
Dynamic Verification of an Object-Rule Knowledge Base Using
 Colored Petri Nets

Chakib Tadj
École de Technologie Supérieure - Département de Génie Électrique

1100, Notre-Dame Ouest, Montreal, Qc, H3C 1K3 Canada

and

Toufik Laroussi
École de Technologie Supérieure - Département de Génie Électrique

1100, Notre-Dame Ouest, Montreal, Qc, H3C 1K3 Canada

ABSTRACT

In this paper, we propose a formal description for the dynamic
verification of an Object-Rule Hybrid Knowledge-based System
(HKBS), capitalizing on the work carried out within the
verification framework of Frame-Rule Hybrid Expert Systems.
The main idea is to model an HKBS by means of a Colored Petri
Network (CPN). In this way, method invocations, state class
changes, rules and productions will be modeled as components
of the CPN. Detection and analysis of the HKBS will be carried
out by the construction and analysis of the markings graph,
which results from the inference process.

Keywords: Dynamic Verification, Object-Rule Knowledge,
Colored Petri Nets.

1. INTRODUCTION

Hybrid Expert Systems (HES) technology is a field in the
artificial intelligence domain which has moved successfully
from the research laboratory to the commercial or industrial
application [1,3].
Generally speaking, HES integrates human expertise in
computer programs to enable those programs to execute tasks
which normally require the intervention of a human expert.
There is a series of problems and difficulties underlying the
development of an HES or Hybrid Knowledge-based System
(HKBS), ranging from the acquisition of knowledge to the
representation of that knowledge, including temporal reasoning,
uncertainty reasoning, combinatorial explosion, conflict
resolution and other similar problems [4-7].
Continuous maintenance is necessary in order to ensure that the
system remains efficient, and hence the importance of validation
and verification of HES [8].
We have found that little research has been done on the
verification of Object-Rule HKBS. The reasons for this are as
follows:
• most HKBS developed since the 1980s [6] have been of the

Frame-Rule type, and the integration of the object-oriented
technique into the HKBS has occurred only recently. Objects
are used to represent facts, and rules are used to represent
deductive knowledge (the conditions and actions of the rules
are formulated using class attributes and approaches);

• what little research has been done on Object-Rule HKBS
verification has dealt with the static aspects, that is,
verification of the Knowledge Base without rule-firing [2].

Dynamic verification approaches developed for Frame-Rule
HES [1, 9-12] do not apply to Object-Rule HES because the

facts and rules in frames are specified in a hierarchical model in
order to ensure the transmission of attributes from the higher
levels to the lower levels of the hierarchy. These approaches do
not integrate the presentation power of object classes, facts and
reasoning on these objects by means of method invocation.
Moreover, since our HKBS is non-monotonic, there may be
additions of, modifications to and/or withdrawals of objects
through their actions, contrary to the rules expressed by the
frames.
The aim of our research is to propose a solution based on a
formal approach for the dynamic verification of a non-
monotonic Object-Rule HKBS. The main features of the
proposed solution are:

• a solution based on the analysis power of Colored Petri

Networks (CPN) [13,14];
• inspiration from the solutions proposed for the dynamic

verification of Frame-Rule HES in [1, 12];
• modeling definition sets;
• formal proposition sets for error and anomaly verification in

the Object-Rule HKBS.

This approach also has:

• the capacity to build the accessibility graph for rules on the

basis of the dynamic execution of our rules by the JRules
inference engine;

• the capacity to build the occurrence sequences while
respecting the formalism defined in [14];

• potential for the analysis of the anomaly situations on the
basis of well-defined formal propositions.

The structure of this paper is as follows: In section 2, we present
an overview of related work. Sections 3 and 4 present our main
contributions. The formal aspects of Object-Rule HKBS
modeling by a CPN are defined first, followed by a proposal of a
formal solution using the power of marking graph analysis for
the verification of each anomaly in the Knowledge Base. The
construction of our graph and/or Petri network is performed
dynamically. In the final section, we discuss the results obtained
during simulation of the proposed examples, and present the
conclusions of our work.

2. RELATED WORK

A Knowledge-based System is a category of programs capable
of solving problems which do not have a classical algorithmic
solution. It is designed to help the user perform a task in an

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 23ISSN: 1690-4524

application area; the system works from knowledge acquired
from the area expert.
For the last 20 years, the Validation and Verification (V&V)
sectors of expert systems have undergone considerable
improvement. Indeed, during all the years from 1988 to 1992,
the AAAI (American Association for Artificial Intelligence)
organized workshops on the verification, validation and testing
of intelligent systems.
The IJCAI (International Joint Conference on Artificial
Intelligence) has organized workshops on V&V since 1989. In
addition, the European Conference on Artificial Intelligence
(ECAI) has held a number of workshops on V&V.
The need to evaluate the large number of expert systems that
have been developed since the mid-1980s have created a special
interest in the verification of expert systems. The role and
importance of such verification are well documented in [5, 8,
15-18].
The research carried out on the verification of the anomalies in
systems based on the Frame-Rule has been considerable in
comparison with the research carried out on anomalies in an
Object-Rule HKBS, where little work has been done. If the
earliest Knowledge-based Systems (KBS) in general, and more
particularly the HKBS, were, in the majority of cases, verified
using a static verification approach; dynamic verification proved
to be efficient in the cases where it was used (INDE, SACCO,
etc.). Indeed, in the dynamic verification of a Knowledge Base
(KB), we use the deductive power of the Rule Base (RB), which
allows us to proceed to a more in-depth verification of the RB.

