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Abstract—The paper studies some connections between the[6], [7], [8] the main function of a filter is to remove unwanted
main results of the well known Wiener-Kalman-Bucy stochastic parts of a signal such as a random noise and other measure-
approach to filtering problems based mainly on the linear ant errors or to extract useful parts of the signal such as its
stochastic estimation theory and emphasmng. the optlm.alllty. certain components Ivina within a specific frequency rande
aspects of the achieved results and the classical deterministic ) P ying p_ q y ge.
frequency domain linear filters such as Chebyshevl Butter- Hence, it seems to be natural to start with the general theOI‘y of
worth, Bessel, etc. A new non-stochastic but not necessarily stochastic processes [9], and stochastic estimation theory

h, Bessel A hastic b ily stochast 9], [10] and stochastic estimation th
deterministic (possibly non-linear) alternative approach called [11], [12], [13], [14], [15], [16] if the randomness of an
asymptotic ﬁllte”“g base(;j mainly on the (lzonceptsl of siglnal unwanted signal uncertainty can be considered as the main
power, signal energy and a system equivalence relation plays __, . : Y
an important role in the presentation. Filtering error invariance attrlbute_ of reality and a reasonable quantitative model of the
and convergence aspects are emphasized in the approach. tuncertainty can be assumed. Such an approach leads to the
is shown that introducing the signal power as the quantitative well known stochastic non-linear filtering problem concisely
measure of energy d|SS|pat|on.maI.<es it possmlle to achieveintroduced in the sections Il and Il [3], [11], [15], [17],
reasonable results from the optimality point of view as well. [18], [19], [20]. On the other hand, the frequency domain

The property of structural energy dissipativeness is one of the .
most important and fundamental features of resulting filters. characterization of both the useful and unwanted parts of

Therefore, it is natural to call them asymptotic filters. The notion  the signal seems to be more acceptable in many practical
of the asymptotic filter is carried in the paper as a proper tool situations and therefore the frequency domain approaches
i_l’l order to unify StOChQStiC a_nd I_’lOﬂ-StOChaStiC, linear and non- pased on the concept of an ideal frequency filter are often
linear approaches to signal filtering. preferred. The ideal frequency filter would have a rectangular

Index Terms— Causality, Invariance, Structure, Convergence, magnitude response. Unfortunately, it is non-causal. However,
Signal power, Signal energy, Equivalence there are practical filter design techniques that approximate the
ideal frequency filter characteristics and they are realizable.
Each of the major types - Butterworth, Chebyshev, Bessel,
etc. - optimizes a different aspect of the approximation [5],

Filtering is a large field in signal processing having a widgs], [7], [8].
sort of different applications and long history. Thus, it is not The main aim of the paper consists in demonstrating that
very surprising that a lot of approaches have independenitlyis possible to make compatible to each other both the
been proposed and developed. In fact, two of them dominageochastic and frequency domain approaches and their results.
The first one, the well known and broadly used frequendsurther, they can be seen as a special case of the proposed
domain approach based mainly on deterministic linear timasymptotic filtering philosophy [21], [22], [23], [24], [25],
invariant input-output system representations, seems to be @], [27], [28], [29], [30] in a certain way. The paper also
most natural. If all the important characteristics of the probletries to explain similarities between the developed asymp-
are known in the stochastic sense, then the stochastic versmtic and optimal filtering. This problem has already been
of the input-output approach known as the Wiener filteringiscussed for example in [13], [20], [21], [24]. Nevertheless,
theory can be considered as a proper tool for that. The secemy straightforward answer has not been provided yet. Finally,
approach can be characterized as state space oriented. Sdrae simulation experiments and their results are presented
well known Wiener-Kalman-Bucy linear filtering theory isto illustrate these mentioned points.
its stochastic version [1], [2], [3], [4]. It can be seen as
the substantial generalization of the Wiener filtering theory
already mentioned above.

Let us briefly summarize some main ideas and important
features of both the deterministic and stochastic approaches tbet us shortly characterize a standard stochastic approach
signal filtering in this paragraph in order to point difference® a continuous-time non-linear filtering problem [10], [11],
and similarities between them later. In signal processing [$1,5], [17].

