
Discriminant Feature Selection by Genetic Programming:
Towards a domain independent multi-class object detection system
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École de Technologie Supérieure, Universit́e du Qúebec
Montréal, Qúebec, Canada

ABSTRACT

In order to implement a multi-class object detection sys-
tem, an efficient object representation is needed; in this short
paper, we present a feature selection method based on the
Genetic Programming paradigm. This method allows for
the identification of a set of features that best represent the
classes in the problem at hand. The idea would then be
to have a broad set of features to describe any object, and
then to use the presented feature selection method to adapt
the description to the actual needs of the classification pro-
blem. Furthermore, the tree like solutions generated by the
method can be interpreted and modified for increased gen-
erality. A brief review of literature, the first implementation
of the method and the first results are presented here. The
method shows potential to be used as a building block of a
detection system, although further experimentation is under-
way in order to fully asses the power of the method.

Keywords: Feature selection, genetic programming, pat-
tern recognition.

1 INTRODUCTION

Automated visual recognition and detection processes are in-
creasingly prevalent in most scientific fields and in many ar-
eas of industry. As the availability of information in elec-
tronic form increases, more sophisticated processing meth-
ods are required. For visual detection processes, this often
takes the form of sample query based image searches, i.e. of
the form: ”Given these examples of objects, detect and locate
all similar objects in other images”. Examples of this type of
problem include target detection ([1–3]) where the task is to
find all objects of a certain type in an image; for instance, in
[4] the authors searched for tanks, trucks, or helicopters in a
map (an aerial image).

In most cases, systems are painstakingly designed and de-
veloped in order to detect only a single and specific object or
property of an object. We feel that a domain independent res-
olution method i.e. a method that will work, without adjust-
ment, for any detection problem, is needed. In order to attain
this objective, the basic problem of finding asoundandcom-
pleterepresentation for objects have to be addressed. Indeed,
if we wish to create a method that worksfor any detection
problem, then this representation should also be applicable
to any of them. This implies not only a set of characteristics
broad enough, but also a procedure for selectingthe best of
them for the problem at hand.

One of the main practical obstacles to finding themost
discriminatingfeatures is the manual tuning of the parame-
ters that a software system would require for the recognition
of particular objects. Thus, while knowing a wide range of
different features would (in theory) allow us to detect vir-
tually any object in images, it would require the input of
an expert in order to select the object features most useful

for performing the task in a reasonable amount of time. This
shortcoming significantly limits the practicality of any given
system.

In this paper we present a concept to automate the selec-
tion of features that are pertinent to any given problem. That
would be the first step towards building a system solving any
detection problem with a high independence from user in-
put. The automatic method chosen isGeneticProgramming
(GP, defined by J. Koza in [5]); the optimal set of features
are extracted from the solutions obtained byGP, solutions
that optimize the process of classification that represents the
problem to solve. The presented method will be a component
of a global object recognition framework under development
by the authors ([6,7]).

The objectives of the current work is presented in Sec-
tion 2. A brief revision of relevant work in the field is cov-
ered in Section 3. Section 4 contains the methodology used in
our experiments. Section 5 presents preliminary experiments
demonstrating the viability and performance of the method,
which are discussed in Section 6. Finally, a tentative outline
for future research is presented in Section 7.

2 OBJECTIVES

The main objective of this investigation is to develop a
method that usesGenetic Programming for the selection
of the optimal features for a particular classification pro-
blem. We will then compare the performance of the proposed
method to other classification methods that use the full set of
features.

3 STATE OF THE ART

GeneticProgramming (GP) is part of a very large body of
research calledMachineLearning (ML ) (the study of com-
puter algorithms that improve automatically through expe-
rience [8]). GP tries to improve a population of programs
through their experience with the data on which they are
trained. The primary objective ofGP (and in generalML )
is to be able to simply define a task and have the machine in-
dependently learn to perform it:GP provides the framework
in which the machine can evolve its own algorithms, repre-
senting its solutions as a computer program or as data that
can be interpreted as a computer program [9]. The premise
of GP systems is based on a beam search [10] in which an
evaluation metric is used to rank the fitness of solutions; the
most promising solutions are retained for further transforma-
tion while others are discarded.

