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ABSTRACT 
 

An ambient intelligent environment is definitely a prerequisite 
for anticipating the needs and catching the attention of systems. 
But how to endow such an environment with natural 
anticipatory and attentive features is still a hardly ever properly 
addressed question. Before providing a roadmap towards such 
an ambient intelligent environment we first give cognitive-
ergonomic accounts for how natural anticipation and selection 
of attention (NASA) emerge in living organisms. In particular, 
we describe why, when and how exploratory and goal-directed 
acts by living organisms are controlled while optimizing their 
changing and limited structural and functional capabilities of 
multimodal sensor, cognitive and actuator systems. Next, we 
describe how NASA can be embedded and embodied in 
sustainable intelligent multimodal systems (SIMS). Such 
systems allow an ambient intelligent environment to (self-) 
interact taking its contexts into account. In addition, collective 
intelligent agents (CIA) distribute, store, extend, maintain, 
optimize, diversify and sustain the NASA embedded and 
embodied in the ambient intelligent environment. Finally, we 
present the basic ingredients of a mathematical-physical 
framework for empirically modeling and sustaining NASA 
within SIMS by CIA in an ambient intelligent environment. An 
environment which is modeled this way, robustly and reliably 
over time aligns multi-sensor detection and fusion; multimodal 
fusion, dialogue planning and fission; multi actuator fission, 
rendering and presentation schemes. NASA residing in such an 
environment are then active within every phase of perception-
decision-action cycles, and are gauged and renormalized to its 
physics. After determining and assessing across several 
evolutionary dynamic scales appropriate fitness, utility and 
measures, NASA can be realized by reinforcement learning and 
self-organization.  
 
Keywords: Anticipation, selection of attention, sustainability, 
collective intelligence, multimodal systems, agents. 
 
 

1. INTRODUCTION 
 
An ambient intelligent environment in general consists of 
ubiquitous computing, context-aware, cognitive and affective 
computing and natural multimodal interaction structures. Such 
ubiquitous structures are embedded in a multitude of 
interconnected systems that store, compute and communicate 
information. The context aware structures help recognize 
human, system and environmental/situational states, behaviors 
and their intentions. The cognitive and affective computing 
structures support problem solving mechanisms. They assist 

humans and systems in their emotionally and cognitively 
driven exploratory or goal-directed acts. The multimodal 
interaction structures help detect, fuse, store, communicate, 
compute and render data, information and knowledge network 
flows. 
 
An ambient intelligent environment can capitalize on the 
above-mentioned structures. For example, Anticipatory and 
Attentive User Interfaces (AAUI) may try to catch the user’s 
attention preferably in his cognitive processing periphery 
without interfering with his goals or tasks. They may even 
anticipate dangerous or lucrative situations. They actually can 
corroborate multimodal dialogue strategies among humans and 
systems after exploratory and goal-directed acts.  
 
A main challenge for the next decades in artificial intelligence, 
cognitive science and cognitive engineering will be building 
sustainable cybernetic systems that can individually and 
collectively anticipate and attend to their own or environmental 
dynamics in a multimodal way. Natural anticipation and 
attention (pre-) schemes foreseen and followed by cybernetic 
systems will determine decisively whether humans and systems 
will achieve their goals and accommodate their own and 
environmental changes. The current abundance and 
omnipresence of Information Communication and Technology 
(ICT) architectures and infrastructures enable ubiquitous, 
pervasive, sentient, and ambient intelligent computing, 
communication, cooperation and competition of both artificial 
and societal organizations and structures. However, they appear 
to us as merely nice to haves in a still rather unstructured and 
unorganized ICT architecture and infrastructure – in general 
they still lack cognitive engineering capabilities for natural 
anticipation and selection of attention (NASA). Instead of 
perpetually handcrafting standalone ICT architectures and 
infrastructures and integrating them, smart human-system 
network interaction paradigms are needed such that cybernetic 
systems can continuously select, embed and embody (after 
reinforcement learning and self-organization) suitable 
anticipatory and selection of attention (pre-) schemes to bring 
those novel integrated ICT features to life. In short new 
paradigms for co-existence and co-evolution of humans, 
machines and their extensions are needed in order to 
simultaneously sustain both anticipation and selection of 
attention (pre-) schemes. Only recently a road towards a solid 
mathematical-physics and cognitive framework for creating 
such cybernetic systems has been put forward [1-2]. 
 
A cybernetic system should realize its current states in terms of 
physical structures and organizations by taking into account, 
besides its past and present states, also its foreseen potential 
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future states that can lead to the highest chance of fulfilling its 
current and future goals. Such states are embedded and 
predicted by the system itself and its environment. Thus a 
cybernetic system should instruct itself to restructure and to 
reorganize itself in order to maximally achieve its own goals. 
The latter goals may in turn be in line with constraints and 
opportunities put forward by such a system itself or by its 
environment. In this way a self-organization of the cybernetic 
system comes about that guarantees the system’s sustainability 
despite its forecasted own and environmental evolutionary 
dynamics [1-7]. The explorative and goal-directed behavior of 
a cybernetic system then displays itself not only as 
(reinforcement) learning, understanding and assessment of the 
system itself and its environment, but also as a functional re-
organization and physical restructuring of a large number of its 
(imaginary) current and future states and organizations – 
continuous self-constrained functional reorganization and 
physical restructuring is a necessity - given its 
objectives/goals/tasks, internal and external states, and 
constrained or engendered by its co-evolving environment.  
 
