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ABSTRACT 

Searching for points of interest (POI) in large-volume imagery 

is a challenging problem with few good solutions. In this work, 

a neural engineering approach called rapid image triage (RIT) 

which could offer about a ten-fold speed up in POI searching is 

developed. It is essentially a cortically-coupled computer vision 

technique, whereby the user is presented bursts of images at a 

speed of 6–15 images per second and then neural signals called 

event-related potential (ERP) is used as the ‘cue’ for user 

seeing images of high relevance likelihood. Compared to past 

efforts, the implemented system has several unique features: 

(1) it applies overlapping frames in image chip preparation, to 

ensure rapid image triage performance; (2) a novel common 

spatial-temporal pattern (CSTP) algorithm that makes use of 

both spatial and temporal patterns of ERP topography is 

proposed for high-accuracy single-trial ERP detection; (3) a 

weighted version of probabilistic support-vector-machine 

(SVM) is used to address the inherent unbalanced nature of 

single-trial ERP detection for RIT. High accuracy, fast 

learning, and real-time capability of the developed system 

shown on 20 subjects demonstrate the feasibility of a brain-

machine integrated rapid image triage system for fast detection 

of POI from large-volume imagery. 

Keywords: Rapid Image Triage, Real-Time, ERP, Single-Trial 

and Common Spatio-Temporal Pattern. 

1. INTRODUCTION 

Like in many other process optimization problems, triage 

techniques can be extremely effective to improve the efficiency 

of POI searching in large volume imagery. Recently, some 

pilot work has been done to explore the feasibility of 

neurophysiologically-driven rapid image triage methods that 

leverage split-second human perceptual judgment capability 

[1]. In these RIT methods, the user, an image analyst or trained 

personnel, is presented, using rapid serial visual presentation 

(RSVP) paradigm (which is essentially a visual oddball 

paradigm [1]), a sequence of image chips, some of which 

contain POI to be identified. Then, an unique brain signal 

recorded non-invasively from the scalp known as event-related 

potential (ERP), represented by P300, a large positive voltage 

deflection (5 V or greater) occurring at approximately 300 ms 

after the onset of a image chip containing POI, is used to 

determine whether or not the user sees a POI image chip within 

the high speed sequences of image chips via RSVP.  

In those pilot studies, a trainable classifier was used to learn the 

ERP pattern in relation to brain responses to POI images so as 

to classify automatically whether the user sees a POI or a non-

POI image. Such a cortically-coupled computer vision 

technique represents a promising performance augmentation 

for image analysts. Unfortunately, the challenging problem of 

the single-trial ERP detection has not been carefully addressed 

and therefore very little evidence exists on the efficacy of 

incorporating the single-trial ERP detection technique into an 

effective RIT system. In particular, though surprisingly, no 

feature extraction was done and only the raw 

electroencephalogram (EEG) data, congregated from all 

channels, were to form the feature vector subjected to the 

classifier. This resulted in an extremely sparse problem: there 

were thousands of features but only very limited training 

samples. For such a sparse problem, it is well known in the 

domain of machine learning that, if no dimensionality 

reduction is provided, a standard classifier will certainly 

perform poorly due to the limitation called “curse of 

dimensionality” [2]. Secondly, the problem of single-trial ERP 

detection (POI vs non-POI) in the context of RIT is typically a 

highly unbalanced problem due to the fact that, in a large 

volume imagery, only very few images may contain POI to be 

identified. For such an unbalanced problem, a standard 

classifier used in the past work would likely fail to perform 

satisfactorily. 

This paper reported a RIT system based on novel robust single-

trial ERP detection. By searching for both spatial and temporal 

projections of multi-channel ERP signals, very small number of 

tempo-spatial features that provide the best separation between 

ERPs induced by POI and non-POI images can be extracted to 

aid the classification. Also, a weighted SVM classifier, a 

special version of SVM tailored to unbalanced classification 

problems, is used for the first time to solve the unbalance 

problem of the single-trial ERP detection in RIT. The 

developed RIT system also comes with a real-time automatic 

artifact removal functionality that is effective to increase the 

8 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 9 - NUMBER 3 - YEAR 2011 ISSN: 1690-4524



signal-to-noise ratio for high-accuracy single-trial ERP 

detection.   

