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ABSTRACT

Image processing is an effective tool for the analysis of
optical sensor information for driver assistance systems and
controlling of autonomous robots. Algorithms for image pro-
cessing are often very complex and costly in terms of com-
putation. In robotics and driver assistance systems, real-time
processing is necessary. Signal processing algorithms must
often be drastically modified so they can be implemented in
the hardware. This task is especially difficult for continuous
real-time processing at high speeds. This article describes a
hardware-software co-design for a multi-object position sensor
based on a stereophotogrammetric measuring method. In order
to cover a large measuring area, an optimized algorithm based
on an image pyramid is implemented in an FPGA as a parallel
hardware solution for depth map calculation. Object recognition
and tracking are then executed in real-time in a processor with
help of software. For this task a statistical cluster method is
used. Stabilization of the tracking is realized through use of a
Kalman filter.

Keywords: stereophotogrammetry, hardware-software co-
design, FPGA, 3-d image analysis, real-time, clustering and
tracking.

1. INTRODUCTION

Environmental sensing is important for autonomous robots
and vehicles interaction with their surroundings. There are a
multitude of sensor techniques that are available for environ-
ment sensing, such as laser scanning [10], radar, and ultrasound
[23] etc., which can be implemented in combinations to balance
their respective weaknesses. The majority of these techniques
is based on active processes.

Photogrammetry is a passive position measurement tech-
nique, in which images from several cameras are analyzed.
In time-critical applications like driver assistance systems [5],
[13], or autonomic robots, real-time image processing systems
with constant and known delay times are needed. This is
not achievable using software based on current computational
techniques and running at current processors. Therefore the
hardware implementation of the image analysis is more suit-
able.

This work presents a robust, real-time 3-d-object recognition,
measurement and tracking system which uses a continuous data
stream. Therefore, a stereo-camera system with a measurement
range between 10 and 100 m is used. A depth map is de-
termined from the stereo image, whose data is then fed to a
cluster algorithm. The distance is subsequently given over to a
Kalman filter [16], which calculates the velocity and enables

further object tracking. Because of the requirements for real-
time processing and perspective realization as a micro-system,
the algorithm was implemented in an embedded hardware,
which consists of a FPGA [6] and a processor which can be
embedded in the FPGA [2] as well.

Several application examples for such an image processing
system were analyzed. The long-term objective is sensing all
surrounding information of a vehicle or a robot. The main
objective at present is the obstacle detection for front and rear
view. In our case we have application examples in automation
of robots for front view and a lane change driver assistance
system for rear view. For this paper the lane change assistant is
used as example and for determining the boundary conditions.

In the next section we discuss the specifications of the
different components.

2. HARDWARE-SOFTWARE CO-DESIGN
Boundary Conditions

This driver assistant system is used to detect dangerous
situations on highways or cities while changing lanes. Therefore
all objects in the rear of a car are identified, the position has
to be determined and the objects should be sorted by lanes.

covered distance [m]
time [ms] at 50 km/h at 100 km/h at 250 km/h

1000 13,89 27,78 69,44
500 6,94 13,89 34,72
100 1,39 2,78 6,94
40 0,56 1,11 2,78
20 0,28 0,56 1,39

Tab. 1. Real Time Conditions: Covered Way at Different Speeds

These tasks have to be achieved in real time. Technical
processes are analyzed and worst case scenarios are identified
to determine the real time conditions. But a car driven by a
person is no technical process. A part from all delay times
of the systems in the car is the driver. This one can not be
measured exactly, due to several circumstances. The main aim
of this project is to give him as much time as possible for his
reaction. A person needs about a 1-2 seconds [8] for a reaction
in a worst case . Under this premise a worst case scenario can
be identified as well.

The worst case is, if a car is entering a highway and needs
to stop and a second car is driving on the highway with a very
high speed. This means for example this car appears with a
speed from 100 to 250 km/h in the rear of the stopped car.
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From the covered way of a car at different speeds shown
in table 1 we can derive the real time conditions and other
boundary conditions for the purposed system.

In order to save a reaction time of a second for the driving
person the system has to detect the car at least at a distance
of 100 m. Therefore a camera system with a high measuring
range is needed. Furthermore high resolution cameras need to
be used. In the section 3 this point is dicussed.

For realizing a close tracking of the obstacles the sampling
rate should be rather high. For the worst case at least every
3 m the position of the second car needs to be determined in
order to cover outliers. Considering table 1 at least every 40
ms an image pair needs to be taken respectively the frame rate
which is the sampling rate for the position measurement is at
least 25 Hz.

