, especially magnitudes ofg andm
and their dependence onx(t) is merely the result of educated
guesses and simulations. Even in the linear case, there is not
any consensus on how to choose the matricesG(t) andM(t).

From the practical filter design point of view, it is of crucial
importance to overcome the principal difficulties discussed
above. Consequently, the natural question of some newnon-
stochastic non-linear filter design paradigmarises. This point
can be seen as one of the main motivations for introducing
the concept ofasymptotic filteringin [21], [22], [23], [24],
[30].

III. B ASIC RESULTS OFWIENER-KALMAN -BUCY

LINEAR FILTERING THEORY

For later comparison, let us briefly summarize the main re-
sults of the well known Wiener-Kalman-Bucy linear stochastic
filtering theory [1], [2], [3], [4], [18], [19] in this section.

Consider a linear stochastic time-varying signal generating
system representation:

R{S} :
dx(t)

dt
= A(t)x(t) + B(t)[u(t) + ξ(t)] (7)

y(t) = C(t)x(t) + η(t), (8)

wherex(t) ∈ Rn is a state vector,u(t) ∈ Rr is an input and
y(t) ∈ Rp is an output. MatricesA(t), B(t), C(t) and the
input signalu(t) are supposed to be known in adeterministic
sense. Both a driving noiseξ(t) and an observation noiseη(t)
are supposed to be white, Gaussian, zero mean, independent
of each other, independent of an initial statex0 and known
in a stochastic sense. The initial statex0 is supposed to be
a Gaussian random vector with zero mean and known in the
stochastic sense:

E{x0} = 0, E{x0(x0)T } = P0 (9)

E{ξ(t)} = 0, E{ξ(t)ξT (ε)} = Q(t)δ(t− ε) (10)

E{η(t)} = 0, E{η(t)ηT (ε)} = R(t)δ(t− ε), (11)

whereδ(t− ε) is a Dirac function andR(t), Q(t) andP0 are
supposed to be known symmetric matrices withR(t) > 0 and
Q(t), P0 ≥ 0.
Optimal filtering problem :
Find the estimatêx(t|τ) of the state vectorx(t) for t = τ ;
t, τ ∈ [0, T ] based on the observationy(s), 0 ≤ s ≤ τ ,
which minimizes the conditional covariance of the state error
x̃(t|τ) = x(t)− x̂(t|τ). It means that

x̂(t|τ) = argmin{E[qx̃(t|τ)x̃T (t|τ)qT |y(s)], 0 ≤ s ≤ τ}
(12)

for any 1× n non-vanishing vectorq andτ = t.
General solution:
Standard statistical results imply that the solution of the min-
imum conditional covariance estimation problem mentioned
above is given by the conditional mean:

x̂(t|τ) = E[x(t)|y(s), 0 ≤ s ≤ τ ] (13)

with t = τ for filtering, t > τ for prediction andt < τ for
smoothing and referred asoptimal in the minimum variance
sense.

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 556



Structure of Wiener-Kalman-Bucy filter:
From the practical point of view, it is important to have an
efficient method for explicit computing the solution̂x(t|τ)
from the observationy(s) or equivalently a realizable device
called anoptimal filter in order to generate the filtered state
x̂(t|τ) and/or a filtered output̂y(t) on line. Such a device
is known as the Wiener-Kalman-Bucy filter and it is given
by the following structure for the signal generating system
representation described above:

R{F} :
dx̂(t|τ)

dt
= A(t)x̂(t|τ) + B(t)u(t) +

+ K(t)[y(t)− C(t)x̂(t|τ)] (14)

ŷ(t) = C(t)x̂(t|τ). (15)

Parametrization of Wiener-Kalman-Bucy filter:
The matricesA(t), B(t) andC(t) are supposed to be known.
Thus, the only unknown matrix is so called theKalman gain
matrix K(t):

K(t) = P (t)CT (t)R−1(t) (16)

depending on the matrix solutionP (t) of the well known
Riccati differential equation:

dP (t)
dt

= A(t)P (t) + P (t)AT (t) + B(t)Q(t)BT (t)−
− P (t)CT (t)R−1(t)C(t)P (t) (17)

corresponding to the given initial condition

P (0) = P0, (18)

where P0 is the known covariance matrix of the initial
statex0.