GP became very popular amongst computer scientists
(perhaps because of the higher conceptual level at which the
algorithm operates, as suggested by P. Bentley in [11]), even
though it was quickly understood that there were problems
with the definition of the genetic operators forGP (that often
destroythe good solutions, instead of creating better ones).
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However, the number of publications in the field ofGP
are as numerous as the ones in its sister field ofGeneticAl-
gorithms (GA): there are applications in different fields such
as biochemistry data mining ([12]), image classification in
geoscience and remote sensing ([13]), cellular encoding of
artificial neural networks ([14]) and image analysis ([15,16]).
GP is now used in alternative areas, as J. Koza did when de-
scribing the design of analog circuits by means ofGenetic
Programming ([11], chap. 16).

4 METHODOLOGY

The feature selection method byGeneticProgramming was
tested by solving a set of classification problems. For each of
those, the performance (recognition rate) of the derived clas-
sification algorithm was compared to that of using the whole
set of features. The classification problems will be described
in section 5; the complete set of features is described in 4.1,
and theGP-representation and operators are presented in 4.2.

4.1 Object representation

Each of the object comparison functions pertains to a single
measurable feature of a given object. Each function requires
one parameter to identify the model to which the object will
be compared and each function returns a value (between 0
and 1) describing the similarity of the object to that model in
terms of the selected feature (see Table 1).

Function name Value returned (∈ [0, 1]) Weight

Area scale adjusted area 5

Perimeter scale adjusted perimeter 5

Moment first order invariant moments 10

Red-Histogram distribution of red component 25

Blue-Histogram distribution of blue component 25

Green-Histogram distribution of green component 25

Gray-Histogram distribution of gray component 25

Hue distribution of image hue 25

Saturation distribution of image saturation 25

Luminosity distribution of image luminosity 25

Major Axis Length scale adjusted major axis length 25

CrossSectionDimensioncross-sectional widths 50

CrossSectionGrayscale cross-sectional grayscale 50

Shape shape of object contour 100

Table 1.Semantics of the vision functions.

Every function takes as input parameters a reference to
an object and a reference to a model; it returns the similarity
between the object and the model (1 beingmaximum simi-
larity, 0 meaningno similarity). For example,Area(O1,m3)
returns a value of similarity between objectO1 and model
m3, referred to as featureArea. Theweightparameter in Ta-
ble 1 pertains to the cost of using a given feature function:
it is an empirical measure of its complexity, inversely pro-
portional to the speed of execution (theheavierthe function,
the longer it is to execute on an object). In this paper, both
the usefulness of the description of the function and its speed
for evaluation are important details. The subset of functions
used in this investigation was small in order to lighten the test
procedure.

4.2 Building the prediction tree

We present here the grammar used to generate the possible
solutions for theGP and the genetic operators to use with the
GP algorithm, as well as a justification for these choices.

Grammar. Each solution to the problem is a pro-
gram, which can be represented by a tree. This tree is the
graphical representation of the expressions generated by the
grammar as presented in Table 2.

Node :: CondExp

| Func

| ClassifOp

CondExp :: IF-THEN (Cond,Node)

| IF-THEN-ELSE (Cond,Node,Node)

Cond :: (CondOp, Func, Func)

Func :: (BinaryArithOp, Func, Func)

| (UnaryArithOp Func)

| IMFunction

| Node

| FFunction

NUMCONST :: value inR
IMFunction :: MODMAX(FFunction)

| MODMIN(FFunction)

ClassifOp :: VOTE(ModelId, VoteValue)

| VOTE(IMFunction, VoteValue)

CondOp :: GTE | LTE | GT | LT | EQ

BinaryArithOp :: + | - | / | *

UnaryArithOp :: LOG | LOG2 | EXP

ModelId :: IMFunction

| NUMCONST

VoteValue :: NUMCONST

FFunction :: functions from Table1

Table 2.Grammar for a solution

All symbols presented in the grammar have a straightfor-
ward meaning, although we wish to emphasize the following
points:

1. Feature functions: referred to asFFunctionsin Table 2,
are in fact the functions presented in Table 1.

2. Inter-model Comparison: MODMAX( Op,F) evaluates
the functionF (from Table 1) against all the models and
returns the model for which this evaluation is maximum
(in other words, the model thatbest describesOp, in
terms ofF):

mn is such that∀mt,
t 6= n ⇒ F(Op,mn) ≥ F(Op,mt)

MODMIN(Op,F) has the same behavior, but instead re-
turns the model thatworstdescribesOp, in terms ofF :

mn is such that∀mt,
t 6= n ⇒ F(Op,mn) ≤ F(Op,mt)

3. Vote nodes: for each objectOp being evaluated, a tree
will issue a prediction concerning whether it is consid-
ered an instance of a model M. This output is called a
vote; it is syntactically noted as vote(V, M), and it can
take three values:
(a) V = 1: objectOp belongsto class M
(b) V = 0: object isunknown(equivalent to no vote hav-

ing occurred)
(c) V = -1: objectOp does notbelong to class M

For example, we present in Figure 1 a string that is rec-
ognized by the grammar (that issyntactically correct), along
with its equivalent decision tree.