Hardware vs. Software

The used cameras are working with a frame rate of 25 Hz.
The data stream produced by the two cameras is 32.7 Mbyte/s,
due to the resolution of 1024x1024 Pixel with 10bit gray values
each. For data processing with a microprocessor it is necessary
to reduce this high data rate, thus a hardware-software co-
design [12] is a good choice. Therefore, the algorithm must
be separated in a hardware and a software part.

Principally, Software algorithms can be implemented in
hardware and vice versa. The decision on which basic platform
the algorithm should be implemented, depends on the needed
processing speed and the implementation costs for the target
system [11] (Fig. 1).
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Fig. 1. Costs/Performance-Graph (modified after [11])

The working scheme of a microprocessor is ”computing
in time” (Fig. 2.a). That means the algorithms process data
sequentially on a single processing element. The next algorithm
can be executed only after finishing the preceding algorithm.
Thereby, the processing time raises with the number of algo-
rithms because of the sequential working scheme. An algorithm
with various branches in the data flow is called ”control flow
oriented” and is well suited for microprocessor implementation,
due to the need of high flexibility in the data stream.

A ”data flow oriented” algorithm is more suited for a
hardware implementation, due to the fact the data flow consists
of few branches but many arithmetic operations [19]. During
processing no changes of the flowchart is necessary. The benefit
of the hardware implementation is the possible segmentation of
the algorithm and parallel processing on different processing
elements. This leads to a so called ”computing in space”
(Fig. 2.b). If one segment needs the results of another segment a
”pipeline structure” (Fig. 2.c) is more suitable. Pipelining does
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Fig. 2. Processing structures

not increase the execution time but the data throughput. Data
flow oriented algorithms have the ability to work with a large
amount of data with simple arithmetic operations at high speed.
With a high degree of parallelization a big saving of processing
time is possible. Whereby the logic costs increase fast with
the logic complexity. If ”control flow oriented” algorithms are
implemented in hardware, the logic costs rise significantly
compared to a possible speed benefit, because of the low
flexibility of the hardware.

Hardware Platform

The complete algorithm is realized as an embedded system.
In Figure 3 the developed universal purpose board is shown.
The power consumption depends on the running application but
is 10 W in maximum. An application specific board would be
an one chip solution with less power consumption.

Fig. 3. Embedded board

We used two ALTERA STRATIX EP1S60 FPGAs [3]
on the development board with added debug functionality. The
FPGAs have 60’000 logic cells (LC) and 500 kByte of memory,
each. Furthermore 16 MByte of SDRAM is installed on board.
As processors we used NIOS II softcore IP-processors. The
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processor IP-Block can be implemented directly on the FPGA.
The maximum speed is 75 MHz on STRATIX FPGAs.

Due to the high flexibility of the FPGAs and the use of
softcore processors it is possible to adapt the hardware to a
huge amount of applications. The logic cell (LC) consumption
of one processor is 1′500 LC. Thus an implementation of a
number of processors is possible. The number of processors
depends on the algorithm itself, as well as the use of logic.
The limitation of logic and processors is the number of logic
cells.

Processor 1 Processor 2 Processor 3

Avalon Bus
Arbiter

UART DPRAM I/O Logic RAM

Fig. 4. The avalon bus architecture (modified after [2])

For independent program execution each NIOS II is con-
nected to its own internal RAM. The processors and the logic
are connected by the AvalonBridge (Fig. 4). Whereby the
connections are very flexible. They depend on the needs of the
running application. Due to the independent bus connections
within the Avalon Bus a high data bandwidth can be achieved.

HW-SW Co-Design

Image processing algorithms are mostly divided into a slice
model (Fig. 5).The main steps are

• image acquisition
• preprocessing
• feature extraction
• classification & interpretation

The image acquisition is done by two cameras. They produce
a continuous data stream processed by the following algorithms.
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Fig. 5. Slice model of image processing

The data dependency within the individual processing steps
changes from simple to complex. The preprocessing consists
of local operators with independent data processing and a very

high data rate. With their low data dependency these algorithms
are data flow oriented. Typical algorithms are edge detections or
LUTs. More complex functions like the KKFMF (see section 3)
act as a local operator as well. The feature extraction is applied
globally for the whole image. The data dependency is more
complex and the data rate is high as well. The processing
scheme can be data flow oriented or control flow oriented. The
generation of histograms is a typical application.