Note that the procedure of the filter parametrization is
completely independent of the observed datay(t) and of the
estimated real process represented byx(t) as well.

IV. SIGNAL POWER BALANCE RELATIONS FOR

NON-STOCHASTIC PROCESS REPRESENTATIONS

Consider two vector processesx(t) andy(t) described by
the equations (1), (2), (3) as before, but with theadditional
assumptionthat no reliable quantitative information about
process uncertainties is accessible. On the contrary, it is
supposed that the vector fieldf and the vector mapping
h can typically be specified by using fundamental physical
principles with acceptable precision. The situation is by no
means deterministic in such cases, but the stochastic process
representation based on Itô differentials can not be completely
specified and effectively used. Thus, it seems to be reasonable
to reduce the (incomplete) stochastic process representation
(1), (2), (3) into the form of the following ordinary vector
non-linear differential equation describing state evolution:

dx(t)
dt

= f [x(t)] + g[x(t)]u(t) (19)

x(t0) = x0 (20)

with the non-linear vector output relation:

y(t) = h[x(t)]. (21)

describing the observation process.
The state processx(t) and the output processy(t) evolve

on n and p dimensional manifolds as before. A driving
processu(t) is supposed to be an arbitrarynon-stochastic
square integrable function and the initial statex0 is assumed
to be a completely unknown arbitrary point of the state
process manifold. The representation (19), (20), (21) can be
considered as a givennon-stochasticlocal coordinate process
representation if the mappingsf , g and h are known. It is
obvious that non-linear stochastic filtering is not well posed
problem under such conditions and any stochastic concept
becomes meaningless.

There arises a question whether an alternative non-linear
filtering problem formulation can be found which could be
expected to provide a reasonable (finite dimensional) solution.
Unfortunately, it is not very easy to find any answer to it at
this stage. Anyway, we will try to make the first step here
and introduce some concepts which seem to be fundamental
for developing a new ”time-frequency-signal energy metric”
approach. Its main idea is inspired by the time-frequency
localization problem of the wavelet transformation theory
[31], [32], [28], which can be interpreted as time-varying gen-
eralization of the classical Fourier-Laplace frequency signal
decomposition. Especially the role of a properly generalized
form of the classical Parseval’s relation and the discovery
of ”time-frequency Heisenberg-like un-certainty equivalence
principle” [32] are extraordinary challenging in thenon-linear
filtering context, too. Later, we will analyze similar situations
from a signal power balance relationpoint of view with
the objective to find such a time-energy-(frequency)-signal
decomposition, which could be effectively used innon-linear
filtering. Therefore, we summarize some obvious but very
important facts now.

In signal processing [6], [7], [8] the totalsignal energyis
defined by

E =
∫ ∞

−∞
P (t)dt, (22)

where the instantaneous value ofsignal powerP (t) is defined
by

Pc(t) = ‖u(t)‖2 (23)

Po(t) = ‖y(t)‖2. (24)

for the external processesu(t) and y(t) related to a causal
system S and its representationR{S}.

Let us postulate the following input and outputpower bal-
ance relations[24], [30] for the causal system representation:

dEc(t)
dt

= Pc(t) (25)

dEo(t)
dt

= −Po(t), (26)

where Ec(t) represents the instantaneous value of input
process (control signal) energy andEo(t) represents the
instantaneous value of output process (observation signal)
energy. It is easy to show that physical correctness [33],
minimality [34] and asymptotic stability [35], [36], [37], [38]
of the causal system representation are closely related to the
postulated signal power balance relations (25), (26).
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V. BASIC STRUCTURE OF NON-STOCHASTIC ASYMPTOTIC

NON-LINEAR FILTERING PROBLEM

Some fundamental ingredients of an approach to signal
filtering based on the concepts ofsignal power, signal energy
andsystem equivalencemotivated by [37], [38] are introduced
in this section. Only a continuous-time version is considered
here. A discrete-time modification is discussed for example
in [25], [27].