I. INTRODUCTION

Il. STOCHASTIC FORMULATION OF
NON-LINEAR FILTERING PROBLEM
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Consider two vector processest) andy(¢). The problem description of noise effects, especially magnitudeg ahdm
is to estimate the unknown proces$t) from observation and their dependence art) is merely the result of educated
of the related procesg(t) under the assumption that bothguesses and simulations. Even in the linear case, there is not
processes are described by the following non-linear stochastity consensus on how to choose the matrig¢ég and M (¢).
differential equations: From the practical filter design point of view, it is of crucial
importance to overcome the principal difficulties discussed

du(t) = fle(®)]dt + gla(t)dw(t) (1) above. Consequently, the natural question of some mauy

dy(t) = hlz(t)ldt + m[z(t)]dv(t) (2)  stochastic non-linear filter design paradiganises. This point

z(ty) = 2° (3) can be seen as one of the main motivations for introducing
the concept ofasymptotic filteringin [21], [22], [23], [24],

The state process(t) and the output procesgt) evolve on
n andp dimensional manifolds. Driving signals(¢) andwv(t)
are supposed to be representedrigndp dimensional inde-
pendent standard Wiener processes. The initial state vettor
is assumed to be a random variable independent(of and
v(t). If mappingsf, g, h, m and a probability distribution  For later comparison, let us briefly summarize the main re-
of the initial state vectorz® are known, it is said that a sults of the well known Wiener-Kalman-Bucy linear stochastic
local coordinate process representation usidgdifferentials filtering theory [1], [2], [3], [4], [18], [19] in this section.

[30].

IIl. BASIC RESULTS OFWIENER-KALMAN -Bucy
LINEAR FILTERING THEORY

is given. Consider a linear stochastic time-varying signal generating
Having the process representation (1), (2), (3), the stochagstem representation:

tic non-linear filtering problem is to compute in real time the dx(t)

conditional probability distribution of the current stai€t) R{S}: — = At)z(t) + B(®)[u(t) + £(t)]  (7)

given the past observationgs), to < s < t. _

Stochastic non-linear filgirzg is an extremely important and y(t) = COz(t)+n(), ®
very nice but extremely difficultheoreticalproblem as well. wherez(t) € R™ is a state vecton(t) € R" is an input and
It is also known that the problem is critically sensitive tq)(¢t) € RP is an output. MatricesA(t), B(t), C(¢t) and the
small perturbations of problem specifications. Thus, its direictput signalu(t) are supposed to be known irdaterministic
utilization for practical filter design is relatively limited. senseBoth a driving nois€ (¢) and an observation noisgt)

R. E. Kalman and R. S. Bucy [1], [2] discovered the onlare supposed to be white, Gaussian, zero mean, independent
broad class of stochastic process representations for whichofireach other, independent of an initial stat® and known
efficient algorithm is known. The class of the representatioirs a stochastic senseThe initial statez® is supposed to be
is a special case of (1), (2), (3) and can be described by thésaussian random vector with zero mean and known in the

following linear stochastic differential equations: stochastic sense:
dz(t) = F(@)z(t)dt + G(t)dw(t) (4) E{z"Y = 0, FE{2°"7) = 9)
dy(t) = H(t)x(t)dt + M(t)dv(t) (5) E{¢)} = 0, E{0E ()} = (t)é(t—e) (10)
a(to) = 2, ) E{n(®)} = 0, E{n(t)n"(e)} = R(1)s(t—e), (11)

where both the probability distribution of the initial stait whered(t —¢) is a Dirac function andz(t), Q(t) and P, are
and the conditional probability distribution of the statét) supposed to be known symmetric matrices th) > 0 and
are Gaussian and thus completely described by their meang), p, > o.
and covariances. Optimal filtering problem :
The most important feature of the stochastic linear filteringind the estimatei(¢|7) of the state vector:(t) for ¢ = 7;
problem is that the conditional covariance is independent pf - < [0, 7] based on the observations), 0 < s < T,
the observation procesg(t). Consequently, it can be pre-which minimizes the conditional covariance of the state error
computed using’priori knowledge only. Hence, the only realz (¢|7) = x(¢) — #(t|7). It means that
time (observation data dependent) computation needed is that
of conditional mean. #(t|r) = argmin{ E[qi(t|7)z" (t|r)q" |y(s)],0 < s < 7}
There have been several attempts to find other stochastic (12)
models than (4), (5), (6) for which the resulting partiafor any 1 x n non-vanishing vectog and 7 = ¢.
differential equation characterizing the conditional probabilitpeneral solution:
distribution of the StatEE(t) would reduce to a finite set Standard statistical results Imply that the solution of the min-
of ordinary differential equations driven by the observatiofitum conditional covariance estimation problem mentioned
processy(t). Unfortunately, those studies have not provide@bove is given by the conditional mean:
any new wide enough class of finite dimensional filters yet. N
IB: is worthwhile t(fl notice that the mappingsand h arey #(tlr) = Ble(®)ly(s),0 < s < 7] (13)
typically derived from physical laws and/or at least closelwith ¢ = 7 for filtering, ¢ > 7 for prediction andt < 7 for
related to fundamental attributes of reality suchcassality smoothing and referred agptimal in the minimum variance
energy conservation principlestc. On the other hand, thesense.
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Structure of Wiener-Kalman-Bucy filter: describing the observation process.