The research closest to ours is that of Shiu et al. [1, 10-12],
which involves the verification of systems which are linked by
the production of hierarchical Frame rules. Their approach does
not allow the use of method invocations in the condition or
action clauses of a rule. They use two types of tokens, the first
being the "State Token", which registers the class predicate and
information state, and the second being the "Object Instance
Token", which represents the instance of a particular object in a
particular class in the object hierarchy. That approach is used in
a monotonic context, which limits the usability of this approach
in the Object-Rule context in a non-monotonic environment.

3. PRINCIPLES OF THE PROPOSED SOLUTION

The HES combines several representation paradigms in a single
integrated environment. It is made up of the following features:

• object classes encapsulating the knowledge model – the

inheritance relationship describes how these knowledge
modules interact;

• rules specifying the functional behavior of objects in the
expert system – these functions are presented by method
invocations;

• a reasoning strategy controlling and specifying the inference
sequence of knowledge in the expert system.

The use of Petri networks, as shown in Table 1, should allow us
to represent classes, rules, conditions, actions and objects, as
well as their states. To allow this, we use the properties of CPN
to model the HKBS ALCAN [2]. In this section, we will discuss
the JRules language that is used in the RB, and then define the
modeling of our hybrid system by a CPN and the different types
of rule presentation by the CPN.

In the Rule-Object context, a rule can be written using the
following syntax:

A simple condition makes it possible to find all the objects of
the class that pass the test where a negative condition is true
when no object of the class verifies the condition. A "condition
that exists" is true when there is at least one object of the class
which verifies the condition. The conditions are defined in
"continue test". These may include tests on class attributes or
class method invocation results. The action "assert" adds an
object of a given class with its necessary parameters
(Arguments). In the same manner, the action "withdrawal"
deletes an object referenced by a variable defined in one of the
conditions of the rule, and the action "modify" modifies an
object referenced by a variable in one of the conditions of the
rule. In this approach, the reasoning is object-oriented. In fact, at
the beginning, the work memory is initialized by objects called
"initial facts". During a problem-solving session, the inference
engine uses the rules, and objects are then added, deleted or
modified according to the rules invoked. It should be noted that
the conditions and the actions are method invocations on object
classes, and that the class attributes are private and thus not
accessible by JRules.

Table 1. HKS ALCAN modeling with CPN.

3.1 Formal Description of Modeling
The formal definition of CPN has been published elsewhere
[14]. It is reproduced here in order to highlight the extension of
our formalization. We define our model as follows:

HES CPN Modeling
Places

Object Classes
States Classes

Example:
P={Tank, Simulation, Site, Vain}
TankState={Empty,Full, Normal}
SiteState={InProd,NormalProd,OverP
rod}

Object Instances Tokens

Object
Part

ObjectValue
State

Function return the state instance
object

Conditions Expression on the arc
Actions Expression on the arc
Rules Transitions

Rules
Part

Facts Reachable variables

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 324 ISSN: 1690-4524

DEFINITION (1): The CPN (R) that models the Rule-Object-based
HKS is a tuple:

R = <ψψψψ, C, Expr, P, T, A, N, ϕϕϕϕ, E, I, σσσσ, StateObject>

where:
ψψψψ = {w1,w2,…,wi } is a finite set of non-empty types, called
color sets.

C = {C1,C2,…,Cn} is a finite set of objects classes.

Expr: A → expression, is an arc expression function. It is

defined from A into expression such that:
[]: (()) (()) ((()))∀ ∈ = ϕ ∧ ⊆ ψmsa A Type Expr a p a Type Var Expr a

 with Type (Expr(a)) is expression type of arc a, and
Var(Expr(a)) is a set of expressions of arc a.

P = {P1,P2,…,Pn},n = 1,…,|E| is a finite set of places of object
classes.

T = {T1,T2, …, Tl} is a finite set of transitions (rules).

A = {a1,a2,…,ak} is a finite set of arcs.

N: A → P x T ∪ T x P is a node function. It is defined from A

into expressions such that: P ∩ T = P ∩ A = T ∩ A = ∅.

ϕϕϕϕ: P → ψ is a color function. It is defined from P into ψ, maps

each place p to a color ϕ(p).

E = {Ec1, Ec2,..Eci,…,Ecn} is a finite set of states object

classes such that:
Eci = {E1, E2, E3,…,Ek} is a finite set of states object class Ci.

I: P → expression is a initialization function. It is defined from

P into expressions such that:
[]: (()) ()∀ ∈ = ϕ msp P Type I p p

σσσσ: is a set of occurrence sequence.

