
A++: An Agent Oriented Programming Language

Deyi XUE
Department of Mechanical and Manufacturing Engineering

University of Calgary
Calgary, Alberta, Canada T2N 1N4

ABSTRACT

A new Agent-Oriented Programming (AOP) language called
A++ is introduced in this research for developing agent-based
distributed systems. In this work, agent-oriented programming
is defined as a programming method with characteristics of
distribution, autonomy, concurrency, and mobility. Both agents
and objects can be modeled in A++. In addition to data and
methods that can be defined in objects including classes and
instances, each agent is also associated with an independent
computing process in agent-oriented programming.

Keywords: Agents, Agent-Oriented Programming (AOP),
Programming Language, Distributed Systems.

1. INTRODUCTION

The research on modeling agent systems was started based upon
the advances of distributed computing, Internet/Web
technologies, and artificial intelligence [1]. Although many
agent systems have been developed for different types of
applications, these systems were primarily implemented based
upon the conventional computing techniques such as object-
oriented programming, client-server computing, distributed
object modeling, and so on.

The concept of Agent-Oriented Programming (AOP) was first
introduced by Shoham with the development of an agent
modeling language called AGENT-0 [2]. In this language, the
state of an agent is composed of components including beliefs,
decisions, capabilities, and obligations. Since then, many agent
modeling languages have been developed [1].

In our previous research, a distributed system modeling
approach has been introduced for mechanical engineering
design [3,4]. In this approach, a class at a remote location can
be used as a super-class for defining a new sub-class at the local
site. A class defined at a remote location can be used for
creating an instance at the local site. An instance at a remote
location can be used for modeling the database at the local site.
A super-set language of Smalltalk has also been developed in
this research [5,6].

Despite the progress, the presently developed agent-oriented
programming languages haven’t been adopted as general tools
due to their limited programming capabilities. The objective of
this research is to introduce a new computer language for agent-
oriented programming, based on the advances of the popular
programming languages including C++, Java, and C#.

2. AGENT-ORIENTED PROGRAMMING

As the Object-Oriented Programming (OOP) can be
characterized by its abstraction, encapsulation, inheritance, and
polymorphism, the Agent-Oriented Programming (AOP) is
characterized by its distribution, autonomy, concurrency, and
mobility.

(1) Distribution of Agents
Distribution of agents allows different agents to be
modeled at different locations and associated into an
integrated environment.

(2) Autonomy of Agents
Autonomy of agents makes the activities of one agent to be
independent of the activities of other agents.

(3) Concurrency of Agents
Concurrency of agents allows the activities of different
agents to be conducted simultaneously and coordinated
effectively.

(4) Mobility of Agents
Mobility of agents means the programs implemented at
remote locations can be used at the local site.

3. AGENTS VS. OBJECTS

As the objects, including classes and instances, are used as the
primitives in object-oriented programming, agents, including
class agents and instance agents, serve as the primitives in
agent-oriented programming. The agent concept in A++ was
rooted from the object concept with considerations to include
the advances of the well-established object-oriented
programming method into the agent-oriented programming
method. However agents are different from objects due to their
distinctive nature of distribution, autonomy, concurrency, and
mobility, which are not provided in objects. Both agents and
objects can be modeled in agent-oriented programming using
A++.

An object is characterized by its data and methods to access
these data. An agent, on the other hand, is characterized by:

Agent:
– Data
– Methods to access the data
– Process to control the activities

Agents are also defined at two different levels: class level and
instance level. All the characteristics of objects, including

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 1

abstraction, encapsulation, inheritance, and polymorphism, are
part of the characteristics of agents. When agents with
independent computing processes are not used, the
programming is then considered as object-oriented
programming.

Although objects are actually sub-sets of agents (i.e., an object
is a special case of agent without an independent computing
process), we organize agents and objects in a tree shown in Fig.
1. The agents and objects share some common characteristics.
Objects are not considered as agents or special cases of agents.
Both agents and objects are defined as sub-classes of the
Primitive class. Therefore agents and objects are two different
types of primitives. The Agent class and the Object class are
two built-in classes that cannot be modified by users.