From the practical point of view, it is important to have an The state process(t) and the output procesgt) evolve
efficient method for explicit computing the soluticgi(¢|7) on n and p dimensional manifolds as before. A driving
from the observationy(s) or equivalently a realizable deviceprocessu(t) is supposed to be an arbitranon-stochastic
called anoptimal filter in order to generate the filtered statesquare integrable function and the initial stateis assumed
Z(t|7) and/or a filtered outpug(t) on line. Such a device to be a completely unknown arbitrary point of the state
is known as the Wiener-Kalman-Bucy filter and it is givemprocess manifold. The representation (19), (20), (21) can be
by the following structure for the signal generating systemconsidered as a givemon-stochastidocal coordinate process

representation described above: representation if the mappings ¢ and - are known. It is
di(t|7) obvious that non-linear stochastic filtering is not well posed
R{F}: o = A(@t)z(t|t) + B(t)u(t) + problem under such conditions and any stochastic concept
, - becomes meaningless.
X i K(t)ﬁy(t) - CWnl (14 There arises a question whether an alternative non-linear
9(t) = C@)a(t|r). (15 filtering problem formulation can be found which could be
Parametrization of Wiener-Kalman-Bucy filter: expected to provide a reasonable (finite dimensional) solution.

The matricesA(t), B(t) andC(t) are supposed to be known_uhfortunately, it is not very easy to find any answer to it at
Thus, the only unknown matrix is so called talman gain this stage. Anyway, we will try to make the first step here
matrix K (¢): and introduce some concepts which seem to be fundamental

for developing a new "time-frequency-signal energy metric”
K(t) = P(t)CT(t)R™(t) (16) approach. Its main idea is inspired by the time-frequency
localization problem of the wavelet transformation theory
[31], [32], [28], which can be interpreted as time-varying gen-
eralization of the classical Fourier-Laplace frequency signal

depending on the matrix solutiof(t) of the well known
Riccati differential equation

apPt) T T decomposition. Especially the role of a properly generalized
dt = AOPE+POATH) + BORHB () - form of the classical Parseval’s relation and the discovery
— P®)CTH)R™M(t)O(t)P(t) (17) of "time-frequency Heisenberg-like un-certainty equivalence

principle” [32] are extraordinary challenging in then-linear
filtering context, too. Later, we will analyze similar situations
P(0) = Py, (18) from a signal power balance relatiorpoint of view with
the objective to find such a time-energy-(frequency)-signal
where I, is the known covariance matrix of the initialdecomposition, which could be effectively usednion-linear
statex”. filtering. Therefore, we summarize some obvious but very
Note that the procedure of the filter parametrization ignportant facts now.

completely independent of the observed datg and of the  |n signal processing [6], [7], [8] the totaiignal energyis
estimated real process representedcby) as well. defined by

corresponding to the given initial condition

E = / P(t)dt, (22)
IV. SIGNAL POWER BALANCE RELATIONS FOR —o

NON-STOCHASTIC PROCESS REPRESENTATIONS where the instantaneous valuesignal powerP(t) is defined
Consider two vector processe$t) andy(t) described by by
the equations (1), (2), (3) as before, but with dwdditional P(t) = [u()|? 23)
assumptionthat no reliable quantitative information about i )
process uncertainties is accessible. On the contrary, it is B = lv@®I" (24)
supposed that the vector fielff and the vector mapping for the external processest) andy(t) related to a causal
h can typically be specified by using fundamental physicastem S and its representati@{S}.
principles with acceptable precision. The situation is by no | et us postulate the following input and outpdwer bal-