StateObject: C → E is a state function. It is defined from State

object into expressions. It maps for each object class its
states, such that:

(): , (()))∈ ⇒ ⊆ ψ  i i i iO OBJECT O C Type Var StateObject O

Compared to the classical Petri Net defined in Jensen [14], we
have introduced: C, σ, E, StateObject in order to model the
Rule-Object- based HKS. Definitions of CPN found in [14],
which have been used here without any change, are as follows:

• Binding

DEFINITION (2): A binding of a transition t is a Boolean function
b defined on Var(t) such that:

() : () ()∀ ∈ ∈v Var t b v Type v

where Var(t) is a set of transition variables and B(t) is the set of
all bindings for t.

• Marking

DEFINITION (3): A token element is a pair (p,c): where p∈P and
c∈ϕ(p), while a binding element is (t,b,e) where: t∈T, b∈B(T)
and e∈S(t). The set of all token elements is denoted by TE and
the set of all binding elements is denoted by BE.

DEFINITION (4): A marking M is a multi-set over TE, while a

step is a non-empty and finite multi-set over BE. The initial
marking M0 is the marking that is obtained by evaluating the
initial expression:

))((),(:),(0 cpIcpMTEtp =∈∀

• Occurrence Sequence

DEFINITION (5): A finite occurrences sequence is a sequence of
markings and steps:
M0[t1>M2[t2>M3 …Mn-1[tn>Mn such that: n ∈ N, M0 is the initial
marking and Mn is the final marking.

• Reachable Transition

DEFINITION (6): A marking Mn
 is reachable from a marking M0 if

and only if (iff) there exists a finite occurrence sequence σ
having M0 as start marking and Mn as final marking. We denote
by t1t2t3….tn, the sequence of steps such that: M0[t1>M2[t2>M3
…Mn-1[tn>Mn, n ∈ N and σ(t1,t2,… tn) represents the set of
markings that is reachable from M0 and denoted by: [M0>.

• Transition Quasi-Alive

DEFINITION (7): A transition t is quasi-alive iff there exists an
occurrence sequence σ, such that t is reachable from M0.

• Reachable Propriety

DEFINITION (8): The marking Mj is included in marking Mi, iff
for all place p: Mj(p) ≤ Mi(p).

Formal definition of CPN which has been adapted from [14] in
the Rule-Object-based HKS context:

• Token

DEFINITION (9): We defined the number of tokens in place p by:
M(p) = ∑ | Oi |, i >0, such that Oi is an instance object class in
place p.

• Markings Update

DEFINITION (10): when a transition <t> is enabled, we have the
following:
1. If As is produced, the marking M1 changes without

producing another marking M2. We denote that by:
1 1

(,)

: () () (,)
∈

∀ ∈ = − < >∑
t b Y

p P M p M p E p t b

2. If Ac is produced, the marking M1 changes to produce

another marking M2. We denote that by:
)),(),()(()(:

),(),(

12 ∑ ∑
∈ ∈

><+><−=∈∀
Ybt Tbt

bptEbtpEpMpMPp

3. If Am is produced, the value of the instance object (token)

in marking M1 is updated.

• Equality of Markings

DEFINITION (11): Tow markings are equal iff their places are
equal one to one.

• Graph of Markings
DEFINITION (12): The occurrence graph in CPN is a tuple
OGCPN = (V,A, E, N) satisfying the following requirements:
1. "V" is a set of reachable markings from M0, denoted by:

V = [M0>;

2. "A" is a set of finite arcs, denoted by:
A = { (M1,b,e,M2) ∈V xBE x SE xV | M1[b>M2 and e ∈ SE};

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 25ISSN: 1690-4524

3. "N” is a set of nodes, such as:

a = (M1,b,e,M2) ∈ A and N(a) = (M1,M2).

DEFINITION (13): A change of state is a Boolean function B. This
function returns TRUE if the instance state object Oi has
changed while the transition t was fired. We note that:

[](() ,) ⊆ ψiB StateObject O t

We also denote by S(t) the state of binding t.

The formal definition of CPN that has been introduced to
complete modeling of the Rule-Object-based HKS:

• State of Object Class

DEFINITION (14): To evaluate the state of an object class, we
define three functions:
 As: Tc → {∅} is an output class function used when the object

instance is removed.
 Ac: Tc → Pc is an output class function used for modification

with a change of state of the object class.
 Am: Tc → Pc is an input class function used for modification

without a change of state of the object class.

• Equalities of Objects

DEFINITION (15): Two places are equal iff:
1. They have the same number of tokens (objects);
2. The tokens are equal one to one; and
3. They have the same state-of-object class.

DEFINITION (16): Two objects (instances) are equal iff:
1. They have the same object identification (ID) (each

object instance has a unique ID); and
2. They have the same color.

• Condition to Firing Rule

DEFINITION (17): We can fire the same rule iff: after execution of
actions in the rule, the attributes of the instance object have
changed their values (that is, a JRule reasoning strategy).