A. Problem formulation

Consider a non-linear time-varying signal generating sys-
tem representation (SGS):

R{S} :
dx(t)

dt
= f [x(t), t] + g[x(t), t]u(t) (27)

y(t) = h[x(t), t], (28)

where x(t) ∈ Rn is a state vector,u(t) ∈ Rr is an input
and y(t) ∈ Rp is an output. A vector fieldf , a vector field
matrix g and a vector mappingh are supposed to be known
in the deterministic sense. The input and output signalsu(t)
andy(t) are supposed to be continuously measuered (perhaps
with an uncertainty) and the state vectorx(t) with its initial
statex0 are supposed to be completely unknown.
Asymptotic filtering problem:
Find a structure and properparametrizationof a realizable
system, which will be called anasymptoticfilter:

• The filter structure should have astrict causality
property (expressing a realizability demand) and a
state filtering error invariance property(expressing the
independence requirement of a state filtering error with
respect to the input signalu(t), the output signaly(t),
the unknown statex(t), a filtered outputŷ(t) and a
filtered statêx(t) generated by the filter).

• The filter parametrization should have afiltering error
convergence property. It means that both the state filter-
ing error and an output filtering error will beuniformly
convergentto zero and it will be possible to choose the
properconvergence rate and/or modeof them.

Basic structure of asymptotic filtering problem:
We assume that the statex(t) of the SGS is not accessible
for measurement at all. However, its input and output signals
u(t) andy(t) are and therefore both of them can be used as
the inputs of the filter (fig. 1). As we can see from the fig. 1,

R{S} R{F}
u(t)

x(t)

y(t)

x(t)
x(t)

y(t)

Fig. 1. The basic structure of the asymptotic filtering problem

both the filtered output̂y(t) and the filtered statêx(t) are
considered as the outputs of the filter.

B. Filtering error invariance and filter structure determina-
tion

The strict causality propertyalone implies that the class of
filter representations can be identified with the following class
of non-linear time-varying representations:

R̂{F} :
dx̂(t)

dt
= F̂ [x̂(t), u(t), y(t), t] (29)

ŷ(t) = Ĥ[x̂(t), t]. (30)

From thestate filtering error invariance propertyfor the state
filtering error x̃(t) = x(t)− x̂(t) expressed by:

R̃{F} :
dx̃(t)

dt
= f̃ [x̃(t), t] (31)

we get thestructureof the filter:

R{F} :
dx̂(t)

dt
= f [x̂(t), t] + g[x̂(t), t]u(t) +

+ K̂[y(t), x̂(t), t] (32)

ŷ(t) = h[x̂(t), t]. (33)

Consider for now that the representationR{S} is linear:

R{S} :
dx(t)

dt
= A(t)x(t) + B(t)u(t) (34)

y(t) = C(t)x(t). (35)

Then

R̃{F} :
dx̃(t)

dt
= [A(t)− K̂(t)C(t)]x̃(t)

(36)

ỹ(t) = C(t)x̃(t), (37)

whereỹ(t) = y(t)− ŷ(t) is the output filtering error, and

R{F} :
dx̂(t)

dt
= A(t)x̂(t) + B(t)u(t) +

+ K̂(t)[y(t)− C(t)x̂(t)] (38)

ŷ(t) = C(t)x̂(t). (39)

In fact, if A(t) = A, B(t) = B, C(t) = C and K̂(t) = K̂,
then the filter structure is closely related to the well known
Luenberger observer [39], [40].

C. Filter parametrization for linear time-varying signal gen-
erating system representations

Assume that the signal generating system representation has
an asymptotical stability property and is of the minimal order
n. It means that it is controllable and observable. In such
a case controllability and observability Grammian matrices
Wc(t) and Wo(t) exist, are symmetric, positive definite and
satisfy the following Lyapunov equations:

A(t)Wc(t) + Wc(t)AT (t) +
dWc(t)

dt
= −B(t)BT (t)

(40)

AT (t)Wo(t) + Wo(t)A(t) +
dWo(t)

dt
= −CT (t)C(t).