As cognitive experimental research has given accounts for how 
NASA could take place in humans, an intriguing question rises 
that relates to the embedding and embodiment of such 
mechanisms in ambient intelligent environments. How can 
ambient intelligent environments enable, make operational and 
sustain NASA (pre-) schemes to support human-human, 
human-system and system-system exploratory and goal-
directed (inter)-actions keeping in mind the limited sensory, 
cognitive and actuator capabilities of humans and systems? 
What does cause self-structuring/assembly and self-
organization of a cybernetic system, and how can such a 
system accommodate such processes itself. 
  
Following [1-5], we show that sustainable intelligent 
multimodal systems (SIMS) can embed and embody NASA 
(pre-) schemes for human-human, human-system and system-
system multimodal interaction. In order to provide such 
multimodal features these systems have to enable to represent, 
analyze, process, understand, decide, plan and launch 
multimodal dialogues among artificial systems, humans and 
environments. This requires a cross-disciplinary solution of a 
categorization problem with respect to the detection, 
interpretation and generation of various textual, audio, video, 
speech, motor, vestibular, haptic and tactile fields possibly 
annotated by human experts. This problem is further 
complicated whenever the number of types of physical fields 
and dialogue purposes increase while the amount of available 
sensory, cognitive and actuator resources remains fixed or stay 
behind.  
 
The above problem of categorizing multimodal dialogue 
decision and planning (pre)-schemes we can decompose into a 
detection, fusion, dialogue planning, fission and presentation 
problem. The dialogue decision and planning problem, in turn, 
we can decompose in sub-problems concerning reinforcement 
learning; self-organization; contextualization; disambiguation; 
indexing, retrieval, querying, association, and inference. If we 
can solve these problems, then we know how to embed and 
embody the NASA (pre)-schemes within SIMS.  
 
Most of the above categorization problems have been tackled 
separately for one or a pair of modalities from a mono- or 
multi-disciplinary perspective. In [1-5] we proposed a 
mathematical physics framework that supports development 

and deployment of complex systems. It distinguishes itself 
from the mono- or multi-disciplinary approaches in the sense 
that the statistical physics geometry of the interacting 
environment, user and system are conceptually as well as data-
driven physics-based. The other approaches advocate 
representing e.g. spatio-temporal ordering relations and derived 
geometric properties in terms of heuristic Euclidean invariant 
measures. Such measures are generally totally inadequate to 
capture in a robust and reliable way the statistical physics and 
geometry underlying interacting SIMS. Furthermore, such 
approaches do not address possible coupling and associative 
(pre-) schemes between multimodalities. Our framework does 
not only allow robust and reliable modeling of complex 
systems, but also sustains acquisition of NASA (pre-) schemes 
needed during co-evolution of humans and systems.  
 
Intelligent agent systems are indispensable to create and sustain 
NASA (pre-) schemes. Specialization and leverage of these 
(pre-) schemes can be realized by collective intelligent human 
and software agent systems (CIA) [6]. At higher levels of 
network complexity similar systems can be posited for such 
purposes. Organizations, groups, individuals, ICT and 
knowledge systems all have limited capacities and capabilities. 
They need to free time and resources for differentiating, 
diversifying and integrating information and knowledge. This 
can be achieved through NASA (pre-) schemes. 
   
Our paper is organized as follows. In section 2 we briefly give 
an account for NASA (pre-) schemes from a cognitive science 
perspective. In section 3 we ground these (pre-) schemes within 
SIMS and CIA functional architectures. In section 4 we 
propose a mathematical physics framework for corroborating, 
diversifying and sustaining NASA (pre-) schemes. 
 

2. COGNITIVE-ERGONOMIC ACCOUNTS 
 
Models for anticipation have been based on predictive theories 
for biological systems themselves and their environment [1-5, 
7, 8]. Models for selection of attention are based on filter 
theory; ‘response selection theory of attention’; capacity 
theory; resource theory; Treisman’s theories of attention and 
the feature integration theory; Van der Heijden’s, Allport’s and 
Neumann’s unlimited capacity to process theories; and 
computational theory of attention [1-5, 8, 9]. In essence models 
for anticipation cover those for attention: NASA that are 
embedded and embodied in biological systems and their 
environment can be accounted for as means to sustain them as 
such [1-5].   
 
 

Information

IN

ICD

LCM

Eye

 
Figure 1: CYCLES IN NASA 
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According to a NASA model sensor and actuator information 
enters an input map (IN) layers and is further relayed to an 
Identity Conspicuity Domain (ICD) layers and Location 
Conspicuity Map (LCM) layers (see Figure 1).  
 
The LCM layers essentially provide a saliency map and follow 
a winner-takes-all (WTA) or similar strategy to detect the most 
conspicuous locations - events - in the enacted scene. The most 
conspicuous location is based on grounded spatial relations 
between objects in the enacted scene, i.e., where-relations. 
Note that enactment here in particular denotes the observation 
of the fitness, utility and sustainability of perception-cognition-
actuation cycles within SIMS.  
 
Analogously in LCM, a similar strategy in the ICD layers is 
followed to determine the most conspicuous cognitive objects 
in the enacted scene. Also the ICD layers perform a saliency 
domain mapping but at a cognitive level. In the ICD layers 
cognitive object conspicuity is based on the identity relations 
for and between grounded (meaningful) enacted scene 
elements, i.e. the what-relations.  
A conspicuous object vis-à-vis its contextual objects can be 
simultaneously selected at the level of where- and what-
relations. In the LCM and ICD layers the object conspicuity 
vis-à-vis their context contrasts with expectations that are 
inferred and anticipated by the brain and are partly dictated by 
the environment.  
 