3.2 Presentation of Certain Rules in the CPN
A color domain is associated with each place, and each token in
place is colored by an element of the domain of that place
(several tokens may have the same color). The inscription of a
place is thus a multi-set of colors, a set in which an element may
occur several times.
A transition is enabled if and only if each entry place to the
transition contains a sufficient number of tokens for each color
of the place domain. Independently of the evaluation of the
colored functions, a transition may not be allowed if its attached
expression does not satisfy some of the attributes.
In order to differentiate between the instance objects while
comparing markings, we use the object ID as a (unique)
identification key.

4. USING A CPN FOR THE ANALYSIS OF
ANOMALIES IN AN OBJECT-RULE HKBS

There are two analysis approaches for researching anomalies in
a HKBS. The first is based on marking graph analysis, the
second on the analysis of the final places of the Petri network.
In this paper, we present the first technique. In this approach,
anomaly analysis is based on an analysis of the marking graph

or occurrence graphs that represent the accessibility game of the
CPN [13, 14].
The idea is to build a graph containing a node for each
accessible marking and an arc for each appearance of the
marking element. Indeed, we concentrate our analysis by
allowing a specific transition (that is, one which corresponds to
a few significant initial facts) and verifying next, at a given time,
the aggregate of markings.
The problem may then be localized by an analysis of the trace of
the transition sequences that may supply the alternative or
multiple markings effects.

4.1 Heuristic CPN Marking Graph Construction Algorithm
We propose a heuristic search method to construct the
occurrence graph for particular marking. The search for
anomalies in HKBS needs an adequate initialization of sequence
of transition (
Table 2, steps 1,2, 3, 4) and construction the reachibility three
(steps 6 to 15).
The strategy used is to start from position “i” and put it initially
in the CONFLIT_LIST the list of candidate rules (transitions) to
be fired by JRules. Put in CANDIDATE_RULE the rule that JRule
fires and general marking Mi which result from firing
CANDIDATE_RULE if this marking Mi is not an element in
MARKING_GRAPH then add Node(Mi) and arc(Mi, Ri, Mi+1) in
MARKING_GRAPH and the new position to be prepared in
MARKING_GRAPH is i=i+1 else add only arc (Mi,t,Mi) in the
MARKING_GRAPH. Remove the CANDIDATE_RULE from the
LIST_CONDIDATE, if LIST_CONDIDATE is not empty save the
context (J=J+1), and put first rule in CANDIDATE_LIST. The
process is repeated until CANDIDATE_LIST is empty.

MarkingConstrucGraph MCG{

1. Construct the initial marking M0
2. Initialize variables I=1 and J=1
3. Add (M0) to the occurrence marking graph

MARKING_GRAPH
4. CONFLIT_ LIST = list of candidate rules

5. If CONFLIT_ LIST = ∅ | stop by user | number nodes
reached Then

 Goto (13)
6. CANDIDATE_RULE = rule fire by JRule
7. Fire the rule CANDIDATE_RULE
8. Construct the actual marking into MI+1
9. IF Verify (MI+1 , Node(MARKING_GRAPH)) Then
 Create ARC (MI, , CANDIDATE_RULE, MI)
 Else
 Add MI+1 into the occurrence graph MARKING_GRAPH
 Create ARC (MI,CANDIDATE_RULE,MI+1)
 I = I + 1
 Endif

10. Update CONFLIT_LIST
11. Save context of marking MI

12. IF CONFLIT_LIST ≠ ∅ Then
 J = J +1
 CANDIDATE_RULE = the first element in CONFLIT_LIST
 Goto (7)
 Endif

13. Restore context MI-1
14. J = J – 1

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 326 ISSN: 1690-4524

15. If J >=0 Then
 Goto (4)
 Endif
}End

Verify (Marking Mx , My) {
1. for each object class Ci in Mx

2. If Exist (Ci, My) and (State(Ci, My) ≠ State(Ci, Mx))
 Then return False
 Else
 Return True
 Endif
}End

Table 2. CPN marking graph construction algorithm.

4.2 Types of Anomalies
Our research is a contribution to the study of the accuracy of a
Knowledge Base. This includes completeness (the problems of
redundancy and subsumption), consistency (the problems of
incoherence or contradiction, and useless premises) and
perfection (the problem of unreachable rules) of a Knowledge
Base.

We describe below a set of the most frequently treated
anomalies in verification currently; some of these anomalies,
such as contradiction, are deemed serious since they cause
incorrect functioning of the KB.

a) Proposition of Conflict

In an HKS, two rules Ri and Rj are in conflict (Figure 1) iff:

Fired rule and

candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and
candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and
candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and
candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and
candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and

candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and

candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and
candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and
candidate rules

P1,E1 ….

P2,E1 Pn,En

Fired rule and
candidate rules

P1,E1 ….

P2,E1 Pn,En

M0

M1

M2

M3

M4

M5

M6

Mi

Mj

……………..

Ri

Rj

Mk

……………..

……………..