Execution of an application with objects starts from a method of
an object and terminates to this method. Only one computing
process is usually required for the execution of these objects in
the application. Execution of an application with agents is
conducted through parallel computing processes. When an agent
is created, a computing process is then generated automatically
to control the activities of this agent until the agent is deleted.

4. CLASSES AND INSTANCES

Both agents and objects are defined by classes and instances.
Instances are created using classes as the templates. A class is
defined by

class <class>: <super-class>
{

// class body
};

such as

class Optimization: Agent
{

// Optimization class body
};

A class is defined by its members including variable members
and method members. Variables and methods are classified into
class variables/methods and instance variables/methods. A class
variable is shared by all the instances of this class. An instance
variable for an instance of the class is not shared with other
instances. A class method is executed by the class, while an
instance method is executed by the instance of this class.

An instance is created by

new <class>;

The instance agent is kept active all the time without additional
loop defined by the user. The computing process of an agent can
be terminated by asking the instance agent to execute a method
called AgentTerminate().

5. AGENT-ORIENTED PROGRAMMING IN A++

Many new functions have been introduced in A++ for providing
the characteristics of agent-oriented programming: distribution,
autonomy, concurrency, and mobility.

5.1. Distribution Functions in A++

In A++, the classes and instances are preserved at different
locations called Internet nodes, or simply nodes. Each node is
identified by a node name with a prefix @, such as

@node1

Each node is unique in the Internet. For instance, a node can be
defined by a Domain Name Server (DNS), such as
enme.ucalgary.ca and a port number, such as 9876. The
nodes are linked by the Internet, as shown in Fig. 2.

In A++, the inheritance mechanism and the instantiation
mechanism are extended to the classes and instances distributed
at different nodes.

In A++, a class at a remote location is described by

<node>.<class>

such as

@node1.ClassA

When a remote class is used as the super-class to define a sub-
class at the local site, the new class is defined by

class <sub-class>: <node>.<class> {...};

such as

class B: @node1.ClassA {...};

When a class is used for creating an instance, all the instance
variables defined in the class and its super-classes, both at the
local node and at the remote nodes, are instantiated to this
instance automatically.

Primitive

Fig. 1: A Tree of Object Classes and Agent Classes

Object Agent

Food Animal Design Manufacturing

Address:
 customer.com
Port:
 9876

Address:
 smartteam.com
Port:
 9876

Address:
 smartteam.com
Port:
 9877

Fig. 2: Internet Nodes Linked by Internet

���
Internet

Node: Marketing Node: Design Node: Manufacturing

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 42

In A++, an instance at the remote location is described by

<node>.<instance>

such as

@node1.instance1

Since instances are usually preserved in the instance variables
of other instances, global variables are usually used to describe
the instances, such as

MyObject instance1; // a global variable
class A: Object {

public void method1() {
instance1 = new MyObject();

... ...
}

... ...
}

An instance at a remote node can be assigned to an instance
variable of an instance at the local site. In the example shown in
Fig. 3, two mechanisms, a pulley-belt drive mechanism and a
gear-pair mechanism, defined at two locations are integrated at
the node Mechanism using a connection component. In this
model, the instance pulleyBeltDrive1 in node PulleyBeltDrive
is composed of 5 instances described by its instance variables.
The instance gearPair1 in node GearPair is composed of 4
instances described by its instance variables. In the node
Mechanism, these two instances are linked by an instance
called connection1. By defining the relations among instance
variables of the instances, the 12 instances in the three nodes
are integrated into the same environment. When the rotational
speed of the shaft2 in node PulleyBeltDrive is changed, this
change is propagated to the rotational speed of the shaft1 in
node GearPair.

5.2. Autonomy Functions in A++

The autonomy functions of A++ are primarily realized by the
independent processes of agents. An application with only
objects is usually executed within only one computing process,
as shown in Fig. 4 (a). An application with agents is usually
executed with many computing processes of these agents, as
shown in Fig. 4 (b).