The most complex level is the classification & interpretation.
These applications are control flow oriented and can proceed
the preprocessed data of more than one image. The data rate is
comparably low but a lot of branches are applied. The clustering
and Kalman-filtering belongs to this level.

Figure 6 shows the scheme of the algorithm presented in
section 3. As the hardware algorithm can be implemented as a
massive pipeline structure, it is possible to present the results
for the KKFMF of the first camera row with a delay of three
camera rows. The resulted depth map is passed to the hardware
depth-histogram generation just in time. Thus the actual depth
histogram is available 70μs after passing the last pixel of the
image from the cameras.
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Fig. 6. Hardware-Software Co-Design for the presented algorithm

The other algorithms are processed on 3 pipelined softcore
processors with 75 MHz each. The first generates the time-
histogram (processing time 15 ms), the second is responsible
for the clustering (processing time 35 ms) and the last deals
with the Kalman-filtering (processing time 10 ms). The results
are passed to a logic for external communication. The algorithm
is implemented as the slice model of image processing by
using the hardware model. The low-level local KKFMF with
the inherent edge detection is a hardware module and passes the
data to the subpixel interpolation and then to the global depth
histogram generation. The algorithms are pipelined connected
via simple local interfaces. The complex medium-level gen-
eration of the time histogram is implemented on a processor
as well as the clustering and the Kalman-filtering which are
High-Level applications.

The processing time of the algorithm realized as a hardware-
software co-design is 60 ms. This is a reduction factor of 6
compared to the processing time of the PC. The processing
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delay is 1.5 images, but no data will be lost due to the maximal
processing time of 35 ms on the processors. Thus, the embed-
ded image capturing and processing system is working in real-
time. The pipeline delay is acceptable for most applications.

3. MEASUREMENT METHOD

Stereophotogrammetric measurement system

In photogrammetry, systems of multiple cameras are used for
the optical 3-d measurement of objects or scenes. The use of a
stereo camera system is optimal for balancing the technical
costs with the possibilities of the measurement system [9].
The process which we developed also makes use of stereopho-
togrammetry. The automatic analysis methods for systems of
multiple cameras are extremely computationally expensive, and
usually are realized in software at workstations. In the ideal
case, using current computational technology, the analysis of
an image pair lasts fractions of a second.

The image calculation time increases for sequences, due to
architecture and operating system reasons. In the following,
the necessary characteristics for the camera system will be
discussed. First, for the measurement, a stereo image pair is
simultaneously captured by a calibrated camera system which
is aligned in the normal case of stereophotogrammetry. Thereby,
the camera axes are parallel to each other. For the normal case
of stereophotogrammetry [14] applies.

B

f

Image 1 Image 2

Lens 1 Lens 2

z

z
y

x

p2p1

Fig. 7. Normal case of the stereophotogrammetry

Z =
f · b
Δu

; X = Z · xleft

f
; Y = Z · yleft

f
(1)

In equation 1 X,Y ,Z are the world coordinates of a certain
point. The focal length f and the base width b are determined
from the camera system. xleft and yleft are the image coor-
dinates of the left image which is the reference image in this
case. Δu finally is the disparity which needs to be determined
during the measurement.

The use of the normal case of stereophotogrammetry ensures
an overlap of the camera images over the entire measurement
range from 10 to 100 m. At the farthest extremes of the

measurement the accuracy should still be in the percent range
and rather small objects like motorcycles should be recognized.

The error in a photogrammetric process depends on the
pixel size / image resolution, base width (distance between
the cameras) and distance of measurement. The error has a
quadratic dependence on the distance to the measured object
(see equation 1), therefore the base width and the resolution
must be maximized to reduce error.

By using error propagation on equation 1 we get equation 2,
where σz is the error of the distance measurement, σΔu is the
error of the disparity and z is the distance to the measured
object.

σz =
z2

f · b · σΔu (2)

The error of the distance measurement depends on the
squared distance itself. By using an optimized camera system
the error for distance measurement can be reduced. In table 2
the error for the distance is shown against the distance and the
focal length.