In the NASA model there exist two feedback loops: one from 
the LCM layers to the IN layers, and one from the ICD layers 
to the IN layers. We coin these feedback loops as NASA (pre-) 
schemes triggered by position information and by identity 
information.  
 
The map of locations and the domain of identities are the 
sources or potentials – as physicists say - of NASA (pre-) 
schemes. Location information - if fed back to the IN layers - 
and identity information - if fed back to the IN layers – make 
operational specific NASA (pre-) schemes. We therefore 
propose that the brain naturally and by default selects 
conspicuous localized information and identified information 
for memorization and action, respectively, by means of 
feedback and feed forward loops that might be active at various 
levels of abstractions or scales across many cues.   
 
In order to account for affection and intention one relates object 
conspicuities to (statistical geometric) probabilities of NASA 
(pre-) schemes during exploratory and goal-directed acts. This 
assumption is based on two hypotheses: 
 

• Hypothesis 1: In the case of exploratory acts the most 
conspicuous object (either at the where or what level) 
forms a cue for anticipation and selection-for-action. 
In other words, during exploratory acts a biological 
system may automatically select those conspicuous 
objects in the enacted scene by which it is most 
affected.  

 
• Hypothesis 2: In the case of goal-directed acts a 

biological system attaches weights to individual 
objects of the enacted scene irrespective of their 
conspicuities. In other words, during goal-directed 
acts a biological system may select intention- or task-
related objects in the enacted scene.  

 
 
From (Hypothesis 1) and (Hypothesis 2) we can infer that the 
memorization and activation of NASA (pre)-schemes take 
place across the IN, LCM and ICD layers. Furthermore, the 
entanglement of NASA (pre-) schemes and actual exploratory 
and goal-directed acts, together with the actual utility, fitness 
and sustainability of those acts in achieving the specific 
systemic goals, determine the degree of memorization and 
activation of the NASA (pre-) schemes. Psychophysical 
evidence shows that both these hypotheses hold for humans. 
 
Connectionism explains the above psychophysical phenomena 
very well. Connectionist models of our brain assume that the 
information about an object is stored in several inter-connected 
layers rather than in a single node in a layer and that, over time, 
learning and experience increase the connection strengths 
among these nodes. When one node in a layer is activated, it is 
assumed that other connected nodes are activated or inhibited. 
If the connection strength between nodes is weak over time, 
then the memory network learns to inhibit the connection 
between those nodes. As a result, the feedback of conspicuous 
object information is inhibited and thus has a lower anticipation 
and selection-for-action probability. This spreading of the 
activation process takes place across several multimodal 
network layers.  
 
Affection and intention of biological systems determine heavily 
the NASA (pre-) schemes deployed at salient systemic and 
environmental operational and evolutionary scales. They 
control during evolution and operation systemic and 
environmental states and functions at a macro-scale by means 
of feedback and -forward loops. Such loops need contrast 
extraction and grouping (pre-) schemes as segmentation and 
organizational (pre-) schemes, respectively. Once applied, 
those (pre-) schemes yield (cognitive) object categorizations in 
terms of field strengths. During systemic and environmental 
evolutionary cycles those (pre-) schemes play an important role 
unraveling specific physical laws and symmetry breaking 
mechanisms.  
 
However, current connectionist models lack still statistical 
geometric physics grounding for embedding and embodying 
adequately, e.g., non-local and evolutionary cognitive 
processes at a systemic and environmental scale. Furthermore, 
the discrete computational schemes proposed and employed are 
generally not applicable; the semi-discrete numerical schemes 
do not even correspond to the physically laws and symmetry 
breakings that connectionist models assume. Furthermore, 
connectionist models don’t provide sensible fitness or utility 
measures for such (pre-) schemes that are needed during 
reinforcement learning and self-organization of a cybernetic 
system and its environment. Furthermore, they don’t make 
explicit how to sustain those (pre-) schemes.    
  
In the next section we give NASA (pre-) schemes within SIMS 
by CIA a firm mathematical physics foundation.  
 

3. Grounding NASA 
 
 
As stated, cybernetic systems should be endowed with NASA 
capabilities in order to cope with their own internal and 
environmental evolutionary pressures. The sustainability of a 
cybernetic system given those pressures can be assessed on the 
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basis of fitness and utility measures for NASA (pre-) schemes 
[1-5]. Up to now determining and making explicit proper 
fitness and utility measures for reinforcement learning and self-
organization are challenging problems that are hardly ever 
addressed in cybernetics [9, 10].  
 
Here fitness measures are conceived as measures for the 
physical intertwining, entanglement and entrainment of (non-) 
local structures or organizations of the cybernetic system and 
those of its environment. Utility measures refer to how well 
NASA (pre-) schemes solve existing, hidden and rising internal 
and environmental problems.  
 
All this asks for smart cybernetic systems that can 
counterbalance both the phenotypic (evolutionary) and 
genotypic (relatively stationary) physical dynamics of both the 
system itself and its environment. Therewith the problem of 
self-structuring and self-organization by a cybernetic system 
itself can be rephrased as follows: what are and how to embed 
and embody proper fitness, utility and sustainability measures 
for NASA purposes.  
 