4.3 Genetic operators

We discuss in the following section the genetic operators of
mutation, crossover and selection, and the fitness function
that imposes constraints on the evolutionary path of the al-
gorithm. We are showing how these operators are defined in
order to respect the grammar presented in Table 2.
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Fig. 1. Prediction tree example. String: IF-THEN-ELSE ((<
AREA(m3) AREA(m2)) VOTE(m3, +1) VOTE(m2, +1))

Mutation. Mutation is a random change to a solu-
tion. The position of the change in the solution (node) and the
change itself are both randomly determined. Three different
types of mutation are defined:

– Mutation of node and sub-tree. A given node in the solu-
tion (and all its children) can be replaced by an entirely
different sub-tree; a node is selected at random in the so-
lution and is replaced with another randomly generated
branch that respects the grammar.

– Mutation of node: any given node can be changed to any
other node which shares the same parameters. A node is
replaced with another of similar type.

– Mutation of parameters: A node’s parameters are repla-
ced; these parameters depend on the definition of the
actual node. For example, the two parameters of aVote
node can be changed (the model to which the vote is ap-
plied, and its value), but it should be clear that each node
type is particular. The only existing restriction is that the
changes respect the grammar.

Crossover. Crossover is the main process through
which subsequent populations of solutions are reproduced
and models genetic exchange in sexual reproduction. Two
solutions reproduce by exchanging sub-trees from randomly
selected positions in each, within the context of the grammar.
In short, we implemented the crossover operator as defined
by J. Koza in [5]; the only particularity being that the newly
generated trees (the offspring) must comply with the gram-
mar in Table 2.

Fitness function. The fitness measure of each so-
lution could be based on both the classification accuracy and
the execution speed of the solution. In our current implemen-
tation, we elected to use only the classification performance
to evaluate fitness, although the use of the weights (described
in Table 1) was explored. Therefore, the fitness of an individ-
ual of the population (fi) is defined using Eq. (1):

fi =
number of correctly classified objects

number of objects
(1)

Selection. The selection of the parent solutions oc-
curs with a probability determined by the fitness of the solu-
tions using Eq. (2)

pi =
fi

N∑
n=0

fn

(2)

wherepi is theprobability of selecting solution i, fi the fit-
ness of solution i, andN is thepopulation size.

5 EXPERIMENTAL RESULTS

As presented the feature selection method consists in generat-
ing the best classifier for a problem, and then choosing asthe
bestfeatures those that were taken into account by the clas-
sifier. In this section we show a few experiments designed to
evaluate the performance of the evolved classifier functions,
in terms of their ability to performdetection(subsection 5.1).
The training and testing sets used for our experiments were
composed of images of several hundred grains and legumes
(hard wheat, soft wheat, buckwheat, linseed, peas, lentils, and
others) for tests 1 and 3 and of dozens of coins (canadian pen-
nies, nickels, dimes, quarters) for test 3. The sets are shown
on the last page in Figures 4, 5, 6 and 7. It is important to
note that a training set consists of many example images of
the objects. The set should include both positive and negative
examples of every class for which the system is being trained
as well as some examples of objects considered as unknown,
i.e. not pertaining to any of the selected classes. An expert
must then validate the set of examples, i.e. the correct clas-
sifications must be determined and recorded for each of the
example objects.

5.1 Classifier performance

Three separate experiments were performed in order to test
the ability of the method to evolve classifiers under varying
conditions. They were presented to one or more of the fol-
lowing classification methods, sharing the same training and
test sets:

1. the GP method: theGP algorithm was allowed to gener-
ate a classifier; with the following parameters held con-
stant:Population size= 1,000;Elitism rate= 1; Proba-
bility of mutation= 30; Tree maximum depth= 10; and
Number of generations= 50

2. a human group: Ten (10) untrained people were allowed
to observe the differences between the various species of
grain in the training sets for one (1) minute. They were
then sequentially shown the test sets for performing the
classification task.

3. theK-NN algorithm : K-NearestNeighbors classifier sys-
tem (K-NN) (as described in [17], pages 174–200). In
each of the 3 experiments, the value of minimum ac-
ceptance and the value of sampling were expressed as
(<examples-to-sample>, <min-accept.>).