In the conventional object-oriented programming, variables and
methods defined in a super-class are inherited by its sub-classes,
and variables and methods define is a class are instantiated to its
instances. Changes of the descriptions in a class lead to the
changes of the behaviors of the sub-classes and instances
created from these classes. In A++, since the agents are also
defined by classes and instances, a static inheritance mechanism
and a static instantiation mechanism are introduced to maintain
the autonomy of agents.

In A++, two inheritance mechanisms, a dynamic inheritance
mechanism and a static inheritance mechanism, are provided. A
dynamic inheritance relation between a super-class and a sub-
class is defined by

dynamic class <sub-class>: <super-class> {...};

The dynamic inheritance mechanism is the same as the
traditional inheritance mechanism used in C++, Java, and C#.
Due to this nature, the keyword dynamic is optional.

A static inheritance relation between a super-class and a sub-
class is defined by

static class <sub-class>: <super-class> {...};

When static inheritance mechanism is used, all the variables and
methods defined in the super-class are inherited permanently to
this new sub-class. Changes of the descriptions in the super-
class are not propagated to the new sub-class. Fig. 5 (a) and (b)

Fig. 3: Distributed Instances

shaft1 shaft2

pulley1 pulley2belt1

shaft1 shaft2

gear1 gear2

 pulleyBeltDrive1
Instance

 gearPair1
Instance

Node: PulleyBeltDrive Node: GearPair

Node: Mechanism

 @PulleyBeltDrive.pulleyBeltDrive1
 @GearPair.gearPair1
 connection1

Instances

connection1

@PulleyBeltDrive.pulleyBeltDrive1

@GearPair.gearPair1

Fig. 4: Computing Processes of Objects and Agents

object1
agent1

agent2

agent3

(a) Three Objects with
One Process

(b) Three Agents with
Three Processes

A Computing ProcessExecution

object2

object3

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 3

show examples of the dynamic inheritance mechanism and the
static inheritance mechanism.

In A++, two instantiation mechanisms, a dynamic instantiation
mechanism and a static instantiation mechanism, are also
provided. A dynamic instantiation relation between a class and
its instance is defined by

dynamic new <class>;

The dynamic instantiation mechanism is the same as the
traditional instantiation mechanism used in C++, Java, and C#.
Due to this nature, the keyword dynamic is optional.

A static instantiation relation between a class and its instance is
defined by

static new <class>;

When static instantiation mechanism is used, all the instance
variables and instance methods defined in the class are
instantiated permanently to this new instance. Changes of the
descriptions in the class are not propagated to the new instance.
Fig. 6 (a) and (b) show examples of the dynamic instantiation
mechanism and the static instantiation mechanism.

5.3. Concurrency Functions in A++

In A++, many computing tasks are created and executed
simultaneously. Coordination of the execution of these tasks is
conducted by a multiple-task control mechanism, which was
developed based upon concurrent programming principles.
Tasks are also called processes or threads in this work.

(1) Thread

A thread is created by executing an instance method, as shown
in the following example:

thread object1.func3(24,30);

The thread terminates when the execution of the method is
completed.

(2) Priority

Tasks are associated with priorities. Each priority is described
by an integer. Execution of a task with lower priority is
conducted only when all tasks with higher priorities are
completed. Default priority is 0.

A++ Environment

The task of A++ environment always has the highest priority,
thus being able to interrupt activities of other tasks.

Agents

Each agent can be associated with a priority. When the
execution of an instant agent with higher priority is not
required, the execution of an instance agent with lower priority
is then considered. For example, the following two expressions

priority 2 new MyAgent(20, “Tom”);
priority 3 new YourAgent(30, “Peter”);

are used for creating 2 instance agents with different priorities.