(41)
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Let us start with the group of linear time-varying state
transformations:

x̄(t) = T (t)x(t), x(t) = T−1(t)x̄(t). (42)

The equivalent representation of the error signal generating
system (EGS) is now given by:

˜̄R{F} :
d˜̄x(t)

dt
= [Ā(t)− ˆ̄K(t)C̄(t)]˜̄x(t) (43)

˜̄y(t) = C̄(t)˜̄x(t) (44)
˜̄v(t) = B̄T (t)˜̄x(t), (45)

where ˜̄v(t) is a dual output filtering error, and

Ā(t) = [T (t)A(t) +
dT (t)

dt
]T−1(t) (46)

B̄(t) = T (t)B(t) (47)
ˆ̄K(t) = T (t)K̂(t) (48)

C̄(t) = C(t)T−1(t). (49)

It is natural to identify thefiltering error convergence demand
with a form of afiltering error signal dissipativeness condi-
tion. If the instantaneous value of theoutput filtering error
signal poweris given by:

˜̄P o(t) = ‖˜̄y(t)‖2 (50)

and the instantaneous value of theerror signal generating
system energỹ̄E(t) accumulated at a time instantt in the
error signal generating system is defined by [38]:

˜̄E(t) = ˜̄E[˜̄x(t)] = δ‖˜̄x(t)‖2 (51)

with δ > 0 as anenergy scaling parameter, then thesignal
energy conservation principlecan be expressed in the form
of the error signal power balance relation[21]:

d ˜̄E(t)
dt

= −[ρ−1(t)‖˜̄y(t)‖2 + σ(t)‖˜̄v(t)‖2] (52)

with ρ−1(t) > 0 and σ(t) > 0 as design parameters. By
the help of them we can specify therequired degree of dissi-
pativeness(rate and/or mode of convergence) orsome prior
knowledgeabout measures ofinput and output uncertainties.

Computing the time derivatived
˜̄E(t)
dt along the given EGS

representation and comparing with the relation (52) we get
the special form of a Lyapunov equation for the equivalent
EGS representation:

δ[Ā(t) + ĀT (t)] = δ[ ˆ̄K(t)C̄(t) + C̄T (t) ˆ̄K
T
(t)]−

− [ρ−1(t)C̄T (t)C̄(t) + σ(t)B̄(t)B̄T (t)].
(53)

It would be used for determining thegain matrixK̂(t) if the
proper state transformation matrixT (t) was known.
Energy conservation principle and determination of state
transformation
Certainly, any real-world SGS has to satisfy a form of the
signal energy conservation law. If it is expressed in a proper
form, it gives the state transformation matrixT (t). It is natural
to assume the existence of such a coordinate system where

an appropriate energy function takes the same form as it is
defined for the error signal generating system. Thus, we have
for the equivalent representation of the SGS:

Ē(t) = Ē[x̄(t)] = δ‖x̄(t)‖2 (54)
dĒ(t)

dt
= ρ−1(t)‖ȳ(t)‖2 − σ(t)‖v̄(t)‖2, (55)

whereδ > 0, ρ−1(t) > 0, σ(t) ≥ 0, x̄(t) is a state vector,
ȳ(t) is an output signal and̄v(t) is a dual output signal.
Computing the time derivativedĒ(t)

dt along the equivalent SGS
representation and comparing with the relation (55) we get the
special form of the Lyapunov equation for the equivalent SGS
representation:

δ[Ā(t)+ĀT (t)] = ρ−1(t)C̄T (t)C̄(t)−σ(t)B̄(t)B̄T (t). (56)

Combining the relations (53) and (56) and performing some
elementary modifications we obtain the expression for the
equivalent gain matrix̂K̄(t):

ˆ̄K(t) = δ−1C̄T (t)ρ−1(t). (57)

Hence, thegain matrix K̂(t) in the original coordinates is
given by:

K̂(t) = δ−1[TT (t)T (t)]−1CT (t)ρ−1(t). (58)

Using the signal power balance relations we get thematrix
differential equationfor the state transformation matrixT (t):

dT (t)
dt

T−1(t) + [TT (t)]−1 dTT (t)
dt

= T (t)A(t)T−1(t)−

− ρ−1(t)
δ

[TT (t)]−1CT (t)C(t)T−1(t) +

+
σ(t)
δ

T (t)B(t)BT (t)TT (t) +

+ [T (t)A(t)T−1(t)]T . (59)

The isometry condition [38] implies that

∀t, ∀x(t) : E[x(t)] = Ē[x̄(t)] for x̄(t) = T (t)x(t). (60)

Subsequently, it follows for the Lyapunov energy function
E[x(t)] of the SGS representation in the original coordinates
that

E[x(t)] = δ‖T (t)x(t)‖2 = xT (t)S(t)x(t), (61)

whereS(t) = δTT (t)T (t).