Experiment 1 - three classes.In this experiment,
we aimed at obtaining a function to classify objects of three
classes, with a training set composed only of objects appear-
ing in the test set. This experiment was divided in 4 parts,
each with its own training and test sets. For each, a classifier
tree was generated, but we only present the resulting tree for
the first part due to space limitations.

part 1: The test set for this instance is composed of 293
objects (Fig. 4a). The tree generated by theGP method is
shown in Fig. 2; its classification performance, along with
human group and theK-NN method, are shown in Table 3.

From the functions defined in Table 1, the tree in Fig. 2
usedPerimeter, Hue, Major Axis Length, Cross Section Di-
mension and Cross Section Grayscaleas feature-nodes. This
means that only 5 of the 14 feature functions have to be com-
puted when using this classifier; this, in terms of the weights
presented in Table 1, represents only 155 out of 420 (37%).
A speed-up of 63%. It is worthwhile mentioning that the sub-
set of functions (14 out of 100+) was small and that speed-up
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would dramatically increase as the number of functions in-
cluded increases.

Method Accuracy

GP method 94%

Human best 69.92%

avg. 54.44%

K-NN (3,1) 92.9%

(10,5) 94%

Table 3.Classification performances (Exp. 1-1)
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Fig. 2. GP-tree solution trained on training set 1
Classification accuracy on training set 1: 92.9% and on test set 1:

94.0%

part 2: The test set for this instance of experiment 1
is composed of 266 objects (Fig. 4b). From the functions
defined in Table 1, the solution tree usedPerimeter, Hue,
Green Histogram, Cross Section Dimension and Cross Sec-
tion Grayscaleas feature-nodes. Only 5 of the 14 feature
functions have to be evaluated when using this classifier; in
terms of weights (Table 1) it is a speed-up of 63%, as the
weights of the function in theGP-classifier represents only
155 out of 420. The classification performances of the hu-
man group and theK-NN, along with theGP-method, are
shown in Table 4.

Method Accuracy

GP method 98.1%

Human best 97.73%

avg. 94.08%

K-NN (3,1) 100%

(10,5) 100%

Table 4.Classification performances (Exp. 1-2)

part 3: The test set for this instance of experiment 1 is
composed of 333 objects (Fig. 4c). The classification accu-
racy on the training set (Fig. 4c) was 93.0%, and on the test
set (Fig. 5c): 90.7%. From the functions defined in Table 1,
the classification tree usedMajor Axis Length, Hue, Green
Histogram, Red Histogram, Blue Histogram, Gray Histogram,
Moment, Luminosity, Saturation, Cross Section Dimension
and Cross Section Grayscaleas feature-nodes. This means
that 11 of the 14 feature functions have to be computed when
using this classifier; this, in terms of the weights expressed in
Table 1, represents 310 out of 420 (74%), a speed-up of 26%.
The classification performances of the human group and the
K-NN, along with theGP-method, are shown in Table 5.

part 4: The test set for this instance of experiment 1 is
composed of 305 objects (Fig. 4d). The classification accu-
racy on the training set was 97.0%, and on the test set: 94.0%.

From the functions defined in Table 1, the classification tree
usedGreen Histogram, Gray Histogram, Moment, Perimeter,
Shape, Luminosity, Saturation and Cross Section Dimension
as feature-nodes. This means that only 8 of the 14 feature
functions have to be evaluated when using this classifier; this,
in terms of the weights expressed in Table 1, represents only
265 out of 420 (63%). A speed-up of 37%. The classification
performances of the human group and theK-NN, along with
theGP-method, are shown in Table 6.

Method Accuracy

GP method 90.7%

Human best 96.24%

avg. 81.43%

K-NN (3,1) 90.23%

(10,5) 89.47%

Table 5.Classification performances (Exp. 1-3)

Method Accuracy

GP method 94%

Human best 100%

avg. 89.92%

K-NN (3,1) 99.15%

(10,5) 98.29%

Table 6.Classification performances (Exp. 1-4)

Experiment 2 - four classes. The second experi-
ment was designed to demonstrate the classifier’s ability to
distinguish between objects with few distinctive features and
in which the training set and test set images were obtained
using different acquisition means (scanner vs. camera). Four
different denominations of coins were used for building the
training and the test sets; the training set (Fig. 6a) was ac-
quired using a flatbed scanner, while the test set (Fig. 6b)
was acquired using a digital camera. The mean of acquisition
had significant effect on the shadows and on the specular re-
flection off each of the coins. For the training of this exper-
iment, the system reached 100% accuracy after 31 genera-
tions. The resulting solution (Fig. 3) was relatively compact
and is shown in Fig. 3; the performance results are shown in
Table 7.
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 1
1