Methods of Agents

Methods of agents can be executed in different tasks by defining
these methods using the keyword thread. For example, the
following three expressions are used for defining priorities of
three methods.

priority 2 thread public int func1(...) {...};
priority 0 thread public int func2(...) {...};
priority MAX thread public int func3(...) {...};

Internet Nodes

Tasks are also created by the requests from the remote Internet
nodes. The priorities of these tasks are determined by the

Class: A
 func1(...){xxx};
 func2(...) {yyy};

Class: B
 func2(...){zzz};
 func3(...) {mmm};

Dynamic
Inheritance

(a) Dynamic Inheritance Mechanism

Class: A
 func1(...){xxx};
 func2(...) {yyy};

Class: B
 func2(...){zzz};
 func3(...) {mmm};

 func1(...){xxx};

Static
Inheritance

(b) Static Inheritance Mechanism

Fig. 5: Dynamic Inheritance Mechanism and Static
Inheritance Mechanism

copied definition

Class: A
 public static int c;
 public int v1;
 public int v2;
 public func1(...){xxx};
 public static
 func2(...) {yyy};

Instance: a
 public int v1;
 public int v2;

Dynamic
Instantiation

(a) Dynamic Instantiation Mechanism

(b) Static Instantiation Mechanism

Fig. 6: Dynamic Instantiation Mechanism and Static
Instantiation Mechanism

Class: A
 public static int c;
 public int v1;
 public int v2;
 public func1(...){xxx};
 public static
 func2(...) {yyy};

Instance: a
 public int v1;
 public int v2;
 public
 func1(...){xxx};

Static
Instantiation

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 44

priorities of these nodes. For example, the following expression
is used for defining the priority of an Internet node.

priority 2 InternetNode @node1;

Threads

Threads are tasks created by executing instance methods. The
following expression is used for defining the priority of a
thread.

priority 2 thread object1.func3(25, “Peter”);

(3) Synchronization

Synchronization mechanism prevents activities in several tasks
from being conducted simultaneously. Examples of task
synchronization are shown as:

Agents

synchronized new MyAgent(20, “Tom”);
synchronized new YourAgent(30, “Peter”);

Methods of Agents

synchronized public int func1(...) {...};
synchronized public int func2(...) {...};
synchronized public int func3(...) {...};

Internet Nodes

synchronized InternetNode @node1;
synchronized InternetNode @node2;

Threads

synchronized thread object1.func3(25, “Peter”);
synchronized thread object2.func3(30, “Tom”);

(4) Timer

Timer is used to create a special task with the highest priority at
a predefined time. An example of timer task is shown as:

MyTimer t = new MyTimer();
t.SetUp(03/02/01/15/06/32);

The actual program to be executed is defined in a method called
run() of the class MyTimer, such as

public void run() {
 object1.func2(25,”Peter”);
};

(5) Semaphore

Semaphore mechanism uses variables to control the execution
processes of different tasks. Two methods are used for
implementing the semaphore mechanism.

• Signal(variable)

If the value of the variable is 0, the value of this variable
will be changed to 1. If the value of the variable is 1, the
value of this variable will be kept as 1.

• Wait(variable)
If the value of the variable is 0, the system will do nothing,
but waiting for the variable value change. When the
variable is 1 or changed to 1, the expressions following
Wait() method will be executed, and the variable’s value is
changed back to 0.

(6) Messages

Messages are used for controlling the execution processes of
different tasks. Two methods are used in this mechanism.

• SendMessage(agent, message)
A message, described by a string, is sent to an agent.

• ReceiveMessage(agent, message)
The current process waits for a message from an agent.
When a message is received from this agent, the expressions
following the ReceiveMessage() method call will be
executed.

(7) Preemption

Preemption is a mechanism to prevent an expression or a
collection of expressions from being interrupted by other tasks.
This mechanism is effective for the expressions involving the
access of computer devices such as keyboard, monitor, printer,
file, etc. An example of preemption is shown as:

preemption {
a.print(1,3);
@n1.o2.show(2,5);

};

5.4. Mobility Functions in A++

The mobility of agents is the capability that the programs
implemented at one site can be used at another site.

(1) By defining a class using a remote class as the super-class,
the descriptions of the remote super-class are inherited to
the new sub-class automatically.

The new sub-class can be defined as a dynamic class or a static
sub-class, such as

class B1: @A.A1 {...};
static class B2: @A.A2 {...};

When the new class is defined as a dynamic class, changes of
the descriptions in the remote super-class influence the
behaviors of the sub-class. When the new class is defined as a
static class, changes of the descriptions in the remote super-
class don’t influence the behaviors of the sub-class.