Many scientists have proposed to define the above measures in 
terms of social, biological, physical and ICT network 
characteristics. Such characteristics relate to scaling laws (self-
similarity) and symmetry breaking mechanisms of punctuated 
and far-off equilibrium network dynamics. These physical laws 
and mechanisms spell out which physical NASA strategies are 
the most fit and utile ones that co-evolving systems could apply 
during phases of reinforcement learning and self-organization. 
 
Having mastered such physical laws and mechanisms a 
cybernetic system should, besides anticipate, also know why, 
when and how to capture, to direct and to change attention 
towards relevant dynamical phenotypic and genotypic issues 
while enacting itself, its collective and its environment. In this 
respect a cybernetic system should allow for the emergence of 
smart NASA (pre-) schemes at appropriate spatio-temporal and 
dynamic scales. Summarizing, NASA (pre-) schemes together 
with their fitness and utility measures should allow for the 
emergence of hierarchies of relevant niches of systemic and 
environmental dynamics [1-5]. 
  
How to realize NASA (pre-) schemes in cybernetic systems is a 
problem that is hardly ever satisfactory tackled in 
computational or cognitive science. However, there’s a lot of 
inspiring material on this issue in the Nobel Lecture of Ilya 
Prigogine [11] addressing perception-cognition-action 
problems, and the seminal works of Roger Penrose and Stuart 
Hameroff [12] on consciousness and quantum computation in 
the brain. Analogous Salden [1-5], they emphasize the 
importance of unraveling physical laws and symmetry breaking 
mechanisms before one even may think of reaching any 
sensible levels of consciousness (awareness), understanding or 
intelligence.  
 
Following [1-5] we propose that NASA selection is driven by 
evolutionary (pre)-schemes for affection, intention, extraction 
of contrast and grouping. In our framework the (pre)-schemes 
come about by applying an appropriate dynamic scale-space 
paradigm. This paradigm provides a robust statistical physics 
grounding and extension of connectionist models. The 
mentioned pre-schemes are related to connection one-forms, 
torsion and curvature two-forms, and more general geometric 
and topological objects. The one-forms can be viewed as 

potential or source fields living on those systems induced either 
by their internal or external environment. The two-forms are 
machines for measuring dislocation and disclination currents, 
and other geometric or topological invariants of cognitively 
conspicuous dynamic objects induced either by their internal or 
external environment. 
 
In the sequel we present a functional architecture that allows 
generating NASA within SIMS by CIA. 
  
 
SIMS Functional architecture 
We discern in our SIMS architecture various functional system 
components and relations between them, including feed 
forward and feedback loops (see Figure 2). The feed backward 
and forward loops appear as control streams, respectively, 
originating from the multimodal dialogue decision and 
planning system such that it can manage resources in line with 
our NASA (pre-) schemes. In particular we focus on the 
functions of the multimodal dialogue decision and planning 
component which can be considered responsible for cognition. 
This component looks after reinforcement learning and self-
organization. During reinforcement learning the fitness, utility 
and sustainability of NASA (pre-) schemes are assessed, 
memorized and selected for possible action. After self-
organization NASA pre-schemes are available to 
contextualization (pre-) schemes, disambiguation (pre-) 
schemes; indexing, retrieval, querying, association, and 
inference (pre-) schemes.  
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Figure 2: SIMS enacting itself and its environment 

 
On the basis of the input streams and embedded and embodied 
NASA (pre-) schemes appropriate explorative and goal-
directed multimodal dialogue decision and planning acts can be 
launched that serve the multimodal and multi-actuator fission 
components. Therewith, our SIMS architecture can orchestrate, 
gauge and renormalize in an intelligent way the SIMS 
components in compliance with various usage contexts, 
keeping in mind the users, environmental and multimodal 
dialogue systems’ intentions and their foci of attention as well 
as their capacity and capability constraints. The mathematical-
physics framework underlying will be postponed till section 4. 
In the sequel we further detail the SIMS functional 
architectural requirements for each component; interfacing 
issues such as the feed forward and backward are not addressed 
as they are considered of minor importance. 
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Multi-sensor detection: A multi-sensor detection 
system requires a sampling architecture that is not only 
adjusted to the intricacies of the physical fields that have to be 
detected and encoded. Such a detection system has also to 
adapt to the intricacies of the system itself.  

 
The intricacies of physical fields, such as those of visual and 
audio scenes, may relate to, e.g., object absorption or 
reflectance properties of object surfaces and the illumination 
and sound sources. Similarly, the intricacies of the multi-sensor 
systems themselves such as their physical layout and dynamic 
resolutions and capabilities may coincide with but at least 
relate in a definite manner to those physical field properties.  
   

Multi-sensor fusion: Considering an ensemble of multi-
sensor detections, one observes that these detections are 
perturbed versions of each other in a modern geometric, 
topological and dynamical sense. Despite their differences, one 
associates such an ensemble of measurements to one particular 
equivalence class on the basis of specific observed features. 
Apparently random perturbations cause changes in gauge 
invariants or equivalences at low systemic and environmental 
scales that have to be counterbalanced. Besides these variations 
in the physical fields a system has also to cope with structural 
and functional defects occurring over time. To handle such 
input and system faults at sensor-network scales a system has 
to fuse the detected physical fields in a consistent manner. 
 

Multimodal fusion: In order to increase robustness and 
reliability of multimodal dialogue decision-making and 
planning, a coupling and fusion of multi-sensor motor, audio, 
visual, vestibular and annotated information can significantly 
reduce computational and cognitive load. In this case the 
physical objects are living on more than one type of sensor or 
actuator network. One modality, e.g., audio, can then be made 
leading during multimodal fusion - other modalities attach and 
follow audio. This way we can acquire multimodal physical 
objects that are truly relevant in multimodal dialogue decision 
making and planning.  
 