SATURATION


Fig. 3. GPsolution to the coins problem

Method Accuracy

GP method 86.3%

K-NN (3,1) 39.2%

(10,5) 41.2%

Table 7.Results from experiment 2

As evident from Fig. 3, only the featuresPerimeter and
Saturationwere used in this solution, with a weight of only
30 out of 420 (an increase in speed of 93%).
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Experiment 3 - six classes.This experiment is a
”six-class” problem and is performed to further test for gen-
erality of theGP solution. A solution was evolved to accu-
rately classify objects into six classes. The evolved solution
was then applied to the same images used in experiment 1.

The purpose of this experiment was to demonstrate the
generality of the method for multiple classes when the ob-
jects appearing in the test images belong only to some of the
classes for which it was trained. The results are shown in
Table 8. Note that this table presents the results when train-
ing for 6 classes (GP-6) as well as when training for only 3
classes (GP-3) while the test images contained objects from
only 3 classes.

Image Type Accuracy

a GP-6 78.95%

GP-3 94.0%

K-NN(3,1) 84.2%

K-NN(10,5) 76.7%

b GP-6 86.79%

GP-3 98.1%

K-NN(3,1) 87.7%

K-NN(10,5) 81.1%

Image Type Accuracy

c GP-6 88.72%

GP-3 90.7%

K-NN(3,1) 90.2%

K-NN(10,5) 82.7%

d GP-6 87.18%

GP-3 94%

K-NN(3,1) 84.6%

K-NN(10,5) 87.2%

Table 8.Training and Test accuracy-Experiment 3

6 DISCUSSION

TheGP-method performs an implicit reduction over the whole
set of features, as shown by the results from the three exper-
iments. We think this is significant when the runtime speed
is as important as the actual classification rate: if only a sub-
set of the features are used in the ”winning” solution of the
GP method, only those features have to be computed and the
overall classification time, for a rather large problem, would
be considerably smaller. In this paper we tested this idea by
generating classifiers for different problems and comparing
them to other classification methods.

The GP method produces decision trees whose perfor-
mances are comparable to that ofK-NN (Tables 3, 4, 5, 6, 7
and 8). Although an important difference can be seen in the
coin problem (Table 7), where theGP-method clearly outper-
formsK-NN, it is not clear that theGP method performance
is superior for these classification problems. It is however in-
teresting to note that, while theGP method performs a re-
duction of features in the training stage, the computational
complexity of theK-NN method (lower-bounded atO(dn2)
at best ford features andn prototypes [17]) causes its run-
time to be considerably greater than that of theGP method.
And this can be a great drawback in designing a real-time
multicategory classification system. We think that this would
have been even more predominant had we selected a larger
number of functions to describe each object.

Our experiments did not show clearly that our method is
superior to a trained human being. It is implicit that these
tasks of classification are better suited for machines than for
humans, but it is our belief that we have to set up more expe-
rimentation in order to show how and when theGP method
is superior to a well trained expert. TheGP-method shows a
morereliableperformance for the classification problems: its
classification performance for the test sets is very similar to
that achieved for the training set. As such, the time invested
in the decision tree synthesis gives the solution the ability
to better generalize the solutions; an interesting extension of
this observation would be to measure the difficulty of differ-
ent classification problems and to observe the performance

depending on this difficulty. This would provide a better un-
derstanding of which method is more effective to use with
which type of problems.

7 CONCLUSIONS AND FUTURE WORK

The automatic generation of a solution alone brings the de-
tection process to an entirely new level in that any number or
combination of solutions can be tested without any user in-
tervention. Furthermore, entirely non-intuitive solutions are
equally tested without any bias, often leading to effective so-
lutions that would possibly have been overlooked by a user.
Another advantage of this method is that it produces solu-
tions which are both readable and editable. This allows the
user to understand the generated solution thus leading to de-
velopmental improvements and also permits editing of the
solution in order to further enhance performance, or to com-
bine solutions for added generality.

We consider this to be a first step towards a full domain-
independent object detection system. We have to continue
moving towards this objective, namely by exploring the influ-
ence of the genetic parameters in the generation of solutions
and by doing a more comprehensive experimentation.
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Fig. 4. Training sets-Experiment 1
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Fig. 5. Test sets-Experiment 1 and 3
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Fig. 6. Training and Test sets-Experiment 2

Fig. 7. Training set-Experiment 3
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