Figure 1. Conflict situation in a Rule-Object HKS.

• there exist two final sequences σi and σj resulting from final
markings Mi and Mj respectively, such that Mi is produced by
firing Ri, noted Mi = δ(M0,σi) and Mj is produced by firing Rj
and noted Mj = δ (M0, σj);

• they do not have the same path: σi ∩ σj = ∅;
• there exists a set of places Φ ≠ ∅, in which a place in Mi and

Mj have the same color, and is noted by:

Φ = {Ps: P, Mi (Ps, ϕ(Ps)) = Mj(Ps, ϕ(Ps)), s>0}.

b) Proposition of Redundancy

In an HKS, two rules, Ri and Rj, cause redundancy between
object classes iff:

1. Ri and Rj are in conflict (i), (ii) and (iii); and

2. For any place Ps in the marking Mi, the color of the place
ϕ(Ps) in Mi is equal to the color of place Ps in Mj. We
denote:

{ } []
jissjssis sPPPPP Μ = Μ ⇔ >))(,(Μ=))(,(Μ Φ ∈ ∀ 0,, ϕϕ

As an example, we consider the following rules written in a
simplified notation of JRules.

Figure 2 shows the markings after a complete simulation of the
firing rules in the above example.

Figure 2. Marking graph - redundant rule.

Analysis of the above graph shows that R1 and R2 are redundant.
Indeed:
• there exists a final sequence σ1 = R1 resulting from the

marking sequence M0[R1>M2 , denoted by M’ = δ(M0, σ1);
• there exists a final sequence σ2 = R2 resulting from the

marking sequence M0[R2 >M1 , denoted by M’’ = δ(M0, σ2);
• we have σ1 ∩ σ2 = ∅;
• there exists a set Φ = {P1, P2}, for which the marking M1(P1,

ϕ(P1)) = M2 (P1, ϕ(P1)) and the marking M1(P2, ϕ(P2)) =
M2(P2, ϕ(P2));

• the set Φ is equal to the set P of places, therefore [M0 = M1].

c) Proposition of subsumption

A rule Rj is subsumed by rule Ri iff:

1. Ri and Rj are in conflict (i), (ii) and (iii);

2. there exists a set E, such that E ≠ ∅, where

<(code=’SLJ’, rate=94),TankEmpty>

<(code=’CP’, risk=25),SiteA>

<(code=’FF’,risk=94),SiteA

M0

<(code=’SLJ’, rate=100),TankFull>

<(code=’CP’, risk=30),SiteA>

<(code=’FF’,risk=94),SiteA

M1

<(code=’SLJ’, taux=100),TankFull>

 risk=30

<(code=’CP’, risk=25),SiteA>

<(code=’FF’,risk=94),SiteA

M2

R2

R1

R1

R2
P1

P2

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 27ISSN: 1690-4524

∅] = ∩ Φ[⇒]Φ∉= E Ps / P :[Ps E

3. for any place belonging to E, we have:

a) the number of tokens of Ps in Mi is the same as in Mj,
denoted by:

()() ()()ssjssis PPMPPMEP ϕϕ ,, =⇒∈∀

b) for any place Ps in Mi, its state is the same as in Mj,
denoted by:

() ()
MjsMss

PStatePStateEP
i

=⇒∈∀

4. there exists a set of transitions ΩMi for which Ri does not
change its state while firing these last transitions, and/or
there exists a set of transitions ΩMj for which Rj does not
change state while firing these transitions, and then: ΩMi ≠
∅ and/or ΩMj ≠ ∅;

5. if [Ri ⊆ ΩMj], we say that Ri is subsumed by Rj, i.e. the set
of consequents of Ri includes the same consequents as Rj,
and the set of premises of Ri is the same as for Rj; and

6. if [Rj ⊆ ΩMi], we say that Rj is subsumed by Ri, i.e. the set
of consequents of Rj includes the same consequents as Ri,
and the set of premises of Rj is the same as for Ri.

A problem of subsumption between two rules is encountered if,
starting from the same initial marking M0, we construct two
different occurrence sequences, leading to two markings Mi and
Mj, one of which is included in the other (if Mi = Mj, we find the
redundancy case). Note that a subsumption anomaly is a special
case of a redundancy.

As an example, we consider the following rules written in a
simplified notation of JRules.

Figure 3 shows the markings after a complete simulation of
firing rules of the above example.

We note that:
1. S1 and S2 are in conflict:

a) if there exist two final markings M1 and M2, such that
M1 is reachable from M0[>S1[>M1 and denoted by σ1
= δ(M0, σ1), and M2 is reachable from M0[>S2[>M2

and denoted by σ2 = δ(M0, σ2),
b) δ1 ∩ δ2 = ∅,
c) if there exists Φ = {P2,P3} such that M1(P2, ϕ(P2)) =

M2(P2, ϕ(P2));

2. The color in place P3 is the same in M1 and M2 and noted

by Φ = {P3} such that M1(P3, ϕ(P3)) = M2(P3, ϕ(P3));

3. There exists a non-empty set E = [P1: P / P1 ∉ Φ] for which
we have:
a) |M1 (P1, ϕ(P1))| = |M2 (P1, ϕ(P1))|,
b) StateObject(P1,M1) = StateObject(P1, M2) = TankFull;

4. There exists ΩM1 = {S2}, which implies that S1 is subsumed
by S2. The marking M1 is included in M2. Indeed, S1 and S2
work on the same variables (methods) and they lead to the
same states P1 (Tank ‘RCP‘ Full) and same states P2 (Site
‘CP’ InProd) in M1 and M2.