2. SYSTEM AND EXPERIMENTAL SETUP 

Overview 

RIT comprised of two sub-systems: stimulation & acquisition 

subsystem (SAS), and data analysis subsystem (DAS). Each 

subsystem ran on a separate laptop, and was linked with each 

other in the local network following TCP/IP protocol.  SAS 

was responsible for delivering the visual stimuli to the subject, 

and at the same time acquiring EEG signals through an EEG 

amplifier.  The analog signals from the response button in the 

system were recorded simultaneously to an auxiliary channel of 

EEG amplifier. DAS continuously received raw signals 

transmitted by SAS through the network. The signals were 

evaluated in real-time and also stored for the possible off-line 

analysis.  

The EEG system used was a 64-channel ANT amplifier (ANT 

B.V., Enschede, Netherlands) with its compatible 64-channel 

W aveguard Cap, and the two laptops for SAS and DAS 

respectively have the same specifications (Intel Core 2 Duo 

T9600 and 2GB DDR2 memory). Software integration includes 

Presentation (Neurobehavioral Systems Inc., Albany, USA) for 

stimulus delivery, C++ program for data acquisition and 

transmission, Labview (National Instrument, Inc., Austin, 

Texas, USA) for user interface, and Matlab (Mathworks, Inc., 

Natick, MA, USA) for signal analysis.   

Participants 

RIT experiments were done on twenty right-handed subjects 

(21-30 years old, 15 males and 5 females), recruited from local 

tertiary institutions, who fulfilled the inclusion criteria of not 

being on any medication, having no history of neurological or 

psychiatric problems, with normal or corrected-to-normal sight. 

Recruitment of human subjects for this study was reviewed and 

approved by the National University of Singapore Institutional 

Review Board (NUS-IRB). 

Data Acquisition and Preprocessing 

EEG signals were collected from 62 channels (excluding M1 

and M2) over the scalp at a 250-Hz sampling rate, with the 

reference set to the linked ears and the grounding electrode on 

the forehead. EEG signals went through a digital band-pass 

filter of 1 Hz to 25 Hz.  

Stimuli Preparation 

For the ease of RSVP, the original large imagery was chopped 

to a sequence of much smaller images (chips). The size of chips 

was 500 500 pixels except those in the boundary which might 

be smaller. Spatial information regarding the original location 

of chips in the imagery was preserved, as it would be useful for 

registering POI ERP or non-POI ERP to the imagery in the 

final stage.  Considering that human vision is used to 

consecutive images without sudden changes in context, raster 

scan order was adopted in chopping (Fig. 2) in the reported 

experiments.   

It is worth pointing out that POI might fall into the boundary of 

image chips, or even be split by two neighboring chips, as can 

be seen in Fig. 2(a). POI not lying in the center of the chip 

could be hard to be detected by the subject, especially in the 

present case of rapid image triage where image chips were 

presented to the subject in high speed (6 image chips per 

second). To address this problem, an overlapping method was 

adopted instead. In Fig. 2(b), each pair of neighboring chips 

shared some parts, which ensured that POI would be at least 

allocated in the centre of one chip. Hence all the POI would 

have chance to appear in the focal center of subject’s visual 

field. The drawback is that it reduced the efficiency of RIT 

system as the total number of chips increased.  

(a) 

(b)

Figure 3. (a) Ordinary chopping. (b) Chopping with overlapping 

frames. 

Figure 2. Chips were chopped following the raster scan order. The 

red arrow demonstrated the track of the raster scan order. 

Figure 1. The scheme of RIT system. 
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Experimental Paradigm 

Sitting in an adjustable, comfortable chair, each subject 

underwent a 2-h RIT experiment in a temperature-controlled 

laboratory in the ambience of silence. Prior to each experiment, 

a detailed orientation was given to the subject by the operator. 

Each experiment consisted of one eye calibration session, one 

training session and one testing session. There were 10-min 

breaks among sessions. 