D. Relation to stochastic case

The parameterδ is positive, the state transformation matrix
T (t) is invertible and hence the matrixS(t) is always positive
definite. It means that the error signal generating system is
structurally dissipative. Let us define the symmetric positive
definite matrixP (t) by the following relation

P (t) = S−1(t) = δ−1[TT (t)T (t)]−1 (62)

and the parametersδ, ρ−1(t) andσ(t) choose as follows:

δ = 1, ρ−1(t) · I = R−1(t), σ(t) · I = Q(t). (63)

Then
K̂(t) = P (t)CT (t)R−1(t) (64)
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and thematrix differential equation(59) for the state trans-
formation matrixT (t) becomes to

dP (t)
dt

= A(t)P (t) + P (t)AT (t) + B(t)Q(t)BT (t)−
− P (t)CT (t)R−1(t)C(t)P (t). (65)

It can be seen that the relations (16) and (64) for thegain
matrix as well as thematrix differential equations(17) and
(65) areequivalentif (63) holds.

Finally, it has been demonstrated that there is not any
essential difference between the results ofstochasticandnon-
stochasticfiltering in linear case from the structural point of
view. It has been shown that thestructureof both the filters is
the same and theasymptoticfilter is optimal in the minimum
variance sense for the choice of the design parameters(63).
Thus, the main results of both the approaches areequivalent
in such a case.

VI. N ON-STOCHASTIC ERROR SIGNAL ENERGY OPTIMAL

ASYMPTOTIC FILTER DESIGN

The asymptoticproperties of the filter have only been
analyzed and anyoptimality arguments have not explicitly
been used in the previous section. On the other hand, any
reasonable solution of any problem can be considered as the
optimal one from a point of view. It has been shown in the
section V that thenon-stochastic asymptoticfilter is closely
related to theoptimal one in the stochastic sense. Therefore,
an example ofnon-stochastic asymptotic filter optimization
will briefly be characterized here [35], [36], [37], [38].

We will consider a time-invariant case in order to get
more explicit results. It means that an appropriate error signal
generating system representation has the following form for
ṽ(t) = 0:

R̃{F} :
dx̃(t)

dt
= Ãx̃(t) = [A− K̂C]x̃(t) (66)

ỹ(t) = Cx̃(t). (67)

Optimality criterion :
The output filtering error signal energy has been chosen as
the optimality criterion:

Ẽ(t) =
∫ ∞

t

‖ỹ(τ)‖2dτ, t = t0. (68)

Then
Ã = argmin Ẽ(t), (69)

whereÃ = A− K̂C.
Determination of actual value of error signal generating
system energy
It is obvious that

ỹ(τ) = Cx̃(τ), x̃(τ) = eÃ(τ−t)x̃(t), τ ≥ t. (70)

Substituting (70) to (68) we get

Ẽ(t) = Ẽ[x̃(t)] = x̃T (t)W̃ox̃(t), (71)

where

W̃o =
∫ ∞

t

eÃT (τ−t)CT CeÃ(τ−t)dτ . (72)

The energy functioñE[x̃(t)] can be considered as a Lyapunov
function generated by the observability Grammian matrixW̃o

satisfying the Lyapunov equation:

ÃT W̃o + W̃oÃ = −CT C. (73)

Actual energy minimization
The energy functionẼ[x̃(t)] can be expressed in the metric
equivalent form:

˜̄E[˜̄x(t)] = δ‖˜̄x(t)‖2, (74)

whereδ = (2ω0)−1. Subsequently, it holds that

δ[ ˜̄A + ˜̄A
T
] = −C̄T C̄ (75)

˜̄A = T [A− K̂C]T−1. (76)

It is easy to specify theoptimal solution by parametric
minimization in the following general matrix form [35], [38]:

˜̄A = ω0




−1 1 0 · · · 0
−1 0 1 . . . 0
...

. . .
.. .

. . .
...

0 · · · −1 0 1
0 · · · 0 −1 0




, ω0 > 0 (77)

or equivalently in the recursively given normalizedoptimal
filter transfer function form:

F (s) =
1

Pn(s)
(78)

P0(s) = 1 (79)

P1(s) = s + ω0 (80)

Pk(s) = sPk−1(s) + ω2
0Pk−2(s) for k ∈ {2, . . . , n}.