means deterministic in such cases, but the stochastic procgsée relationg24], [30] for the causal system representation:
representation based o Wifferentials can not be completely

specified and effectively used. Thus, it seems to be reasonable d%(t) P.(t) (25)
to reduce the (incomplete) stochastic process representation dE t( )
(), (2), (3) into the form of the following ordinary vector ; —P,(t), (26)
non-linear differential equation describing state evolution: t ) )
where E.(t) represents the instantaneous value of input
dz(t) _ Flz®)] + glz(®)]u(t) (19) process (control signal) energy anfl,(¢) represents the
dt o instantaneous value of output process (observation signal)
z(ty) = =« (20) energy. It is easy to show that physical correctness [33],

minimality [34] and asymptotic stability [35], [36], [37], [38]
of the causal system representation are closely related to the
y(t) = hlz(t)]. (21) postulated signal power balance relations (25), (26).

with the non-linear vector output relation:
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V. BASIC STRUCTURE OF NONSTOCHASTIC ASYMPTOTIC B. Filtering error invariance and filter structure determina-
NON-LINEAR FILTERING PROBLEM tion

Some fundamental ingredients of an approach to S'ngc“Thestrict causality propert)alonef implies trr]]atftrl}e class Iof
filtering based on the concepts sifinal power signal energy iliter representations can be identified with the following class

andsystem equivalenaeotivated by [37], [38] are introduced © non-linear time-varying representations:

in this section. Only a continuous-time version is considered A di(t) -

here. A discrete-time modification is discussed for example RAFY: = = Fla),u®),y(0),4 (29)

in [25], {271 g = Hla), 1. (30)
From thestate filtering error invariance propertfor the state

A. Problem formulation filtering errorz(t) = z(t) — &(t) expressed by:

Consider a non-linear time-varying signal generating sys- ( ) =

tem representation (SGS): R{}-} = fla(®). 1 (31)

we get thestructureof the filter:
dz(t) h f th fI
R(S}: = = fla(t) )+ gle(t),dut)  (27) gt
y(t) = h[z(t).1], (28) R{F}y:— = fla@). 8 +glz(t), t]ult) +
+ Ky(t),#(t),1] (32)

where z(t) € R™ is a state vectory(t) € R" is an input . — hig 33
andy(t) € RP is an output. A vector fieldf, a vector field gt) = plz@).1. (33)

matrix g and a vector mapping are supposed to be knownconsider for now that the representati®{S} is linear:
in the deterministic sense. The input and output sign@l$

andy(t) are sup'posed to be continuously megsu.ere.d.(.perhaps R{S)} : da(t) = A(t)z(t) + Bt)u(t) (34)
with an uncertainty) and the state vectet) with its initial
statez® are supposed to be completely unknown. y(t) = Ct)a(t). (35)
Asymptotic filtering problem: Then
Find a structure and propemarametrizationof a realizable Las
system, which will be called aasymptoticfilter: R{F}: z(t) = [A(t) - K(®)C(1)Z(t)
« The filter structure should have atrict causality (36)
property (expressing a realizability demand) and a . B -
state filtering error invariance propertyexpressing the gty = C®z(), 37
independence requirement of a state filtering error withherej(¢) = y(t) — 4(¢) is the output filtering error, and
respect to the input signal(t), the output signal(t),
the unknown stater(t), a filtered outputj(t) and a R{F)} : di(t)  _ A()2(t) + B)u(t) +
filtered statez(¢) generated by the filter). dt
+ K@®)[yt) -Ct)z@t)]  (38)
o The filter parametrization should havefiliering error gt) = Ct)&

Y
; (t). (39)
convergence propertyt means that both the state filter- ) .
ing error and an output filtering error will beniformly I fact, if A(t) = A, B(t) = B, C(t) = C and K(t) = K,
convergento zero and it will be possible to choose thdhen the filter structure is closely related to the well known
properconvergence rate and/or moaé them. Luenberger observer [39], [40].