Eye Calibration: Electrooculogram (EOG) artifact 

can obscure ERP which are of small amplitudes. In this session 

the artifact models of eye blinking and eye movement were 

modeled. The subject was instructed to: 1) blink eyes with 

repeated flashes of a white cross on a black screen; 2) make 

horizontal eye movements by following the white cross which 

alternatively appeared on the left and right of the screen; 3) 

make vertical eye movements by following the white cross 

which alternatively appears at the top and bottom of the screen. 

Training and Testing: Following the standard 

RSVP paradigm [3], in both training session and testing 

session, subjects were presented bursts of chips. Each burst 

contained 50 chips, each of which lasted for 150 milliseconds 

on the screen (Fig. 5). Every burst was separated by a fixation 

screen (a black screen with a fixation cross in the center) for a 

subject-controlled duration (up to 10 seconds) to break the 

monotony and to minimize possible eye strain. In training 

session, POI chips were randomly inserted into bursts, in a 

manner that each burst contained at most one POI chip, and the 

POI chip was not among the first and the last 10 chips of the 

burst. The duration of training session was determined by the 

subject’s performance. If the subject had correctly responded to 

POI chips by pressing the button to pre-defined times, training 

session would automatically terminate. This ensured adequate 

data for building robust classification model. In testing session, 

chips were arranged and presented according to the raster scan 

order (Fig. 2). 

3. DATA PROCESSING 

Artifact Removal 

A linear modeling approach [4] is used to deal with the typical 

artifacts that contaminated EEG activity, i.e. EOG artifacts. 

This method assumes a linear model between the underlying 

sources and the scalp potentials. After deriving a forward 

model for eye blinking, horizontal and vertical eye movements 

based on the data collected in eye calibration session, the 

artifact-free EEG signals were reconstructed by subtracting the 

estimated contribution of EOG artifacts to the observed raw 

EEG in the training and testing sessions. 

Segmentation 

The preprocessed EEG signals were segmented into single-trial 

ERP epochs according to event markers. Each epoch was an 

EEG segment falling into the event-locked window of [-200ms 

500ms], i.e. from 200 ms before to 500 ms after the onset of 

each image. For each epoch, the baseline mean was calculated 

by using the data within the window [-200ms 0ms] and 

subsequently subtracted from each channel. 

Feature Extraction 

The developed RIT system uses a novel feature selection 

method, termed common spatio-temporal patterns (CSTP). 

Unlike past methods such as conventional common spatial 

pattern (CSP) method whereby only spatial patterns of ERP are 

considered [5-7], this method exploits both spatial and 

temporal patterns of ERP, providing complementary spatial and 

temporal features for high-accuracy single-trial ERP detection. 

Let 
c
X be a single epoch matrix (channel time) in condition 

c,where c is either POI condition (+) or non-POI condition (-).  

The normalized spatial covariance
c
R and the normalized 

temporal covariance cR can be obtained from:

( )

( )

T

c c

c T

c c

T

c c

c T

c c

X X
R

trace X X

X X
R

trace X X

(1)

where ( )T stands for the transpose operator and ( )Trace  is the 

summation of diagonal elements. By averaging
c
R and 

c
R over

the trials in condition c, the spatial covariance 
c

and the 

temporal covariance 
c

can be archived, respectively.  

The motivation of the CSTP method is to find both spatial 

filters v and temporal filters v that maximize the variance of 

filtered signals of one condition and at the same time minimize 

the variance of filtered signals of another condition. Since the 

spatial filters v and temporal filters v  that provide best 

separation between two conditions are independent, and can be 

Figure 5.  Rapid serial visual presentation in RIT. Each stimulus 

lasted for 150 ms. 

     
                   (a)                                               (b) 

Figure 4. Eye calibration. (a) Subjects blinked upon the 

disappearance of the white cross in the centre of the screen. (b) 

Subjects made eye movements while the white cross alternated 

repeatedly from left to right, up to down. 
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obtained by the same technique used in conventional common 

spatial pattern method [5-7]. 