(2) By creating an instance using a remote class as the
template, the descriptions of the remote class are
instantiated to the new instance automatically.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 5

The new instance can be defined as a dynamic instance or a
static instance, such as

A1 a1 = new @A.A1();
A2 a2 = static new @A.A2();

When the new instance is created as a dynamic instance, the
instance variables are copied to the new instance. The class
variables and instance methods defined in the remote class can
be used by this instance. Changes of the descriptions in the
remote class influence the behaviors of the instance. When the
new instance is created as a static instance, both the instance
variables and the instance methods are copied to the new
instance. Therefore changes of the descriptions in the remote
class don’t influence the behaviors of the instance.

(3) The remote classes and their class variables/class methods
can be accessed directly from the local site.

The remote class variables and class methods are accessed by
the expressions such as

int var1 = @A.YourClass.ClassVariable1;
int var2 = @A.YourClass.ClassMethod1();

The remote method call mechanism is implemented using the
client-server communication architecture. When a remote
method at node B is called from node A, A is then the client and
B the server. Since program at each Internet node can call
methods located at other Internet nodes, and be executed by
programs at different Internet nodes, a node is therefore a client
of many servers and a server of many clients.

(4) The remote instances and their instance variables/instance
methods can be accessed directly from the local site.

The remote instance variables and instance methods are
accessed by the expressions such as

int var1 = @instance1.InstanceVariable1;
int var2 = @instance1.InstanceMethod1();

In A++, classes are organized by Internet nodes. Different
classes with the same class name can be defined in different
Internet nodes. Therefore the polymorphism is realized at two
different levels, Internet node level and class level. For the
execution of a method, both its class and its Internet node
should be identified.

6. CONCLUSIONS

A new computer language A++ is introduced in this research for
developing Agent-Oriented Programming (AOP) systems. The
A++ provides four characteristics of the Agent-Oriented
Programming: distribution, autonomy, concurrency, and
mobility. Both agents and objects can be modeled in A++. The
characteristics of A++ are summarized as follows:

(1) Distribution
A new class can be defined using a remote class as the super-
class. A new instance can be created using a remote class as the
template. An instance at a remote site can be treated the same as
an instance at the local site.

(2) Autonomy
Both the dynamic relationships and the static relationships
between a super-class and its sub-class and between a class and
its instance can be defined.

(3) Concurrency
Many concurrent programming functions, including priority,
synchronization, timer, semaphore, message, preemption, are
provided in A++ to coordinate the tasks of agents, methods of
agents, and Internet nodes.

(4) Mobility
The A++ allows the programs defined at remote locations to be
used at the local site by selecting the remote classes as the
super-classes to define sub-classes at the local site, using the
remote classes to create instances at the local site, treating the
remote instances the same as the local instances, and executing
the methods of the remote classes and instances directly.

7. REFERENCES

[1] W. Shen, D. H. Norrie and J. P. Barthes, Multiagent
Systems for Concurrent Design and Manufacturing,
Taylor and Francis, 2001.

[2] Y. Shoham, “Agent-oriented Programming”, Artificial
Intelligence, Vol. 60, No. 1, 1993, pp. 51-92.

[3] F. Zhang and D. Xue, “Distributed Database and
Knowledge Base Modeling for Concurrent Design”,
Computer-Aided Design, Vol. 34, No. 1, 2002, pp. 27-40.

[4] D. Xue and Y. Xu, “Web-based Distributed System and
Database Modeling for Concurrent Design”, Computer-
Aided Design, Vol. 35, No. 5, 2003, pp. 433-452.

[5] D. Xue, “An Experience of Representing Knowledge and
Data in Mechanical Design Using Smalltalk-80”, OOPS
Messenger, Vol. 5, No. 3, 1994, pp. 37-46.

[6] D. Xue, “Developing a Superset of Smalltalk for Modeling
Mechanical Systems”, Journal of Object-oriented
Programming, Vol. 13, No. 5, 2000, pp. 12-17.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 46

	1. INTRODUCTION
	(3) Synchronization
	(4) Timer
	(6) Messages