<(code=’RCP’, rate=95),NormalTank>

<(code=’CP’, risk=25),NormalProd>
<(code=’FF’,risk=94),NormalProd>

M0

<(A1,’0102'>

<(code=’RC’, rate=103),TankFull>

<(code=’CP’, risk=100),InProd>
<(code=’FF’,risk=94),NormalProd>

M1

<(A1,’0102'>

<(code=’RCP’, rate=99),TankFull>

<(code=’CP’, risk=25),InProd>
<(code=’FF’,risk=94),NormalProd>

M2

<(A1,’0102'>

S2

S1

S2

P1

P2

P3

Figure 3. Marking graph - subsumed rule.

d) Proposition of contradiction

An HES has contradictory rules Ri and Rj iff:
1. Ri and Rj are in conflict (i), (ii) and (iii);

2. There exists a set E ≠ ∅ containing all the places that do
not belong to Φ, i.e. :

[] []∅=∩Φ⇒Φ∉= EPPPE ss /:

3. For any place in E (∀ Ps ∈ E), all objects instances in place
Ps of Mi, are identical to the object instances of Ps in Mj,
and denoted by Oi(Ps,Mi) = Oi(Ps, Mj). Moreover, the state
of place Ps of object Oi in Mi is different from the state of
this object in Mj. We denote this by: State(Oi, (Ps, Mi)) ≠
State(Oi, (Ps, Mj)).

As an example, we consider the following rules written in a
simplified notation of JRules.

Figure 4 shows the markings after a complete simulation of
firing rules in the above example.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 328 ISSN: 1690-4524

We note that:
1. C1 and C2 are in conflict:

a) if there exist two final markings M1 and M2, such that
M1 is reachable from M0[>C1[>M1[>C2[>M3 and
denoted by σ1 = δ(M0, σ1), and M2 is reachable from
M0[>C1[>M2 and denoted by σ2 = δ(M0, σ2),

b) δ1 ∩ δ2 = ∅,
c) if there exists Φ = {P1} such that M1(P1 , ϕ(P1)) = M2

(P1, ϕ(P1));

2. There exists a set E = [P2: P / P2 ∉ Φ] for which:
for any object instance Oi in P2, Oi exists in marking M1 and
M2. We denote this by:
Oi: Object: Oi(P2, M1) = Oi(P2, M2) = (“CP”,100) and,
StateObject(P2,M1) = InProd and,
StateObject(P2, M2) = NormalProd.

This results in StateObject(P2,M1) ≠ StateObject(P2, M2).

<(code=’RCP’, rate=96),TankFull>

<(code=’CP’, risk=90),ProdNormale>

<(code=’FF’,risk=94),ProdNormale>

M0

<(code=’RC’, rate=96),TankFull>

<(code=’CP’, risk=100),InProd>
<(code=’FF’,risk=94),NormalProd>

M1

<(code=’RCP’, taux=96),TankFull>

<(code=’CP’, risk=99),InProd>

<(code=’FF’,risk=94),NormalProd>

M2

C1

C2

P1

P2

C2

C1

Figure 4. Marking graph – contradiction rule.

We can say that firing C1 and C2 produces places with the same
object instances but in different states, which is obviously a
contradiction.

e) Proposition of unnecessary premises

An HES has unnecessary IF conditions between two rules Ri and
Rj iff:

1. There exist two final sequences σi and σj resulting from
final markings Mi and Mj respectively, such that Mi is
produced by firing Ri, denoted Mi = δ(M0,σi) and Mj is
produced by firing Rj and denoted Mj = δ(M0, σj);

2. They do not have the same path: σi ∩ σj = ∅;
3. For any place Ps from the set P of places, there exist two

different colors (c, c’) for this place in Mi and Mj
respectively, denoted by:

 ∀ p: P, ∃ c,c’ ∈ ψ / (p,c) ∈ Mi and (p,c’) ∈ Mj

⇒ c ∩c’=∅.

f) Proposition of unreachability
We know that for a rule to be reachable, it is necessary that one
of its triggering states be obtained directly from an initial
marking or indirectly from an intermediate marking in the
reachability graph. If in the graph a rule does not use any initial
or intermediate marking, then this rule is unreachable. In an
HES, a rule Ri is unreachable iff:

1. ∀ σi, a marking sequence such that M’ is obtained from
M0, and thus we have:

M’ = δ(M0, σi) ⇒ σI ∩ {Ri} = ∅.