Multimodal fission: As in the case of multimodal fusion 
multimodal fission requires reliable segmentations and 
arrangements of various coupled multimodal output streams in 
order to support multi-actuator fission. Again, the multimodal 
dialogue decision-making and planning system steers this 
process on the basis of reinforcement learning and self-
organization of effective and efficient multimodal dialogue acts 
with environment, users, and itself. The planning system is 
aware of the capacities and capabilities of its own and others’ 
system resources through NASA (pre-) schemes.  
 

Multi-actuator fission: Having decided how to spread 
the dialogue acts over the different modalities it is still 
necessary to refine and distribute those fuzzy acts over the 
actuators for each modality. Like for multimodal fusion the 
dialogue planning system needs to send directive measures to 
the fission module. 
 

Multi-actuator presentation: The dialogue planning 
system has to deal with many types of output modalities. 
Therefore, the type of rendering and presentation launched by 
the planning system has to be adjusted properly to particular 
characteristics of the available actuator systems. 
 

Multimodal dialogue decision making and planning: 
Cognitive functions such as problem solving, planning, 
decision-making, perception, memory, situation assessment, 
monitoring, and prioritizing have to be supported. On the basis 
of the multi-sensor and multimodal input streams the dialogue 
decision and planning system launches control and actuation 
signals to the fission and presentation components, but also to 
the fusion and sensor components. Our SIMS architecture 
should gauge, renormalize, choreography and orchestrate 
dialogue acts between environment, users and system in a 
sustainable and intelligent way by means of this multimodal 
dialogue decision making and planning system. The decision-
making and planning system should be compliant with various 
environmental, user and system contextual grammars and 
constraints dictated by affection and intention (pre-) schemes 
(see section 2). During decision making and planning 
functional components for reinforcement learning and self-
organization are operational at their own time-scales (see 
Figure 3). The self-organization components in turn steer those 
for Contextualization, disambiguation and standard 
management. 
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Figure 3: Reinforcement learning & self-organization. 
 

• Reinforcement learning: Our multimodal dialogue 
decision-making and planning system has first of all to 
take advantage of the natural physical statistics among 
(detected, fused, rendered and actuated) multimodal 
dialogue objects possibly annotated by human experts. 
This can be done during a (semi-) or (un-) supervised 
learning phase by gauging away and renormalization to 
the intricacies and behaviors of those physical objects. 
Hereafter multimodal dialogue decision making and 
planning should be automated by the cybernetic systems 
through fuzzy reinforcement learning of (NASA) (pre-) 
schemes.  

 
• Self-organization: At lower operational systemic and 

environmental time-scales self-organization should 
manifest itself as a memorization and selection for action 
of a particular set of (pre)-schemes found to be effective 
and efficient in achieving tasks or goals. Among those 
(pre-) schemes are those for NASA. The NASA (pre-) 
schemes should make operational those for 
contextualization; disambiguation; indexing, retrieval, 
querying, association and inference. 
 
• Contextualization: After reinforcement learning of 

various classes of gauge and renormalization 
equations, to which SIMS and environment are 
subjected, a cybernetic system may embed and 
embody contextualization constraints and grammars 
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for launching multimodal dialogue acts. The 
cybernetic system can fall back on NASA (pre-) 
schemes to control those operational 
contextualization (pre-) schemes. Figure 4 illustrates 
that multimodal contextualization, e.g. by music, can 
help resolving ambiguities. 

 
• Disambiguation: As contextualization (pre)-schemes 

may be subject to NASA (pre-) scheme, this enables 
disambiguation (pre-) schemes for discriminating of 
scenes. For example, contextual constraints 
depending on the natural physical statistics of a 
multimodal scene may permit only one sensible 
interpretation. Adding music to Figure 4 clearly let us 
become aware of only one possible physical 
interpretation.   However, if additional contextual 
grammars or constraints are not available, then 
multiple and fluid interpretations may be forced upon 
us. 

 

 
Figure 4: Playing the Sax? 

• Indexing, retrieval, querying, association, and inference: 
On the basis of indexing relevant multimodal dialogue 
planning acts together with their perceived fitness and 
utility may be memorized and selected for action. Through 
reinforcement and self-organization the proper retrieval, 
querying, association and inference (pre)-schemes are 
made operational. This all is done within particular usage 
contexts and for specific purposes. Together with the 
contextualization and disambiguation (pre)-schemes, the 
latter (pre)-schemes produce the feedback and feed 
forward loops for detection and presentation, and fusion 
and fission. 

 
CIA Functional Architecture  
Architectures for collective intelligent agents (CIA) [13] can 
automate and sustain NASA (pre-) schemes within SIMS. The 
agents in a CIA environment are best breed agents selected 
from possibly distributed CIA development and deployment 
platforms (see Figure 5).  
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Figure 5: CIA sustaining NASA in SIMS 

 
Both platforms and environments need to communicate with 
physical actors being either individual humans or groups with 
their own NASA-SIMS capacities and capabilities. The (off-
spring) actor software agents must support the actors to 
interact, communicate and collaborate with each other in an 
ever-complex multimodal way – the development and 
deployment environment should look after embedding and 
embodiment of the diversification of the intelligence of NASA 
(pre-) schemes in SIMS and environment. Thereto, the actor 
agents should have (not necessarily language determined) agent 
communication languages (ACLs) and negotiation strategies at 
their possession to set up interactions among humans and 
systems – they could talk physics [1-5]. Furthermore, the CIA 
development and deployment platforms have to generate 
genetic algorithms (GAs) with sustainability measures for 
NASA and other self-organization (pre-) schemes. By 
registering and assessing fitness and utility of those (pre-) 
schemes during operations within the CIA environment 
reinforcement learning with SIMS can be effectuated. Note that 
NASA-ing in SIMS by means of ACLs, negotiation strategies, 
GAs with sustainability measures are most efficiently 
developed and deployed by means of computer algebra 
systems. 
 