Distance[m] Error of Distance Measurement [m]
Base Width 0.8 m

Focal Length 12mm 25mm 35mm
10 0.011 0.005 0.003
50 0.277 0.133 0.095
100 1.108 0.532 0.380
150 2.494 1.197 0.855

Tab. 2. Error [m] of the Distance Measurement

Considering table 2 the error is reduced to an acceptable
level by using a base width of 80 cm, a resolution of 1024
pixels per line and a focal length of 25 mm. Base width and
resolution could also be optimized by reducing the measuring
range as well. Should the base width be lowered while retaining
a constant measurement range, the resolution must be increased
to hold the error constant. In series-production vehicle a robust
camera setup with a base width of 80 cm is nearly impossible
due to design reasons. To reduce the base width to 30 cm,
which is acceptable, the image resolution must be increased
to 2048 pixel per line to keep the error in the same range or
the accuracy must be increased by a subpixel interpolation (see
equation 5).

Further on, to reduce computational costs, epipolar geom-
etry should be used. This way, the search can be simplified
from a two-dimensional to a one-dimensional correspondence
problem, if the cameras are very accurately aligned with one
another or if the images are adequately rectified. Both images
are then correlated by using an area correlation method. In
doing so, a reference block from one image is compared with
several search blocks from the second image. Using equation 3,
the horizontal displacement (disparity Δu) between an object’s
references in both images can be calculated (Fig 8).

Δu = |p1 − p2| (3)

Δu - disparity
P1 - object pixel position in the left image
P2 - object pixel position in the right image
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Fig. 8. Principle of area correlation

Once the disparity is known, the 3-d coordinates of the
measured object can be attained (equation 1) in reference to the
camera coordinate system through use of data from the camera
system (base width B) and the calibration (camera constant)
through triangulation.

A similarity criterion is used to calculate the disparity. Op-
tical systems in outdoor vehicles are not operating under certain
lighting conditions. The normalized zero-mean cross correlation
function (KKFMF equation 4 [4] ) is well-suited for use in
vehicles, since it suppresses additive as well as multiplicative
errors. However, the absolute brightness information is lost
through the normalization.

Q(x, y) =

n−1P
j=0

m−1P
i=0

“
F (i, j) · Pr(ξ + i, η + j)

”
s

n−1P
j=0

m−1P
i=0

F (i, j)
2 ·

n−1P
j=0

m−1P
i=0

Pr(ξ + i, η + j)
2

(4)
F (i, j) - zero mean pixel values

of the search block
Pr(ξ + i, η + j) - zero mean pixel values

of the reference block
m, n - search window dimensions
ξ, η - displacement in x, y- direction

Area correlation methods have the characteristic that they
can only operate when there is enough information within
a block. Therefore, another criterion is introduced in order
to prevent blocks with insufficient information from passing
further processing. The denominator of the KKFMF consists of
the combined variances of reference and search block. A high
information content results in places such as the edges of the
vehicle. By choosing acceptable threshold values and analysis
of the variance, the relevant image area can be selected.

Having enough information in the reference block is an
essential condition for getting meaningful values. Furthermore
the measured object must still cover the main part of the
reference block. By analyzing several scenes and taking the
limits of a hardware implementation into account a block size
of 16 pixels gives the best results for our system. Using the
proposed camera system with a base width of 80 cm, a focal
length of 25 mm and a horizontal resolution of 1024 pixel an
object like a car is about 20 pixels wide at a distance of 100
m. Thus the edge of the car still covers a significant part of the

block. And objects like motorcycles can be detected as well at
this distance.

Δur = Δu +
1
2
(P(1) − P(−1))

2 · P(0) − P(1) − P(−1)

(5)

Δu - disparity uncorrected
Δur - disparity corrected
P(1) - KKFMF value after the maximum
P(0) - KKFMF value of the maximum
P(−1) - KKFMF value before the maximum

The accuracy of the disparity is increased to the sub-pixel
level by using quadratic interpolation, in order to raise the
accuracy of the distance measurement. Hardware interpolation
is limited to 1

8
pixel accuracy.

Hierarchical distance measurement

In many applications of environment sensing, it makes sense
to have a constant error over the entire measurement range.
Images have a high redundancy respectively if only a specific
information is needed. We indicate an interesting object by
its rough structure and its behavior over time. Thus no color
images are needed. For the measurement in this case we need
only the positions of some points of the object to determine
its position. For the ascertainment of the object size only the
left and the right edge are needed. Therefore only very small
resolution is necessary. The high resolution images are only
needed due to the high measuring range.