4.3 Dynamic Verification Principle
The users of the system are experts in their field. It is the case,
however, that after having built the knowledge base, or any
modification or update to it, inconsistencies or anomalies can
easily occur, since no tool for checking anomalies is integrated
into the automatic rules manager. The following steps show how
we construct a graph-marking-based verification model:

1. Construct reachability graph nodes (markings)
progressively, while there is an available rule to be fired
and according to formal definitions 2,3,4,5,6,7 and 10;

2. Starting with the initial node (initial marking), build all the
occurrence sequences as defined in section 3.1, definitions
1 and 4;

3. Analyze these occurrence sequences to detect anomalies
according to formal definitions 12,13,14,15,16 and the
formal propositions.

5. EXPERIMENTS AND DISCUSSION

Implementation of the simulation is composed of a set of Java
classes and of an RB in which to present the anomalies (.ilr
extension files). Once the Java classes are compiled (Figure 5),
the inference engine is fired via JRules API imported into Java.
The latter uses a rule file as the entrance, compiles the file to
check for errors and initializes the work memory according to
the initial facts contained in that rule file.

The reasoning session will start at that moment with a search for
the rules that will verify the objects in the work memory. Only
one rule is then chosen to be fired. That cycle will continue until
there are no more tangible rules to apply or until the inference
session is explicitly stopped by the user.

We carried out two types of simulations. The first uses the
examples presented in section 4 and extracted from HKS
ALCAN [2]. The second uses the well-known Game of Life for
several types of patterns [22].

 .class
 .class
 .class

 ..
 ..
 .class

Our
Application

Working
Memory

Fire Rule

MATCH
(rete)

Rule selected

Agenda

Rule base

 Virtuelle JAVA Machine API ILOG JRules

Figure 5. JRules - Java interaction.

5.1 Simulations with ALCAN
The objective of ALCAN [2] can be summarized in the
following points:
• Efficient use of water;
• Consideration of future hydrological uncertainty;
• Satisfaction of the energy demand;
• Respect for security constraints.
For this purpose, integrating a tool for knowledge-base
verification is necessary in order to ensure the maintenance of

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 29ISSN: 1690-4524

the knowledge base in a coherent state, thus guaranteeing
reasoning devoid of inconsistencies and anomalies.

5.2 Simulations with the Game of Life
The Game Of Life is an animated representation of a population
of cells developed first by the John Horton Conway [22]. In fact,
it is a lattice of cells with a set of rules describing how
successive generations of cells develop. The main interest of the
game is that it enables complex phenomena to emerge from
simple rules. The cell automaton in two dimensions is
considered as a reference by researchers who are interested in
the field of artificial life, because it shows that very simple rules
may make it possible to bring to light non-trivial operations, and
because it may simulate the abundance and diversity of life.
Here is an example of an RB written in JRules which we
simulated to create the situation of a redundancy.

Globally speaking, simulations have revealed that:

1. The results manually predicted in section 4 were confirmed
by the computerized application; we can confirm that, the
modelisation of HKBS and checking anomalies proposed in
this paper can be automated by a program software;

2. In order to verify the correctness of the heuristic CPN
marking graph construction algorithm, we have conducted
simulations for several patterns ("Glider»,» Small
Exploder", "Exploder", "10 Cell Row", "Fish", "Pump",
"Shooter", "Slow", "Fast", "Hyper") in the Game of Life
application and all these simulations gave us satisfactory
results. However, only pattern Exploder is presented here
for brevity.

3. The Game of Life case enabled us to confirm that the
construction of the marking graph and the analysis of
occurrence sequences would definitely make it possible to
predict an anomaly. Actually, the results of the inferences
of the RB without anomalies (Figure 6.a) and those with
redundancy (Figure 6.b) are the same. Only the analysis of
occurrence sequences allows us to predict the differences
(Figure 7).

4. To the author's best knowledge, this work is the first
research for dynamic verification of rule-object KBSH; it

can be used as a reference approach for all new research in
this area.

6. CONCLUSION

Even though an non-monotonic Object-Rule system is not a
simple task, few researchers have dealt with that set of problems
(section 3). In this paper, we have proposed an approach for the
dynamic verification of anomalies in an Object-Rule HKBS
which may be implemented by a computer program. We
successfully tested this technique on some examples. However,
because of the complexity of the problem and the lack of similar
work, certain aspects should be improved. Our main
contributions are:
a) to propose a complete modeling of the Object-Rule Hybrid
Knowledge-Based System by a CPN; in fact, we propose five
redefinitions and four new formal definitions of the CPN for
constructing the model of our system, a model in which all the
parts of an HKB (classes, rules, conditions, actions and objects)
are presented by the modeling elements of the Petri networks
(places, transitions, expression of arcs and tokens);
b) to propose a formal solution based on the analysis of the
sequences of the markings graph to analyze the anomalies in
Object-Rule HKBS.
This paper illustrates the capacity of the proposed technique to
identify situations of incompleteness anomalies in an Object-
Rule HKBS in an environment of interactive execution. That
verification is based on the analysis of the traces of the
sequences and occurrence sequences and on marks.
Extensions of this research work are currently being studied:
• to complete the formal analysis proposals for the case of

concentricity;
• to propose a new approach, based strictly on an analysis of the

final places of the actual Petri network;
• to carry out simulations on large Knowledge Bases.