4. MATHEMATICAL PHYSICS FRAMEWORK 
 
In order to capture sensibly physical field at relevant systemic 
environmental intricate scales we propose to let so-called gauge 
field equations G and related dynamic scale-space paradigms 
[1-5] govern the geometry / dynamics of SIMS by CIA. Doing 
so, the NASA (pre-) schemes become insensitive to structural 
and functional defects occurring below and for related spatio-
temporal and dynamic scales/patterns.  
 
Gauging NASA  
In practice this gauging boils down to finding and calibrating 
first a SIMS by CIA for an appropriate geometry, e.g., the 
geometry of the vision or audio system. Having acquired and 
established such gauge equations G covering the extrinsic and 
intrinsic systemic and environmental aspects enables us to 
come up with invariant physical fields and laws that are 
appropriate as input field potentials and strengths to be 
embedded as successive modules in SIMS by CIA.  
 
Those field potentials and strengths coined one-forms ω, frame 
fields ε and curvature/torsion fields Ω are related to a 
connection Γ and corresponding covariant derivative ∇: 

 

j
j

iij
j

ii εεεωε Ω=∇∧∇⊗=∇ ΓΓΓ ,               (1) 

 
Multi-sensor detection is gauged, adapted or aligned to its 
physical environment and itself in such a way that physical 
objects like ε, ω, and Ω are unaffected by transformations g 
covered by the gauge equations G. Note that all above fields or 
machines can exist and can be defined as CW-complexes 
living on (artificial) neural networks NNs.  
 
SIMS by CIA perception, cognition and actuation of physical 
fields comes about by grouping CW-complexes and producing 
so-called gauge invariants or equivalences, such as dislocation 
or disclination fields related to Ω. Latter fields quantify 
differential geometric properties of defects in the spatio-
temporal layout and properties of e.g. optic fields generated by 
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the interplay of illumination fields and the shape and surface 
properties of objects.  
 
Our framework provides a much richer and more extensive 
topological and geometric description apparatus for the enacted 
environments than is possible by natural languages. Actually 
(oral or written) annotations of physical objects are intrinsically 
substantiated and grounded by our objects themselves, and do 
not need them either. Furthermore, these invariants or 
equivalences don’t have to be merely local or multi-local 
classical geometric or algebraic invariants that one encounters 
in standard textbooks on, e.g., computer vision.  
 
Curvature, torsion and topological defects are measures and 
objects that can be typically of a non-local and temporally 
instantaneous, persistent and dynamic nature. The non-local 
measures and objects can be instantiated and made operational 
on CW-complexes – energies and topological invariants for 
(self-) linking (S)L can even be exactly formulated and 
numerically computed as NNs characteristics and dynamics [1-
5, 15, 16]. These characteristics and dynamics can be 
macroscopically realized as multi-local properties of NNs; the 
(self-) linking numbers (S)L or energies of NNs can be given 
discrete mathematical formulations in terms of network states 
and evolutions [14, 15]. Moreover, the statistical geometry of 
(non-) local measures and objects can help to select natural 
contextual grammars and constraints for dialogue 
understanding, decision-making, planning, generation 
(production) and evolution. Here dialogue does not only refer 
to heard, spoken, written and read conversations, but also to 
visually perceived, induced and imagined scenes, 
choreographies of movements or orchestrations of sounds. 
Furthermore, contextual grammars and constraints used in the 
detection phase are subject to gauge-consistent NASA (pre-) 
schemes. 
 
Instead of presenting a full mathematical physics exposition [1- 
5] we exemplify the basic gauging NASA concepts involved in 
solving the renowned figure-ground problem within video 
summarization.  

 
      Figure-ground gauging: In video analysis the problem of 
figure-ground and event description has been and still is one of 
the most outstanding problems. Considering the gray-valued 
(2,1)-dimensional video we observe so-called isophotes and 
flowlines that are normally mathematically modeled as surfaces 
and curves in space-time.  
 
Assuming space-time to be modeled as a Galilean space it is 
clear that we may conceive a video K as a time-sequence of 
two-dimensional still images, ki. In that case the isophotes and 
flowlines at a given time are curves of iso-intensity and the 
integral curves of the spatial image gradient, respectively. Of 
course, along the time axis you may also define a flowline, but 
then one along the ordinary time-axis and directed according to 
the ordinary time-direction multiplied with the sign of the time 
derivative of the local intensity value. 
 
In order to detect figure-grounds we study the variation of the 
gray-value along the flowlines in each frame. Using the tangent 
vector field t to the flowlines in the direction of increasing 
intensity we derive the differential Euclidean arc-length 
parameter ds along the flowlines in terms of ordinary spatial 
derivatives of the gray-values K and differentials dx and dy. 

This implies that connection in (Eq. 1) is simply Euclidean and 
flat. 
 
Computing the sign of the second order variation of the gray-
values d(dK(s)) along the flowlines with respect to ds  enables 
to discriminate between figure and ground: If the sign is 
negative we have figure, whereas if it is positive we have 
ground. 
 