Basic structure of asymptotic filtering problem:
We assume that the statét) of the SGS is not accessibleC. Filter parametrization for linear time-varying signal gen-
for measurement at all. However, its input and output signa¢ating system representations

u(t) andy(t) are and therefore both of them can be used asagsume that the signal generating system representation has
the inputs of the filter (fig. 1). As we can see from the fig. lan asymptotical stability property and is of the minimal order
n. It means that it is controllable and observable. In such

" Yo 0 a case controllability and observability Grammian matrices
RiS} I Ri{F} & We(t) and W,(t) exist, are symmetric, positive definite and
X0 W] % satisfy the following Lyapunov equations:
dW,(t

ABWe(t) + We(t) AT (t) + dwet) - _ —B(t)BT (1)
Fig. 1. The basic structure of the asymptotic filtering problem dt (40)

. . AT (W, () + Wo(t)A(t) + dWol) ~CcT(t)C(t)

both the filtered outpufj(¢) and the filtered staté(t) are ° ° dt - '
considered as the outputs of the filter. (42)
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Let us start with the group of linear time-varying stat@an appropriate energy function takes the same form as it is

transformations: defined for the error signal generating systefimus, we have
() = T()a(t), 2(t) = T~ ()2(0). (42) for the equ_lvalent rep_resentatmn of the SGS:
. . : , E(t) = Elz(®)] =z (54)
The equivalent representation of the error signal generating dE(t)
system (EGS) is now given by: = g = o) |o@))?, (55)
R{F}: da(t) _ [A(t) — K)C(1))3(t)  (43) Whered > 0, p~'(t) > 0, o(t) > 0, Z(t) is a state vector,
e{t - g(t) is an output signal and(t) is a dual output signal.
Zf(t) - g)xﬂ) (44) Computing the time derivatlvé% along the equivalent SGS
o(t) = BT (t)x(t), (45) representation and comparing with the relation (55) we get the
whered(t) is a dual output filtering error, and special form of the Lyapunov equation for the equivalent SGS
) ’ representation:
- dT(t), .. _ _ _ _ _
Alt) = [T)A®) %]T L) (46)  S[AW)+AT )] = p L ()CT@)C(t)—o(t)B(t)BT(t). (56)
B(t) = T(@t)B(t) (47)  Combining the relations (53) and (56) and performing some
f{(t) = T(t)f((t) (48) elementary modifications we obtain the expression for the
Cit) = CHT ). (49) equivalent gain matrixs (t):
It is natural to identify thdiltering error convergence demand K(t) = 67'CT(t)p~"(t). (57)

with a form of afiltering error signal dissipativeness condi-Hence, thegain matrix K (¢) in the original coordinates is
tion. If the instantaneous value of theutput filtering error  given py:
signal poweris given by: R

K(t) =07 T () T®)] ' CT(1)p~ (1) (58)

Po(t) = [l5(t)| (50) . . . .
Using the signal power balance relations we get rimggrix

and the instantaneous value of teeror signal generating differential equatiorfor the state transformation matrik(t):
system energye(¢) accumulated at a time instaritin the

T
error signal generating system is defined by [38]: %it)T‘l(t) + [TT(t)]‘l%t(t) =T()A)TL(t) —
E(t) = E[a(t)] = 812(1)|] (51) _ p‘;“) T ()L CT (O T (1) +

with § > 0 as anenergy scaling parametgthen thesignal o(t)
energy conservation principlean be expressed in the form + =5 T(t)B(t)B" (t)T" (t) +
of the error signal power balance relatiof21]: v TWAGOT )T (59)

dE(t o N . - o

di ) =—[p ' OIF®OI% + e ®)[I5@®))?] (52) The isometry condition [38] implies that

with p=1(t) > 0 and ¢(t) > 0 as design parametersBy v, Va(t) : Bla(t)] = Elz()] for 2(t) = T(t)a(t).  (60)

the help of them we can specify thequired degree of dissi- Subsequently, it follows for the Lyapunov energy function
pativenesqrate and/or mode of convergence)smme prior FE[z(t)] of the SGS representation in the original coordinates
knowledgeabout measures @hput and output uncertainties that

Computing the time derivativé2\") along the given EGS Elz(t)] = 0| T()z(t)|)* = =" (H)S(H)x(t),  (61)
representation and comparing with the relation (52) we g\‘/’?‘/ﬁereS(t) = §TT(4)T(%).