0

1

2

line j

pixellayer 10 2 i imax

Fig. 9. Generation of the pyramid levels

Taking advantage of this fact, the area correlation algorithm
can be optimized in terms of computation for hardware im-
plementation using an image pyramid [22]. This makes use
of the fact that the camera’s full resolution capabilities are
only necessary for the largest distances in the measurement
range, while the high resolution is rather inconvenient to close
range objects, because of the large disparity values. To reduce
computation costs different degrees of resolution are assigned
to the levels of the image pyramid. The resolution of each
level will vary by a factor of 2 (see Fig. 9). Each level of
the pyramid is only responsible for a certain distance range.
This way, the entire measurement area can be covered through
the combination of all level results.

The number of required calculations is reduced logarithmi-
cally by this procedure, particulary for close range measure-
ments. This effect counteracts the inverse relationship between
object distance and computational cost.

Due to the application of epipolar geometry, the processing
can be realized in a row-oriented manner. In each level,
rectangular blocks (16 x 1 pixels) will be chosen from the
reference and search image, and compared with one another.
Initially, the first reference pattern is shifted pixel by pixel
from the start position over the search block. A correlation
value is then calculated for each pair of samples (particularly
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KKFMF, equation 4). For each reference block, there is a
maximum search disparity of e.g. 16 pixels. In the resulting
search area, the positions of the maxima, which are located
above a given threshold value are calculated and relayed to
further analysis. Furthermore only blocks with high image
information are processed. Therefore the variance (denominator
of equation 4) is compared to a threshold. This means that only
the maxima, which correspond to object features (e.g. edges)
will be included in the further computations. Then, the disparity
with the highest correlation value from all levels is chosen for
each reference block. Disparity values from levels with reduced
resolution must be projected to the original resolution. Then, the
3-d coordinates will be determined in sub-pixel accuracy. The
sub-pixel accuracy is calculated using quadratic interpolation
of the maximum of the similarity criterion, Q(x,y) [17], and
the 3-d coordinates are calculated using equation 1.

0m

10m

Fig. 11. Generated depth map (distance coded with gray values)

These values are collected for an image and result in a depth
map figure 11.

In order to test the method, the measurements were taken
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Fig. 12. Measurement results (left: static, right: highway)

statically as well as dynamically. Test were run outside the lab
with defined, synthetic objects. These were then repeated with
a vehicle as the measured object. The results of the vehicle
measurement are shown in Figure 12, left. Further tests were
carried out on the highway (Autobahn). As a reference, the laser
distance measurement device Lasertape FG21-HA was used.
The results of a day trial are shown in Figure 12, right.

Calibration

Numerical correction of the stereo image pair on the base
of calibration data is computationally costly. For this reason,
an optimized path for the correction of the calibration data
is used. By applying the standard-camera-model [1], the sys-
tematic errors of the camera systems are compensated. The
correction values of ΔZ and ΔX can be determined using
the known formulas (equation 6) from the normal case of
stereophotogrammetry. The coefficients d, e, f, as g, h, i are
acquired during the calibration procedure.

ΔZ = d·Z2+e·Z+f and ΔX = g·Z+h·X+i d, ..., i ∈ �.
(6)

Equation 7 results from combining ΔZ and ΔX with the
formula for the normal case equation 1.

Z =
k

du2
+

l

du
+ m (k, l, m ∈ �) (7)

After the combination of equation 1 and equation 6 into
equation 7, only 3 coefficients (k,l,and m) must be attained
instead of the 6 formerly necessary. The 3 coefficients contain
the camera constants and the base width. The derivation of the
equations for X and Y result from considering the x-position of
the object in the reference image. This correction calculation
is an adaptation of calculation possibilities of microprocessors.
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Fig. 13. Error before and after compensation

The number of mathematical operations is substantially
decreased through the use of only 3 coefficients. A typical
example for the effect of the correction is shown in figure 13.
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The results from the distance measurement with the calibrated
system are displayed in figure 12.

The derivation of the corrections in x-direction results in
equation 8.

ΔX = o · Z + p · X + q (o, p, q ∈ �) (8)

The systematic error is not fully independent from the x-
coordinate in the image, but for the accuracy needed in our
application the effect is negligible.

5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5

-1,0

-0,5

0,0

0,5

1,0

la
te

ra
l

p
o

si
ti

o
n

[m
]

distance Z [m]

corrected

5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5

1

2

3

4

5

6

7

8

9

la
te

ra
l

p
o

si
ti

o
n

[m
]

distance Z [m]

-1
-0,5
0
0,5
1

uncorrected

real
x positions

Fig. 14. Measurement results (left: static, right: highway)

To check the effect of the correction several scenarios were
tested. Test patterns were moved in x-directions and z-direction.
In figure 14 the effect of the correction for test pattern with
defined positions which were moved in z-direction are shown.