This signature - an integral part of gauging NASA (pre) 
schemes - is not at all equal to the signature of the Laplacian of 
video K. The interfaces between pixels, where the sign changes 
occur, actually form the edges or contours of either figure or 
ground. These edges or contours can be due to shadows or true 
physical boundaries of objects.  
 
On the basis of this so-called topological current one can find 
local dynamic ordering and global spatial inclusion relations on 
the basis of this figure-ground segmentation. This segmentation 
is invariant under diffeomorphisms of the spatial image in a 
spatial as well as dynamical sense.  It can be shown that the 
above variation d(dK(s)) is proportional to KiKijKj, in which 
Ki and Kij are the ordinary normalfirst and second order spatial 
derivatives of the gray-value image. Note that twice appearing 
sub-indices denote summation over the x and y derivatives.  
 

 
Figure 6: Deformed, shadow, and noisy image of a vase. 

 
Figure 7: Equivalent topological edges in Figure 6. 

As an example of the added value of gauging NASA, it is 
shown in Figure 6 and Figure 7 that despite severe 
deformation, shadowing, and noise put on top of a grey-valued 
vase image, contour and therewith figure-ground detection can 
still be reliably and robustly carried out.  
 
In order to detect temporal figure-grounds and edges a similar 
signature can be derived based on the second order time-
derivatives of the gray-valued image.  
 
Sustaining NASA 
In order to cope with Lyapunov (noise), structural and 
functional instabilities, we follow a so-called dynamic scale-
space paradigm [1-5]. Such a paradigm for retaining robust and 
reliable internal and external physics can handle not only 
postulated or conceived gauge equations G. It can also cope 
with renormalization equations R that generate classes of 
morphological transformations causing the above instabilities. 
These renormalization equations R within SIMS by CIA define 
how (non-) local gauge invariants or equivalences have to be 
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fused in order to produce robust partially equivalent 
categorizations of underlying system and environmental 
physics above a certain dynamic scale t characteristic for those 
instabilities. They also prescribe how to sustain NASA (pre-) 
schemes on NNs.   
 
Effectively those equations can be defined as topological 
currents j with respect to physical objects F that may involve 
one-forms ω, frame fields ε and curvature/torsion fields Ω on 
NNs: 

 
F

t jF −=δ                                                                          (2) 
 
Note that analogous dislocation and disclination currents, these 
currents may insert or remove physical objects on NNs that are 
represented by gauge invariants or equivalences. Thus 
annealing (pre-) schemes are not at all prohibited on NNs.  
 
Creation of physical objects on NNs should not come as a 
surprise nor should be considered as a nuisance, since feedback 
and feed forward processes after NASA (pre-) schemes should 
be able to make sense of seemingly unrelated systemic and 
environmental physics. Furthermore, a cybernetic system may 
engage an environment for its own purposes not always being 
obedient. This all allows SIMS by CIA to enact robustly itself 
and its environment though NASA (pre-) schemes. Normally 
such topologically currents induce a self-similarity operation 
with respect to physical objects F – this self-similarity 
operation does not necessarily imply redundancy reduction as 
that advocated by certain computer vision communities. What 
one hopes for is scaling invariance of systemic and 
environmental physics, although a natural breaking of 
symmetries is to be expected.  
 
Energies and topological invariants can be formulated for the 
(self-) linking (S)L of the renormalized multimodal NNs 
dynamics residing in the ambient intelligent environment. 
Furthermore, conservation and scaling laws and symmetry 
breaking can be spelled out by the induced physics. Moreover, 
NASA (pre-) schemes will sustain SIMS by CIA cycles within 
an ambient intelligent environment. 
 
Again we abstain from presenting a full mathematical physics 
exposition [1-5] for sustaining NASA. However, in the sequel 
we exemplify its ingredients for videos of complex scenes. 
 
     Natural hierarchies sustaining: Considering an ensemble 
of videos one observes that they are in a modern geometric, 
topological and dynamical sense perturbed versions of each 
other. This perturbation consists of non-integrable and 
integrable deformations of the videos. The integrable 
deformations are transformations covered by a gauge group 
such as homotopies, whereas non-integrable deformations are 
G due to noise and relative resolution differences over videos 
covered by renormalization equations R. 
 
In order to extract from video a robust and concise set of 
equivalencies despite both above types of deformations a 
dynamic exchange principle is needed to dynamically order and 
group video objects,  according to their visual content. 
Analogously, sustaining NASA (pre-) schemes can be 
corroborated. In [1-5] this is proposed to be achieved by 
intrinsically coupling a dynamic exchange principle to the 
fields and the cybernetic system dynamics, in this case the 
videos and imaging system. 

The dynamic exchange principle says that the change δK in 
energy K for specific video content in a space-time region is 
equal to the exchange of energy between this region and its 
(possibly non-adjacent) surroundings across their (common) 
boundary or virtual connections.  
 
Analogous (Eq. 2), this dynamic exchange of video content is 
controlled by a topological current j:  
 

δK = - j with ∑ ∇
⋅∇

−=
p

p

K
SdKj 2

~

cosh
 

 
with suitable initial and boundary conditions, e.g. local 
reflective boundary conditions.  
 
The initial and boundary conditions can in turn be steered by 
local as well as global modern geometric or topological 
information. For example, local reflective boundary conditions 
to the flow can be imposed.  
 