the special form of a Lyapunov equation for the equivalent

EGS representation: . .
P D. Relation to stochastic case

SIA() + AT()] = S[KMCE) +CT)K (1) — The parametef is positive, the state transformation matrix
[ L(OCT(H)C() + o(t) B(t)BT (1) T(t.) is invertible and hence the mafcr&(t) is always positive .
(53) definite. It means that the error signal generating system is
structurally dissipativeLet us define the symmetric positive
It would be used for determining thgain matrix K (¢) if the definite matrixP(¢) by the following relation

proper state transformation matrix(t) was known. P(t) = S7Y(t) = s T ()T ()]~ (62)
Energy conservation principle and determination of state
transformation and the parameteil p~1(¢) ando(t) choose as follows:

Certainly, any real-world SGS has to satisfy a form of the
signal energy conservation lauf it is expressed in a proper
form, it gives the state transformation matfiXt). It is natural Then
to assume the existence of such a coordinate system where K(t) = P(t)CT(t)R™(t) (64)

S=1, p7 ) - IT=R7'(1), ot)- I =Q(1). (63)
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and thematrix differential equation59) for the state trans- The energy functiod?[f(t)] can be considered as a Lyapunov

formation matrix7'(t) becomes to function generated by the observability Grammian maltbix
dP(t) satisfying the Lyapunov equation:
- = AWP@)+POAT() + BOQWB (1) - o
— P(OCT (R (H)C()P(L). (65) AW+ Wod = -C7C. (73)

It can be seen that the relations (16) and (64) for gagn Actual energy minimization _ .
matrix as well as thematrix differential equation¢17) and The energy function?[i(¢)] can be expressed in the metric

(65) areequivalentif (63) holds. equivalent form:
Finally, it has been demonstrated that there is not any . ~
essential difference between the resultstothasticandnon- E[Z(t)] = o]z (t)|1%, (74)

stochasticfiltering in linear case from the structural point of

view. It has been shown that tiseructureof both the filters is Whered = (2wo)~'. Subsequently, it holds that

the same and thasymptoticfilter is optimalin the minimum )

variance sense for the choice of the design paramg&ss S[A+A] = -C'C (75)
Thus, the main results of both the approacheseangivalent A = TA- [A(C]Tfl. (76)
in such a case.

It is easy to specify theoptimal solution by parametric

VI. NON-STOCHASTIC ERROR SIGNAL ENERGY OPTIMAL  mjinimization in the following general matrix form [35], [38]:
ASYMPTOTIC FILTER DESIGN

The asymptotic properties of the filter have only been -1 1 o -0
analyzed and anyptimality arguments have not explicitly ~ -1 0 1 ... 0
been used in the previous section. On the other hand, any A = w, Do e e L, we>0 77)
reasonable solution of any problem can be considered as the 0 .- -1 0 1
optimal one from a point of view. It has been shown in the 0 .- 0 -1 0

section V that thenon-stochastic asymptotidter is closely

related to tha)ptlma| one in the StOChaStiC sense. Thel’efOI’Q,r equivalent'y in the recursive|y given norma”zeﬁtima'
an example ofnon-stochastic asymptotic filter optimization¥jjter transfer function form:

will briefly be characterized here [35], [36], [37], [38].

We will consider a time-invariant case in order to get F(s) 1 (78)
more explicit results. It means that an appropriate error signal Py (s)
generating system representation has the following form for Py(s) = 1 (79)
o(t) = 0 Pi(s) = s4wo (80)
R{F} - dz(t) _ At = [A— KClE(t)  (66) Pi(s) = 8P._1(s) +wiP._o(s) for k€ {2,...,n}.
dt (81)
yt) = Cx(b). (67)
Optimality criterion : For example, a 7th order filter has the following transfer
The output filtering error signal energy has been chosen Hgction: .
the optimality criterion: F(s) = ’ 82
. 6= 5 (82)
. A B
B() = [ i), =t CONN
Then
A= argmin E(t) 69) () = T Fwos’ +6wis” + 5’ + 10wgs” +
+ 6wps® 4 4wds 4+ wp. (83)

whered = A — KC.