Hardware implementation for real time purposes

The algorithms were implemented in the programming lan-
guage C/C++ for evaluation and testing. Afterwards it was
implemented in hardware for realtime purposes using the
methods descirbed in section 3. Therefore some parts of the
processing must be optimized. Due to the usage of square roots
proves to be problematic for hardware, the squared KMFMF
is implemented, since only the position of the maximum is
relevant. Before squaring the nominator, all negative values
must be excluded to prevent any false maxima.

Carrying out a regular area correlation on the basis of epipo-
lar geometry to a maximum disparity of 256 pixels increases
the amount of processed data and therefore the required work

speed by a factor of sixteen. By using hierarchical methods with
otherwise the same specifications, the amount of data is only
doubled. Due to that fact, the correlator only needs to work
with the doubled pixel clock to achieve continuous real-time
processing.

The limitation to a single-row correlation window allows to
minimize the memory requirements for the implementation. At
first, one row must be saved in a dual-port-RAM for the creation
of the levels. In doing so, a separation between the circuits with
the two clocks can be carried out.

After correlation, the inter-level analysis runs with the dou-
bled speed. At this time, the maximum of the correlation
function is searched for. This results in a data set showing
image number, block number, row number and the disparity.
The data sets are subsequently saved in the dual-port-RAM
and simultaneously read for recombination of the different
levels. This compares the respectively overlapping blocks by
their correlation values. The block with the largest correlation
value is used for the generation of the depth map. Again, the
dual-port-RAM is used as a separation between the areas with
different clocked dircuits. The depth map is then transferred to
the processor for further analysis(see section 4).

4. CLUSTERING AND TRACKING

After the generation of the depth map, the object must be
identified. For this purpose a general cluster method is applied.

At this point, the only methods that should be considered
are those, which allow for automatic analysis of data attained
by stereo image analysis. In general, cluster methods can be
divided into geometrical and statistical methods.

Both types operate with usage of a-priori knowledge. Geome-
trical methods are often used for analysis of depth maps. In
doing so, a feature space is stretched out over a 3-d space, in
which the 3 features correspond to spatial coordinates.

These features can be subsequently clustered into an object
by using the vehicle’s dimensions [13]. Because of this, the
entire database is run through the algorithm multiple times.

A different approach is the observation of statistical [21]
occurances with certain characteristics in the database. This
approach has the advantage that each point only needs to be
tested once. Essentially, statistical methods count the number of
points with certain characteristics; for instance column number
and distance range. Statistical methods are more effective than
geometrical methods, in cases where their limited capabilities
suffice.

Object Detection

Clustering is used to detect vehicles with a velocity null
or positive relative to the own car. Here a histogram based
approach [21] is used. Another cluster method is described
in [13]. To detect the vehicles, a histogram is generated from
the depth-map, here we call it depth-histogram. Because of the
reduced resolution of the levels, there is a different amount of
data within each level. Thus we adapt the memory organisation
of the depth-histogram (see figure 15). The abscissa represents
the lateral offset of a detected 3-d-point and the ordinate
represents the disparity values for each level. The disparity
ranges from 0 up to 7. To calculate the original lateral offset
see equation 9 and for the disparity values see equation 10.

xOrg = (OFFSETBlock + (xLevel · INCR)) · 2Level (9)
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ΔuOrg = (OFFSETDisp + ΔuLevel) · 2Level (10)

Because of the dimensions of the search and the reference
block OFFSET values have to be used. The OFFSET in
equation 9 represents the center of a block. In this application
a block is 16x1 pixels, thus the OFFSET value is 8. The
INCR argument represents the block increment, that means
the difference between the center of two neighboring reference
blocks. The OFFSET in equation 10 represents the minimal
disparity. Because of the limited detection range of 100m, all
disparity values smaller then 8 are not saved in the depth-
histogram.
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Fig. 15. Memory organization of the depth-histogram

The edges from cars, road signs and other raised objects are
detected by using the KKFMF (equation 4). Different edges of
an object have nearly the same disparity values at the same
lateral offset but in different rows of the image.