As a video consists normally of three color components, 
possibly invariant under geometric transformations, we have to 
adapt and couple the exchange principles of these components 
in a non-linear manner. 
 

δK q= - jq  with ∑
∑∇

⋅∇
−=

p

q

q

p
q

q

K

SdKj
22

~
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where q is R, G, B, or the components of some other color 
space representation. Note that we assume that the color 
components are linearly independent physical observables. 
Furthermore, we perform a truly spatio-temporal nonlinear 
dynamic scaling of the video; not only for individual video 
frames, but also at same time over the image sequence.   
 
In Figure 8 and Figure 9 we compare the segmentation maps of 
the original video and that of a dynamically scaled version 
following the above defined dynamic exchange principle.   
 

 
Figure 8: Top-left: Original video image. Next three 
images: the segmentation maps obtained by using 
sign[d(dK(s))] for the R, G, and B color components, 
respectively. 
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Figure 9: Top-left: Non-linearly diffused image, under 
reflective boundary conditions, at scale 12. Next three 
images: the segmentation maps obtained by using 
sign[d(dK(s))] for the R, G, and B color components, 
respectively. 
 
Our dynamic scale space paradigm will induce a natural 
hierarchy of images enabling readily attentive and anticipatory 
data consistent key-frame selection. Other paradigms like the 
quad-tree paradigm may lead to unwanted ambiguities by 
merging two or more sub-images from definitely different 
objects into one at the wrong spatio-temporal and dynamical 
scale. The dynamic scale space paradigms on the contrary 
allow controlling such physically undesirable versifications of 
physical fields within SIMS by CIA. 
 

5. CONCLUSION AND FUTURE WORK 
  

We have proposed sustainable intelligent multimodal systems 
to be realized by collective intelligent agent systems. The latter 
systems should thereto realize NASA (pre-) schemes. By 
means of agent communication languages, negotiation 
strategies and genetic algorithms our collective intelligent 
agent systems can then adapt and evolve those (pre-) schemes 
applied during multimodal dialogues with other agents.  These 
agents are recommended to follow a mathematical-physics 
framework while embedding and embodying those NASA (pre-
) schemes.  
 
Our NASA within SIMS by CIA supports via self-organization 
of reinforcement learning (pre)-schemes the embedding and 
embodiment of various metrics, connections and similarity 
operators to enable non-local contextualization as well as 
disambiguation schemes whenever needed. For example, 
despite image deformation, shadowing and noise our approach 
showed to allow reliable and robust figure-ground and 
dynamics detection.  
 
It is obvious that Bayesian network approaches [16, 17] could 
never yield such a robust and reliable physical categorization of 
images: the applied Bayesian statistics lacks in a sense a true 
physical grounding. Unfortunately, some Bayesian techniques 
like that of Rao [18], that actually integrate like our dynamic 
scale-space paradigm statistical physics, have fallen into 
oblivion. However, the standard Bayesian network approaches 
are hampered in particular by the following notable flaws:  

• They do neither embed nor embody the appropriate 
multimodal dialogue system features. In case of visually 
perception a Euclidean square-grid image plane is 
assumed, whereas from a physical perspective a choice for 
an epi-polar or non-Euclidean image plane geometry 
makes much more sense.  

• They do not couple their multimodal dialogue 
categorization schemes to multimodal dialogues 
themselves, i.e. the multimodal dialogues may not induce 
a sensible metric or connection one forms and related 
torsion and curvature forms.  

• They cannot retain reliable and robust information that is 
coupled to that information itself, or coupled to usage 
contexts imposed by the system itself or its environment.  

• They do not really allow for fuzzy or multiple image 
interpretations, because the used metric, connection and 
similarity operators are fixed. Thus they fail to resolve 
ambiguities.  

Severe morphological transformations of multimodal dialogues 
certainly prove Bayesian network approaches to be inadequate 
for sustaining NASA (pre-) schemes within SIMS by CIA. 
Being indifferent to such gauging and renormalization issues is 
in particular one of the added values of our dynamic scale-
space paradigm.  
 
Summarizing, reinforcement learning and self-organization of 
NASA (pre-) schemes should not only be based on the fitness 
and utility of natural linguistic NASA (pre-) schemes. On the 
contrary, robust grounding of physical laws and symmetry 
breaking mechanisms, which are subject to evolutionary 
pressures, should rather be based on the natural statistical 
physics of other multimodal fields too. A dynamic scale-space 
paradigm can help lying bare those laws and mechanisms. 
Natural language approaches using semantic web technologies 
are hardly capable of capturing the complexity of physical laws 
and symmetry breaking mechanisms. However, evolutionary 
pressures on ambient intelligent environment including 
cybernetic systems can be gauged away and renormalized by 
imposing similar topological filtration (pre-) schemes defined 
in Eq. (2). Finally, the fitness and utility measures can be 
enriched by sustainability measures invariant under topological 
filtration (pre-) schemes consistent with systemic and 
environmental evolutions [1-5]. Thus sustainable NASA (pre-) 
schemes are bred through reinforcement learning of natural 
statistics and physical geometries. 
 
Of course, similar architectures and mathematical-physics 
frameworks can be proposed for intelligent home, ambient-
aware mobile, collaborative groupware, e-learning and 
knowledge management systems. We proposed a similar 
architecture for knowledge management systems [19] to live on 
computational, information and knowledge grids. We actually 
built parts of such systems for mobile services [20]. In 
forthcoming papers we focus and report besides on the 
architectural design also on the actual technical implementation 
and evaluation of such services. 
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