Determination of actual value of error signal generating
system energy

It is obvious that

j(r) = Ci(r), (1) = e D3(t), 7>t.  (70)

A. Relation to frequency domain case

Note that the positive design parametgrhas the meaning
of time scale transformation and can be used to adjust the

Substituting (70) to (68) we get required bandwidth of the filter. The integern has been
. o defined as the order of the minimal representation of the
E(t) = E[#(t)] = 2" () Woi (1), (71) signal generating system and it can be interpretedigsal
where complexity measureOn the other hand, it also represents
= T ATty T A —t) measure of achievable degree of filter qualitythe sense of
Wo = /f ¢ ¢ Ce dr. (72) " the best realizable approximation of the requirdeal filter.
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VII. EXPERIMENTAL RESULTS proper tool for the non-stochastic asymptotic filter design by

Some properties of the asymptotic filters are illustrated B)& parametric optimization in the linear non-stochastic case
numerical examples in this section. where no quantitative uncertainty model is considered. It can

Examp|e 1 Connection with the frequency domain apbe seen that the frequency responses of Such)m'lmized
proach: non-stochastic linear asymptotic filters aremparablewith
the well knownfrequency domairclassical filters (such as
Chebyshev, Butterworth, Bessel, etc.). The approach for the
asymptotic filter design presented here can be usetbin
linear observer design [22], [23], [26], [41hon-linearcontrol

L P](S)=S+1
Py(s)=s2+s+1

e n=1,wg=1: F(s

(s) =
e n=2w =1 F(s) = 55,
(s) =

e n="Twy=1: F(s PiGs

—2

N~—
I

e n=14,wy=1: F(s Prals)
e n=2lw =1 F(s) = iy
The corresponding frequency responses are shown on the
fig. 2. It can be seen on the figure that the transfer properties
of the filters converge to that of thdeal low pass filtewith  [1]
increasing signal complexity measure. 2]
Example 2 Comparison of the stochastic optimal Wiener-
Kalman-Bucy and non-stochastic error signal energy optit3]
mal asymptotic filters: Consider a linear second-order time-
invariant signal generating system producing the output signg;
y(t) shown at the fig. 6. The following situation is reflected:
« The output signaly(¢) of the system is disturbed by [5]
a white noise with the known mean= 0 and variance [¢]
% = 2. Additionally, the output signal is disturbed by
a systematic error (an unknown constant is contained i[g
the signal) as well (see the fig. 3).

Let us design both the filters. Their behaviour is shown off]
the fig. 4, 5. [10
It follows from the fig. 4, 5 that the W-K-B filter gives
better results in the sense of eliminating thwehite noise [11]
disturbance On the contrary, the asymptotic filter provideélz]

better results in the sense of eliminating anitial state
uncertaintyand thesystematic errarThe W-K-B filter does [13]
not evenconvergeto zero at all.

]

(14]

VIIl. ACKNOWLEDGMENTS 115]
15

This work was partly supported by The Ministry of Edu-
cation of Czech Republic under the projects No. LNO0OB0d46]
and LNOOBO096.

The paper [30] has been selected as the best one in {fg
section Digital Signal Processing of the conference and it has
subsequently been recommended for publication in the S[%]
Journal in an extended form.

IX. CONCLUSIONS [19]

It has been shown in the paper that the new approach to
signal filtering based on the concepts of thignal power
signal energysignal power balance relatioandsuitably de- [2q;
fined state equivalence transformaticen be used as a proper
tool for the synthesis and design of so called &symptotic [21]
filters. The main features of the approach ard@sibility with
respect tauncertainty modellingnd its relativandependence
of the standardinearity assumptions. It is shown in the

: . ; : 22
special case of a linear signal generating system with t ]

e

1 C. B. RorabanghDSP Primer

[41], [42], [43], [44], [45] and elsewhere [46], [47].
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Magnitude and Phase Frequency Responses

Magnitude (dB)
1
&

Phase (deg)
N
8
3

-14401
1800

-2160 L
107 10° 10
Frequency (rad/sec)

The frequency responses of the non-stochastic error signal energy

optimal asymptotic filters forvy = 1 and the different signal complexity
measure = 1,2,7,14,21

4 5
time

The output signal disturbed by a white noise and a systematic error

4 5
time

The filtered output of the W-K-B filter

0 1 2 3 5 6 7 8

4
time

The filtered output of the asymptotic filter

4 5
time

The output signal without any measurement errors

VOLUME 1- NUMBER 5