The depth-histogram is generated by accumulating the fre-
quency of occurrence for the different disparities of each
column in the depth-map (figure 11). Raised objects generate
local maxima in the depth-histogram (figure 16). The latest
y-coordinate is saved as well to define the base of a cluster
within an image. A threshold is applied to detect the raised
objects. Entries above a certain threshold are marked as raised.
To use the same threshold over the whole depth-histogram the
frequency of occurrence is reduced by factor two for each level.
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Fig. 16. Depth-histogram of one image

To track objects over time, a time-histogram (figure 17) is

used to detect raised moving objects. Furthermore trees and
road signs can be filtered out.

To detect the vehicles, the entries of the depth-histogram
are used to generate a time-histogram. Entries in the time-
histogram are increased by one, if these positions in the depth-
histogram are marked as raised. This represents the age of a
raised object. Before increasing the value, a search algorithm
is started to find the highest time-histogram entry close to the
current histogram position. If there is a higher entry, this entry
gets the current position with an increased age. For all objects
in the time-histogram, with no complementary object in the
depth-histogram the age is decreased.
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Fig. 17. Time-histogram

The objects with a certain age are used for clustering.
Because of the adapted resolution an object appears within
the time-histogram with nearly the same dimension, over the
whole measurement distance. Therefore, the cluster algorithm
can be accomplished within the time-histogram. By using a
simple search approach, time and system performance can be
saved.

The cluster position is detected by calculating the average
of the positions of the local maxima belonging to this cluster.
For this middle position only, a 3-d-value is computed. The
positions of a cluster from various samples are transferred to
a Kalman-filter. In order to decrease outliers in the distance
and velocity calculations, a Kalman-filter for each cluster is
dedicated to smoothing, due to its low-pass-characteristics.
In the same way, the movement of an object is tracked by
extrapolation, in case of a temporary disappearance of the
object. The results of a velocity smoothing over 100 samples
are displayed in Figure 18.

Because of the adapted resolution and the characteristic of
a histogram the objects have to feature minimal extensions to
be surely detected. The two cameras subdivided into search
blocks, hereby the minimal width is x = 600mm, for surely
detected vehicles. With a minimal height of y = 534mm a
vehicle has a height of 8 pixel at a distance of 140m. With our
history threshold this object can be detected. The frequency of
occurrence (height in pixel) is low at far distances and rises with
the approaching object, at the level boundaries the frequency is
adapted with the resolution. With this minimal dimension even
bikers can be detected with our system.
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LaneDetection

To detect the lane position the Hough Transform [15] is used,
other lane detection methods are presented in [24], [18], [7].
Because of the system characteristic with a hardware-software
co-design the depth-histogram is used as the starting point. The
depth-map is not saved yet.

The Hough Transform is a method to detect collinear points
of an image. Collinear points are located approximately on
a line. The basis is the normal parametrisation of a line
(equation 11).

r = x · cosϕ + y · sinϕ (11)
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Fig. 19. Hough Transform

If there is single point A (figure 19.a) the gradient of the line
through point A is lost. Therefore it is necessary to compute
the transformation for a number of lines with a common point
A, but with different gradients. By transforming these lines, a
figure as presented in figure 19.b is generated. Points A and
B have one common line, this is the point of intersection in
figure 19.b. All collinear points have a common line, with the
same gradient ϕ and radius r in the r,ϕ-coordinate system.
Using an accumulator (see figure 20) the number of common
lines can be detected . If a point in the accumulator exceeds a
threshold, this position characterizes a line. The line coordinates
are transformed to the x, y-coordinate system. Along this line
the flat points are searched and marked as belonging to a flat
cluster.

To apply the Hough Transform, an applicable input data
set has to be used. To detect flat objects we need a lower
threshold for the depth-history. To avoid errors this threshold
is applied for points that are not marked as raised. Because
of the visibility of the lane markers the Hough Transform is
limited to distance levels 1, 2 and 3. Lane markers are mostly
aligned lengthwise, therefore the generation of clusters of lines
is shortened to 0 up to 50 degree for the left side of the image
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Fig. 20. Accumulator Hough Transform

and to 310 up to 360 degree for the right side of the image,
whereby the resolution of the angel is limited to 5.625 degrees
(360 degree/64 Steps). Due to this limitation the accumulator
entries in figure 20 are concentrated in two areas. There are gaps
compared to figure 19.b). The result of the Hough Transform
is shown in figure 21.