(81)

For example, a 7th order filter has the following transfer
function:

F (s) =
1

P7(s)
, (82)

where

P7(s) = s7 + ω0s
6 + 6ω2

0s5 + 5ω3
0s4 + 10ω4

0s3 +
+ 6ω5

0s2 + 4ω6
0s + ω7

0 . (83)

A. Relation to frequency domain case

Note that the positive design parameterω0 has the meaning
of time scale transformation and can be used to adjust the
required bandwidth of the filter. The integern has been
defined as the order of the minimal representation of the
signal generating system and it can be interpreted assignal
complexity measure. On the other hand, it also represents
measure of achievable degree of filter qualityin the sense of
the best realizable approximation of the requiredideal filter.
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VII. E XPERIMENTAL RESULTS

Some properties of the asymptotic filters are illustrated by
numerical examples in this section.

Example 1: Connection with the frequency domain ap-
proach:
• n = 1, ω0 = 1: F (s) = 1

P1(s)
, P1(s) = s + 1

• n = 2, ω0 = 1: F (s) = 1
P2(s)

, P2(s) = s2 + s + 1
• n = 7, ω0 = 1: F (s) = 1

P7(s)

• n = 14, ω0 = 1: F (s) = 1
P14(s)

• n = 21, ω0 = 1: F (s) = 1
P21(s)

The corresponding frequency responses are shown on the
fig. 2. It can be seen on the figure that the transfer properties
of the filters converge to that of theideal low pass filterwith
increasing signal complexity measure.

Example 2: Comparison of the stochastic optimal Wiener-
Kalman-Bucy and non-stochastic error signal energy opti-
mal asymptotic filters: Consider a linear second-order time-
invariant signal generating system producing the output signal
y(t) shown at the fig. 6. The following situation is reflected:
• The output signaly(t) of the system is disturbed by

a white noise with the known meanµ = 0 and variance
σ2 = 2. Additionally, the output signal is disturbed by
a systematic error (an unknown constant is contained in
the signal) as well (see the fig. 3).

Let us design both the filters. Their behaviour is shown on
the fig. 4, 5.

It follows from the fig. 4, 5 that the W-K-B filter gives
better results in the sense of eliminating thewhite noise
disturbance. On the contrary, the asymptotic filter provides
better results in the sense of eliminating aninitial state
uncertaintyand thesystematic error. The W-K-B filter does
not evenconvergeto zero at all.
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IX. CONCLUSIONS

It has been shown in the paper that the new approach to
signal filtering based on the concepts of thesignal power,
signal energy, signal power balance relationandsuitably de-
fined state equivalence transformationcan be used as a proper
tool for the synthesis and design of so called theasymptotic
filters. The main features of the approach are itsflexibility with
respect touncertainty modellingand its relativeindependence
of the standardlinearity assumptions. It is shown in the
special case of a linear signal generating system with the
standard stochastic Gaussian uncertainty representation that
the results are closelyrelated to the well known Wiener-
Kalman-Bucy linear stochasticoptimal filtering theory. On
the other hand, the same approach has been used as a

proper tool for the non-stochastic asymptotic filter design by
the parametric optimization in the linear non-stochastic case
where no quantitative uncertainty model is considered. It can
be seen that the frequency responses of such theoptimized
non-stochastic linear asymptotic filters arecomparablewith
the well known frequency domainclassical filters (such as
Chebyshev, Butterworth, Bessel, etc.). The approach for the
asymptotic filter design presented here can be used innon-
linear observer design [22], [23], [26], [41],non-linearcontrol
[41], [42], [43], [44], [45] and elsewhere [46], [47].
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pp. 85–100.
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Fig. 2. The frequency responses of the non-stochastic error signal energy
optimal asymptotic filters forω0 = 1 and the different signal complexity
measuresn = 1, 2, 7, 14, 21
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Fig. 3. The output signal disturbed by a white noise and a systematic error
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Fig. 4. The filtered output of the W-K-B filter
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Fig. 5. The filtered output of the asymptotic filter
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Fig. 6. The output signal without any measurement errors
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