(a)

(b)

Figure 6. Game of Life (a) Result without anomaly. (b) Result with
redundancy.

7. ACKNOWLEDGMENT

We wish to acknowledge the funding provided by the Natural
Sciences and Engineering Research Council of Canada
(NSERC), the Décanat à la formation of École de technologie
supérieure (ÉTS), and the Centre de recherche informatique de
Montréal.

8. REFERENCES

[1] S.C.K. Shiu et al., "Formal Description and Verification of

Hybrid Rule/Frame-Based Expert Systems", Expert

Systems with App., Vol. 13, N° 3, pp. 215-230, 1997.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 330 ISSN: 1690-4524

 [2] M. Essalihe, "Vérification Dnamique d'une Base de
Connaissances Hybride Objet-Règle", Mémoire de

maîtrise, CRIM 2000, pp. 1-160, 2000.

[3] F. Coenen, C. de Banc, "Maintanance of Kowledge Based
Systems”, Academic Press, 1993.

Figure 7. Game of Life - occurrence sequences.

[4] R. O'keef, D. O'leary, "Expert System Verification and
Validation: A Survery and Tutorial", Art. Int. Review, pp.
3-42, 1993.

[5] U. G. Gupta, "Validation and Verifying Knowledge Based
Systems", IEEE computer, Society Press, 1991.

[6] S.C.K. Shiu et al., "Formal verification of Some Potentiel
Contradictoires In Hybrid Rule-Frame Based Expert
Systems", Int. Con. on system MAN & Cybernics, USA,
pp. 4424-4429, 1997.

 [7] M. Tamiru, R. Agarwal, "A Petri Net Based Approach for
Verification the Integrity of Production Systems",
International journal of Man-machine studies, pp. 447-468,
1991.

[8] A. Kandel, Smith Suzanne, "Verification and Validation of
Rule Based Expert Systems", CRC Press Inc 2000, pp. 53-
103, 1993.

[9] A. D. Preece, R. Shinghal, "Cover: Practical Tool for
Verifying Rule-Based Systems, Validation and Testing",
Workshop notes from 9th national conference on Art. Int.,

AAAI, 1991.

[10] S.C.K. Shiu et al., "Modeling Hybrid Rule-Frame Based
Expert Systems Using Coloured Petri Nets", In proc. of 8th

int. conf. on Industrial & Eng. App. of AI and ES,

Australia, pp. 525-532, 1995.

[11] S.C.K. Shiu et al., "An Approach Towards the Verification
of Hybrid Rule/frame-based Expert Systems Using
coloured Petri Nets", Proc. of Int. Conf. on sys. and Cyb.,

pp. 2257-2262, 1996.

[12] S.C.K. Shiu et al., "Formal Verification of the Correctness
in Hybrid Expert Systems", 1st Int. conf. on Knowledge
Based Intelligent, Electronic Sys., Vol. 02, pp. 419-428,
1997.

[13] K. Jensen, "Coloured Petri Nets: Basic Concepts, Analysis
Methods and Pratical Use", Springer-Verlag, vol. 2, 1995.

[14] K. Jensen, "Coloured Petri Nets : Basic Concepts, Analysis
Methods and Practical Use", Springer-Verlag, vol. 3, 1997.

[15] R.E. O'keef, D.E O'leary, "Expert System Verification and
Validation: A Survery and Tutorial", Art. Int. Review, pp. 3-
42, 1993.

[16] R.A Stachowitz, C.L. Chang, "Verification and Validation
of Expert Systems", Tutorial note at AAAI-88, 1988.

[17] M. Suwa et al., "An Approach to Verifying Completeness
and Consistency in Rule-Based Expert System", AI Mag., pp.

16-21, 1982.

[18] F. Coenen, Chapon de Banc, "Maintenance of Knowledge
Based Systems", Academic Press, 1993.

[19] C.L. Chang et Al., "A Report on the Expert Systems
Validation Associete (EVA)", Exp. Sys. with Application,
pp. 219-230, 1990.

[20] D. E. O'Leary, "The Impact of Semantic Ambiguity on
Bayesian Weights", European jour. of op. research, pp.
163-169, 1995.

[21] C.K Shiu et al., "Formal Verification of Some Potentiel
Contradictoires in Hybrid Rules-Frame Based Expert
Systems Using Coloured Petri Nets", int. conf. on sys. Man

and Cybernics, Florida, USA, pp. 4424-4429, 1997.

[22] Martin Gardner, "Mathematical Games, The fantastic
combinations of John Conway's new solitaire
gamelife",http://ddi.cs.unipotsdam.de/HyFISCH/Produzier

en/lis_projekt/proj_gamelife/ConwayScientificAmerican.ht

m, 2003.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 31ISSN: 1690-4524

	P898705