Fig. 21. Lane Detection with the Hough Transform

Testing

With help of the testing environment (section 5), the tests
could be run with several image sequences and real time
conditions. Sequences with various traffic conditions as well
as sequences with motorcycles (see Figure 22) were analyzed.

a) Original image

b) Depth map

0m

10m

Fig. 22. Sequence with Motorcycle

In the case of night driving (see Figure 23), the process
showed a high ability to analyze the floodlights in the depth
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map. However, because of other statistical circumstances, an
adaptation of the clustering method would be necessary for
night driving.

a) Original image

b) Depth map

0m

10m

Fig. 23. Depth map of a night trial

Software Implementation

The algorithms for the clustering, tracking and lane detection
were primarily implemented in C/C++. In the calculations,
specific operations such as division or roots were avoided by
using other operations in order to decrease computation time.
Furthermore, floating point operations are replaced by integer
operations, if possible. In our case, doing so nearly doubled the
processing speed.

Thus adequate processing speed is achievable, even with a
small embedded processor.

5. DEVELOPMENT ENVIRONMENT

In order to realize a stable FPGA implementation, many
tests and simulations are necessary. Because of the complexity
of image information, the test vectors for the simulation are
very long. For this reason, a comparison implementation for
testing was run in software written in C/C++, which is binary
compatible to the hardware implementation. The simulation
data and the software results were then compared through a
specially-designed software. For the testing, real and synthetic
image data from static and dynamic measurements are used and
translated into test vectors.

2x CameraLink

Control SystemCAN-Bus

ALTERA
FPGASMPTE

Image Sequences

Fig. 24. Development Environment

For development purposes implementing the experimental
system in a vehicle is not reasonable. For this reason, a camera
simulator was made for stereo image sequences.

As a basis for this, a digital video recorder from the company
DVS was used, as it is used in television studios. It is used for
the recording and playback of uncompressed image sequences
in HDTV- Standard (SMPTE 292M) [20] with a resolution of
1920x1020 pixels.

An image in HDTV- Standard was saved as an interlaced
stereo image pair. Using a converter, the HDTV signal was
separated into 2 images, and transferred over a CameraLink
interfaces to the experimental set-up. This way, the real timing
and real image data could be used in laboratory tests.

Because the digital video recorder is too sensitive for use in
vehicles, recent computational technology must be used. Two
PCs with frame grabbers are used for capturing, with which
the image sequences could be taken with synchronized image
pairs to the extent of 1000 images.

Due to needed interaction with the car data system the CAN-
data is recorded with the captured images. Both images and
CAN-data are held with a synchronized time stamp. Afterwards
the CAN-data is coded into not used pixels of the images to
provide synrchonized CAN-data with the images.

6. CONCLUSION

This article introduced a system for real-time multi-object
position measurement using a hardware-software co-design.
The system is based on algorithms from stereophotogrammetry
and, through a set-up of cameras in the normal case of
stereophotogrammetry. It was tested with static and dynamic
measurement objects.

For 3-d measurement, an algorithm based on area correlation
was modified and implemented in the hardware. The modifi-
cation of the algorithm is based on several levels of an image
pyramid, which represented non-overlapping distance ranges.
The computational costs were reduced by a factor of 8 for
the algorithm using 5 levels in comparison to the original area
correlation. After Hardware 3-d-measurement the amount of
data is heavily reduced and suitable for further processing in
an embedded processor.

The software differentiates between static and dynamic ob-
jects and lane markings and handles them accordingly. A
statistical cluster method [21] is applied, which is a good com-
promise between the necessary computation time and available
capabilities. Both the method for producing the depth map and
the similarity criterion are robust against image interference and
other disturbances.

In tests, the system proved to be capable of real-time ap-
plication with accuracy levels in lower percent range, while
at that the same time covering the specified measurement
range. Furthermore, it was shown that, in comparison to PC
implementation, a hardware-software co-design is more suitable
for real-time applications.

The hardware is calculating the depth map in 70 μs. This
value can be treated as a constant delay in respect to the
image capture, since it results from the pipelining of the
correspondence analysis. Due to the a massive data reduction
during hardware 3-d-calculation the clustering of the necessary
amount of data can be archived in an embedded software in
capture time of one image. A new object will be recognized and
identified as static or moving within the run-time of 5 images.
At this juncture, the transient effect of the Kalman filter begins
(see Figure 18). This way, new objects are recognized after
nearly 0.2 seconds.
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A lane-changing assistant system serves as an application
example [13] on the first hand, in which the space behind the
vehicle is surveyed. Further application areas include real-time
3-d-measurement for driver assistance systems for the frontal
view, autonomous robots as well as human body movement.
The measurement range is adaptable according to the parame-
ters of the chosen applications.
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