Let's assume P  be the whitening transformation of 
cm

which 

satisfies 
T T

cm

T
P P P P P P I (2)

where I refers to the identity matrix. Let S and S denote 

T
P P and T

P P , respectively. Since S S I from (3), it 

follows from spectral theorem for matrices that S and S

share common eigenvectors, i.e., suppose T
S BB , then 

T
S BB  and I .  and  are the diagonal 

matrices of corresponding eigenvalues for S  and S ,

respectively. Therefore a bigger eigenvalue in one condition 

will have a corresponding smaller eigenvalue in the other 

condition, and vice versa.  This attribute grants eigenvectors B

the ability to discriminate two conditions.  Integrated with the 

whitening transformation, the project matrix is written as

( )TV BP , with each column being a spatial filter v .   

Similarly, the desired temporal filters V for optimal separation 

of two conditions can be found by simultaneous 

diagonalization of and .

Finally, the mapping of a single epoch matrix X is 
T

T
T

Y V X

Y V X

 (4) 

Typically, only the filters corresponding to the biggest 

difference in eigenvalues between two conditions are used. 

Features for classification are variances of projected signals on 

the chosen filters.

Classification

The classification of POI ERP vs. non-POI ERP is an 

extremely unbalanced problem due to the fact that, in many 

practical image triage problems, only very few images may 

contain POI to be identified. Handling such an extremely 

unbalanced problem is still an ongoing research topic. This 

work uses a modified version of probabilistic SVM, called 

weighted probabilistic SVM [8, 9], to accommodate the 

unbalance nature of the problem. The weighted probabilistic 

SVM uses real unbalanced data for training and compensates 

the bias of prior class probabilities by penalizing more on the 

classification errors produced by the samples from the minority 

class. By doing so, it offers a better tradeoff among 

classification performance on each class by greatly increasing 

classification accuracy on minority class at the cost of a 

relatively minor decrease in classification accuracy on majority 

class, making it a preferable solution to solving unbalanced 

problems. In addition, unlike the standard SVM which only 

gives hard decision, the weighted probabilistic SVM provides a 

useful confidence estimate of each classification that it makes, 

through a elegant mapping from the SVM outputs to posterior 

probabilities [10]. The detailed algorithm of the weighted 

probabilistic SVM can be found in [8-10]. 

4. RESULTS 

For each subject, there was a different set of 4,800 non-POI 

images versus 70 POI images for each of the training and 

testing sessions. The hit rate of the trained RIT system on 

twenty subject was 81±11% of about 70 POI in the testing 

session, while the false alarm rate was about 12%.   

The triage performance can be visualized by highlighting POI 

regions in the original imagery with posterior probability 

mapping. Posterior probabilities representing the likelihood at 

which each chip belongs to POI category are estimated based 

on single-trial ERP detection, and are further interpolated and 

converted to a color-coded hotspot layer (Fig. 6) which can be 

overlaid on the original imagery.  Those chips with relatively 

higher posterior probability are marked in red or yellow, whilst 

chips with lower posterior probability are marked in blue. 

The developed RIT system, in essential a cortically-coupled 

computer vision technique, offers significant performance 

enhancement on POI searching in original imagery by 

leveraging split-second human perceptual judgment capability.  

The image chips were presented to the user at a speed of 6 

images per second, which represents multi-fold speed up in 

POI searching [1] though we did not conduct a control 

experiment for accurate quantification of the performance 

enhancement. This certainly warrants further study, preferably 

through field tests by intended users. 

Like all other ERP-based brain-computer interface systems, the 

developed RIT system requires pre-learning/calibration so that 

the system can function correctly for a new user. It’s worth 

noting that the developed system did offer fast learning. It only 

took about 15 mins to go through a training session for system 

pre-learning/calibration (including model selection), with 

minimal user intervention.  

The developed system also has real-time capability. Following 

each chip shown to the user, the triage result in terms of the 

posterior probability of that chip being a POI chip was 

determined in a near real-time fashion. Therefore, feedback of 

triage performance to the user is possible with the developed 

RIT system. The influence of feedback on triage performance 

and even the ERP morphology is unknown, but it is another 

interest area for future work.   

Figure 6. The plot of the posterior probabilities of subject seeing POI 

images given by the developed RIT system.   illustrates the actual 

position of POI.
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